
COP 4020 — Programming Languages I January 7, 2013

Homework 1: Overview and Picking Languages
See Webcourses2 and the syllabus for due dates.
In this homework you will get an overview of programming languages [Concepts] [EvaluateModels]. You will also
become prepared to participate in a class discussion to decide on what we will study this semester.

General Directions
This homework must be done in a group of 4 to 6 people; ideally the group would contain 5 people. Due to time
limitations (for the presentations), we will not accept groups with fewer than 4 people.
Answers to English questions should be in your own words; don’t just quote from articles or books.

What to turn in
For problems that require an English answer, enter your answer into Webcourses2 (by pasting it into the assignment’s
answer box) for the “assignment” corresponding to that problem.

Problems
1. [Concepts] [EvaluateLanguages] In a group, you are to choose one of the topics below, and prepare a report and

a brief (4 minute) classroom presentation on it. (See details after the list of topics.) You must sign up for a group
that was created by the instructor on Webcourses2.

The topics all concern what programming models and languages we should study this semester. You can pick
one of the following, or after consulting with the instructor, a topic of your own choosing. Note that in the list of
topics there are both general topics (programming models as a whole) and specific programming languages.
Your group can choose either kind of topic.

Multi-paradigm Languages Multi-paradigm languages attempt to support many different programming models
(paradigms) in a single programming language. See Floyd’s paper “The Paradigms of Programming”
[Flo79] for some background on paradigms. The introductory material in the book Concepts Techniques
and Methods of Computer Programming [VH04] has a modern discussion of these ideas. (See
http://mitpress.mit.edu/books/chapters/0262220695chap1.pdf for an online copy of chapter 1.)

Lua Lua [Lua] is a multi-paradigm scripting language. It is dynamically typed.
Oz Oz [Moz, VH04] is a multi-paradigm programming language. It is dynamically typed and has support

for functional programming, lazy execution, message passing, relational programming, and other
programming models such as object-oriented programming.

Scala Scala [Sca] is a statically-typed object-oriented language that also has many features of functional
programming languages. It has libraries that provide support for the message passing (actor) model.

Functional Programming Model This is programming with immutable data and without variable assignment
which uses functions as data [BW88, Gra04, Hud89, Hug89, SF89].

F# F# [FSh] is a functional (and object-oriented) programming language that works in Microsoft’s .NET
programming environment.

Haskell Haskell [Has] is a statically-typed, lazy, functional programming language.
JavaScript JavaScript, or rather ECMAScript [ECM], is a scripting language for the web. However, it has

features that allow it to be used as a dynamically-typed functional programming language.
OCaml OCaml [OCa] is a statically-typed higher-order functional programming language that also has

object-oriented features.

https://webcourses2c.instructure.com/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://mitpress.mit.edu/books/chapters/0262220695chap1.pdf


2

R R [RLa] is a language for statistical analysis, which can also be seen as a functional programming
language.

Racket Racket [Rac] is a variant of Scheme with many additional extensions. It has an extensive
programming environment.

Scheme Scheme [ASS96, CE91, Sch] is a statically-scoped variant of Lisp, and can be used as a functional
programming language. It has an advanced macro system.

Message Passing Model In the message passing model, also known as the actor model [Agh91, HBS73],
programs are composed of actors that have local state and can send and receive messages. This model
directly supports client-server programming. Both Scala and Oz support this model to some extent.

Erlang Erlang [Erl] is a language for building parallel, distributed, and fault-tolerant systems. It is
organized around the message passing model and also has some features of the functional and
relational programming models.

Distributed Programming Model In the distributed programming model [BST89, Cri91], programs are spread
over physically distinct computers, and do not communicate by shared memory. Erlang also supports this
model.

Orc Orc [Orc] is a coordination (or scripting) language for distributed and concurrent systems.

Declarative Concurrent Programming Models The declarative concurrent programming model [VH04,
Chapter 4] adds parallelism (threads) to the declarative programming model; that is, programs use
immutable data. Oz, some Haskell extensions, and dataflow languages also support this model.

Clojure Clojure [Clo] is a dynamically-typed, functional language that runs on the JVM. If features
support for multi-threading.

Relational Programming Model In this programming model, also known as logic programming, one specifies
relations and lets the programming language implementation search for answers to queries. It generalizes
database queries and allows for rapid prototyping. Oz also supports this model.

λProlog λProlog [Lam] is a higher-order logic programming language. It has a static type system and a
module system.

XSB XSB [XSB] is a logic programming language with tabling features, which are useful for memoization
and modeling deductive databases.

Object-Oriented Programming Model The widely-used object-oriented programming model
[AC96, Coo91, GHJV95] features mechanisms to encapsulate data (classes and objects) as well as
mechanisms to implement code by stating how it differs from other code. Java, C#, and C++ are
well-known examples of this model which we will not be studying.

Ruby Ruby [Rub] is a language that is similar to Smalltalk, but with a more standard syntax. It also has
features to support functional programming.

Smalltalk Smalltalk [Sma] is a dynamically-typed, pure object-oriented language that also has some
features reminiscent of functional programming. The language has an unusual syntax and
programming revolves around an interactive workspace.

Once you have selected your topic and formed your group, you and the group should answer the following
questions.

(a) (10 points) What are the claimed advantages or benefits of the language or paradigm?

(b) (5 points) What are the ways in which the language or paradigm differs from languages that you are
familiar with (such as C, C++, and Java) or paradigms that you are familiar with (such as object-oriented
programming)?

(c) (10 points) What documentation and implementations are available for the language and paradigm? Are
they free? Do they work on both PCs and Macs?

(d) (10 points) What would you and the class learn by studying this language or paradigm?

(e) (5 points) Your group’s 4-minute presentation on the above items is worth 5 points.



3

Points
This homework’s total points: 40.

References
[AC96] Martín Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.

Springer-Verlag, New York, NY, 1996.

[Agh91] Gul Agha. The structure and semantics of actor languages. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in Computer Science,
pages 1–59. Springer-Verlag, New York, NY, 1991.

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of Computer
Programs. McGraw Hill, Cambridge, Mass., second edition, 1996.

[BST89] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming languages for distributed
computing systems. ACM Computing Surveys, 21(3):261–322, September 1989.

[BW88] Richard J. Bird and Philip Wadler. Introduction to Functional Programming. International Series in
Computer Science. Prentice-Hall, New York, NY, 1988.

[CE91] William Clinger and Jonathan Rees (Editors). Revised4 report on the algorithmic language Scheme.
Available from ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz.,
November 1991.

[Clo] http://clojure.org/. Accessed January 2013.

[Coo91] William R. Cook. Object-oriented programming versus abstract data types. In J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX
School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in
Computer Science, pages 151–178. Springer-Verlag, New York, NY, 1991.

[Cri91] Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications of the ACM,
34(2):56–78, February 1991.

[ECM] Ecmascript. http://www.ecmascript.org/. Accessed January 2013.

[Erl] Erlang programming language. http://www.erlang.org/. Accessed January 2013.

[Flo79] Robert W. Floyd. The paradigms of programming. Communications of the ACM, 22(8):455–460, August
1979.

[FSh] F# at microsoft research. http://research.microsoft.com/en-us/projects/fsharp/. Accessed
January 2013.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[Gra04] Paul Graham. Hackers and Painters, chapter Beating the Averages. O’Reilly, 2004. Available at
http://www.paulgraham.com/avg.html.

[Has] Haskell - haskellwiki. http://www.haskell.org/haskellwiki/Haskell. Accessed January 2013.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial intelligence. In
1973 International Joint Conference on Artificial Intelligence, pages 235–245. IJCAI, 1973.

ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/standards/r4rs.ps.gz
http://clojure.org/
http://www.ecmascript.org/
http://www.erlang.org/
http://research.microsoft.com/en-us/projects/fsharp/
http://www.paulgraham.com/avg.html
http://www.haskell.org/haskellwiki/Haskell


4

[Hud89] Paul Hudak. Conception, evolution, and application of functional programming languages. ACM
Computing Surveys, 21(3):359–411, September 1989.

[Hug89] J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–107, 1989.

[Lam] http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/. Accessed January 2013.

[Lua] The programming language lua web site. http://www.lua.org/. Accessed January 2013.

[Moz] Mozart-oz web site. http://www.mozart-oz.org/. Accessed January 2013.

[OCa] Ocaml. http://caml.inria.fr/ocaml/index.en.html. Access January 2013.

[Orc] http://orc.csres.utexas.edu/. Accessed January 2013.

[Rac] The racket language. http://racket-lang.org/. Accessed January 2013.

[RLa] http://www.r-project.org/. Accessed January 2013.

[Rub] http://www.ruby-lang.org/en/. Accessed January 2013.

[Sca] The scala programming language web site. http://www.scala-lang.org/. Accessed January 2013.

[Sch] Welcome to schemers.org. http://schemers.org/. Accessed January 2013.

[SF89] George Springer and Daniel P. Friedman. Scheme and the Art of Programming. McGraw-Hill, New York,
NY, 1989.

[Sma] http://www.smalltalk.org/main/. Accessed January 2013.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

[XSB] http://xsb.sourceforge.net/. Accessed January 2013.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/
http://www.lua.org/
http://www.mozart-oz.org/
http://caml.inria.fr/ocaml/index.en.html
http://orc.csres.utexas.edu/
http://racket-lang.org/
http://www.r-project.org/
http://www.ruby-lang.org/en/
http://www.scala-lang.org/
http://schemers.org/
http://www.smalltalk.org/main/
http://xsb.sourceforge.net/

