
COP 4020 — Programming Languages I January 23, 2010

Homework 2: Declarative Computation Model
See Webcourses and the syllabus for due dates.
In this homework you will learn about the declarative computation model [Concepts], including the concepts of free
and bound identifier occurrences, linguistic abstractions, syntactic sugars, and also about the extension of the
declarative model to exception handling. You’ll also see how the declarative computation model relates to C, C++,
and Java [MapToLanguages].
Answers to English questions should be in your own words; don’t just quote text from the textbook.
Code for programming problems should be written in Oz’s declarative model, so do not use either cells or cell
assignment in your Oz solutions. (Furthermore, note that the declarative model does not include the primitive IsDet
or the library function IsFree; thus you are also prohibited from using either of these functions in your solutions.)
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions that are compatible with the declarative model from the Oz library (base
environment), especially functions like Map and FoldR.
For all Oz programing exercises, you must run your code using the Mozart/Oz system. For programming problems
for which we provide tests, you can find them all in a zip file, which you can download from problem 1’s assignment
on Webcourses. If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and
makes commenting on the code easier and more specific to your problem.
What to Turn In: Turn in (on Webcourses) your code and output of your testing for each problem that requires code.
Please upload code as a plain (text) file with the name given in the problem or testing file and with the suffix .oz.
Please upload test output and English answers as plain text files with suffix .txt or paste that output into the answer
box in the assignment on Webcourses. If you have a mix of code and English, use a text file with a .oz file suffix, and
put comments in the file for the English parts. (In any case, don’t put spaces or tabs in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 2 of the textbook [VH04]. But you may also want to refer to the reference
and tutorial material on the Mozart/Oz web site. See also the course resources page.

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 2, through section 2.1 of the textbook [VH04] and answer the following questions.

1. [Concepts] [MapToLanguages] A for loop in Java, C, and C++ is a linguistic abstraction of a while loop. Give
another, different example of a linguistic abstraction in Java, C, or C++ by:

(a) (2 points) saying which of these languages you are describing,

(b) (3 points) naming a linguistic abstraction in that language, and

(c) (5 points) naming the main syntactic construct that it is an abstraction of.

Read through section 2.2 of the textbook and answer the following questions.

2. [Concepts]

(a) (4 points) What is a partial value?

(b) (3 points) What happens in Oz when a program executes a statement such as X = Z but both X and Z are
undetermined (i.e., unbound) dataflow variables?

(c) (3 points) What does a thread in Oz do when a dataflow variable is accessed before its value is determined
(i.e., before it is bound).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
https://webcourses.ucf.edu/
http://www.mozart-oz.org/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml


2

Read through section 2.3 of the textbook and answer the following questions.

3. (5 points) [Concepts] [MapToLanguages] What kind of typing does Java have?

Read through section 2.4 of the textbook and answer the following questions.

4. (5 points) [Concepts] What is the main advantage of static (i.e., lexical) scoping? (Give a brief answer.)

5. [Concepts] This question is about the subtle but important difference between the confusingly similar terms
“bound variable identifier occurrence” and “bound store variable.”

Consider the Oz program in Figure 1.

local X in
local Y in

Y = 3

Z = X+Y % line 4

end
end

Figure 1: Oz program for question 5.

(a) (2 points) On line 4 of Figure 1, is the occurrence of the variable identifier Y a bound occurrence of that
variable identifier, or is it a free occurrence?

(b) (2 points) When starting to execute line 4 of Figure 1, will the store variable that Y denotes be a bound store
variable or will it be undetermined?

(c) (2 points) On line 4 of Figure 1, is the occurrence of the variable identifier X a bound occurrence of that
variable identifier, or is it a free occurrence?

(d) (2 points) When starting to execute line 4 of Figure 1, will the store variable that X denotes be a bound store
variable or will it be undetermined?

(e) (2 points) On line 4 of Figure 1, is the occurrence of the variable identifier Z a bound occurrence of that
variable identifier, or is it a free occurrence?

(f) (2 points) After executing line 4 of Figure 1, will the store variable that Z denotes be a bound store variable
or will it be undetermined?

(g) (5 points) Must a bound occurrence of a variable identifier always denote a determined value at runtime?

Read through section 2.5 of the textbook and answer the following questions.

6. [Concepts] [MapToLanguages]

(a) (5 points) Suppose you are programming in a language (like C, C++, or Java) in which the compiler does
not implement the “last call optimization.” In such a language should you use recursion to write code that
may execute an unbounded number of times? Briefly explain.

(b) (2 points) Does Oz have garbage collection like Java?

(c) (3 points) What kinds of “cleanup” actions should an Oz or Java program take to ensure that it does not
keep memory allocated that it no longer needs?

Read through section 2.6 of the textbook and answer the following questions.

7. [Concepts] [MapToLanguages]

(a) (2 points) What is Oz’s orelse operator like in Java or C++?

(b) (3 points) What is the equivalent of the Java or C++ expression X != Y in Oz?



3

Read through section 2.7 of the textbook and answer the following questions.

8. (3 points) [Concepts] Give a simple example, in Oz, of how one throws an exception.

Read through sections 2.8.2 and 2.8.3 of the textbook and answer the following questions.

9. [Concepts]

(a) (2 points) Which language has dynamic type checking: Oz or Java?

(b) (3 points) Which language has static type checking: Oz or Java?



4

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

Some of the following problems are from the textbook [VH04, section 2.9].

10. [Concepts] This is a problem about free and bound identifier occurrences. See the end of section 2.4.3 of the
textbook for a definition of free and bound identifier occurrences. You may also want to do the ungraded quiz on
free and bound identifiers in Webcourses before starting this.

Consider the kernel language statement shown in Figure 2. (Note that there is no declare form in the kernel
language, so you should not imagine one in the figure.)

Compose = proc {$ F G X R}

local Temp in
{G X Temp}

{F Temp R}

end
end

Add1 = proc {$ Y Result}

local One in
local Two in

One = 1

{Add Y One Result}

end
end

end
local Ret in

local Three in
Three = 3

{Compose Add1 Id Three Ret}

end
end

Figure 2: Kernel language statement for problem 10.

(a) (5 points) Write, in set brackets, the entire set of the variable identifiers that occur free in the statement
shown in Figure 2. For example, write {V,W} if the variable identifiers that occur free are V and W . If
there are no variable identifiers that occur free, write {}.

(b) (10 points) Write, in set brackets, the entire set of the variable identifiers that occur bound in the statement
shown in Figure 2. For example, write {V,W} if the variable identifiers that occur bound are V and W . If
there are no variable identifiers that occur bound, write {}.

11. [Concepts]

This is a problem about free and bound identifier occurrences. See the end of section 2.4.3 of the textbook for a
definition of free and bound identifier occurrences. In this problem, we will consider Number.’+’ and Int.’div’
to each be single identifiers (that is, each matches the syntax 〈x〉).
Consider the kernel language statement shown in Figure 3 on the next page. (Note that there is no declare form
in the kernel language, so you should not imagine one in the figure.)

https://webcourses.ucf.edu/


5

AvgIter = proc {$ Ls Total Len ?Answer}

case Ls of
’|’(1: X 2: Xs) then

local Sum in
{Number.’+’ X Total Sum}

local One in
One = 1

local NewLen in
{Number.’+’ One Len NewLen}

{AvgIter Xs Sum NewLen Answer}

end
end

end
else {Int.’div’ Total Len Answer}

end
end

Average = proc {$ Lst ?Ans}

local NotUsed in
local Zero in

Zero = 0

{AvgIter Lst Zero Zero Ans}

end

Figure 3: Kernel language statement for problem 11.

(a) (5 points) Write in set brackets, the entire set of the variable identifiers that occur free in the statement
shown in Figure 3. For example, write {V,W} if the variable identifiers that occur free are V and W . If
there are no variable identifiers that occur free, write {}.

(b) (10 points) Write in set brackets, the entire set of the variable identifiers that occur bound in the statement
shown in Figure 3. For example, write {V,W} if the variable identifiers that occur bound are V and W . If
there are no variable identifiers that occur bound, write {}.

12. [Concepts] [MapToLanguages] Consider the Java program in Figure 4.

Answer the following questions with respect to the program in Figure 4.

(a) (3 points) Are the occurrences of the identifiers x and y within the constructor free or bound?

(b) (3 points) Does dx occur in this program as a free or bound identifier?

(c) (3 points) Does newy occur in this program as a free or bound identifier?

public class Point2D {

int x;

int y;

public Point2D(int a, int b) { x = a; y = b; }

public Point2D makeOffset(int dx, int dy) {

int newx = x+dx;

int newy;

return new Point2D(newx, y+dy);

}

}

Figure 4: Code for Problem 12.



6

13. [Concepts]

Do the textbook’s problem 2 (contextual environment). (The problem asks for answers to three questions and
also for two examples.)

To explain this a bit, recall the semantics of procedure calls from 2.4.4 of the text [VH04]. When a call, such as
the call {MulByN A B} considered in the problem, is executed the semantics checks that the procedure’s
identifier, MulByN in this problem, has a determined value that is a closure with the right number of arguments (2
in this case). In this problem, we’re assuming that the closure denoted by MulByN is the following:

(proc {$ X ?Y} Y=N*X end, {N 7→ 3}).

Execution then proceeds by executing the closure’s body, in this case the statement Y=N*X, in an environment
formed from the closure’s environment (in this case {N 7→ 3}) and bindings mapping each formal to the actual’s
value, which in this case is {N 7→ 3, X 7→ 10, Y 7→ x1}, assuming that the actual parameter A denotes 10 at the call
site, and that the actual parameter B denotes the location x1 (whose value is undetermined).

Thus the book is asking:

(a) (5 points) Why must the execution of a procedure call run the body in an environment that includes the
closure’s environment (e.g., {N 7→ 3} in this case), when executing such a call?

(b) (3 points) Can the semantics avoid using the closure’s environment to execute the call because some
binding for N will always be present in the environment that is current where the call is made?

(c) (5 points) Write an example that demonstrates your answer to the parts above.

(d) (2 points) Won’t the environment that is current where the call is made always map N to 3?

(e) (5 points) Write another example that demonstrates your answer to this last question.

Hint: In a statically scoped language like Oz, each properly nested region (e.g., from local to the matching end
or from proc to the matching end) is associated with a set of declarations that are effective in that region. The
“current environment” available at runtime is determined by these declarations and the values associated with the
locations that these declarations denote, as given by the program’s execution of various statements.



7

14. [Concepts] [MapToLanguages]

This problem tries to get you to think about how environments are manipulated by calls in Java, and in that sense
is similar to the previous problem, but for Java.

To understand this question, you need to understand how this works in Java. First, Java’s this is an identifier
that is implicitly declared by Java’s class mechanism.

Second, when Java executes a method call, such as r.printThis(), Java looks at the dynamic class of the
receiver object, which is the value of the receiver expression (r), and uses that to find the code for the method
(printThis). To execute that code, Java creates up an environment, which maps this to the receiver’s value, and
the formals to the actual parameters’ values, and then runs the body of the code it found. Note that the
environment created maps the identifier this to the current receiver object.

To see how this works, consider the code in Figure 5 on the next page. This code, when run in Java, produces
output like the following.

Starting Main
Main@17590db
Honda car 4-door
Main@17590db
Ford truck with 7000 lb payload

We now explain how the code in Figure 5 on the following page generates the above output. After an initial
message, the output shows that the value of this in the doPrinting method is an object of class Main at address
17590db. Then when c.printThis() is executing, the value of this is a car object. Upon return from that
method, the environment inside the method doPrinting is unaffected, and again the value of this in the
doPrinting method is an object of class Main at address 17590db. But when t.printThis() is executing, the
value of this is a truck object.

So, with that in mind, we want to consider why the environment has to be set up in such a way as described
above. To do that, consider the Java code in Figure 6 on page 9.

(a) (5 points) Given the above description of how this is declared and used in Java, briefly explain why
occurrences of the identifier this in lines 3 and 4 of Figure 6 on page 9 should be considered to be bound
occurrences?

(b) (5 points) Give an example, in Java, of a call to a method named add that shows why the environment must
bind this to the receiver when running the body. That is, give some Java code that, when run, would have
an environment at the point of the (only) call to a method named add method that associates this with the
wrong object for accessing the field n. (Hint: look at the code in Figure 5 on the following page.)
Your answer for this part of the problem should be in a .java file, with comments explaining how it answers
this question.

15. [Concepts] Before starting on this and other problems that ask you to desugar into the kernel language, you may
want to do the ungraded quiz on desugaring in Webcourses.

(a) (10 points) Translate the proc statement given in the textbook’s problem 1 into the declarative kernel
language’s syntax. This means to produce a statement that has the same meaning but which only uses the
syntax given in Tables 2.1 and 2.2 of the textbook [VH04]. Check carefully that your translation matches
that grammar. Since this grammar does not allow the use of infix operators like > and -, in your translation
you should use the built-in procedures Value.’>’ and Number.’-’ (see the Mozart/Oz system document
The Oz Base Environment [DKS06], sections 3 and 4 for more about these). For purposes of this problem,
we will consider Value.’>’ and Number.’-’ to be identifiers (matching the syntax 〈x〉).
Put your translation in a file Pkernel.oz and turn that in as your answer for this part of the problem.
(Hint: to check for some syntax errors, add the line declare P in just before your translation, then and
feed the translated code to the Oz system. However, Oz will only check against the full language syntax, so
you still might be using parts of the Oz syntax that are not in the kernel syntax [VH04, Tables 2.1 and 2.2].

https://webcourses.ucf.edu/


8

public class Main {

public static void main(String [] argv) {

System.out.println("Starting Main");

Main m = new Main();

m.doPrinting();

}

public void doPrinting() {

System.out.println(this);
Car c = new Car("Honda", 4);

Truck t = new Truck("Ford", 7000);

c.printThis();

System.out.println(this);
t.printThis();

}

}

public abstract class Vehicle {

protected String name;

protected Vehicle(String make) { this.name = make; }

public String toString() { return name; }

public void printThis() {

System.out.println(this);
}

}

public class Car extends Vehicle {

protected int doors;

public Car(String make, int num_doors) {

super(make);
this.doors = num_doors;

}

public String toString() {

return super.toString() + " car "

+ this.doors + "-door";

}

}

public class Truck extends Vehicle {

protected int payload;

public Truck(String make, int carries) {

super(make);
this.payload = carries;

}

public String toString() {

return super.toString() + " truck with "

+ this.payload + " lb payload";

}

}

Figure 5: An example showing how this works in Java.



9

public class Adder {

private int n;

public Adder(int n) { this.n = n; }

public int add(int x) { return this.n + x; }

}

Figure 6: Code for Problem 14 on page 7.

So you still need to check by hand that your code is in the kernel language. Finally, we allow comments in
the kernel syntax.)

(b) (5 points) Do the textbook’s problem 1 (free and bound identifiers).
(Hint: note that the question refers only to the statement itself; that is, the statement does not include any
(implicit) declare, since declare is not in the kernel language.)

16. (0 points) [Concepts] [UseModels] For practice (note that this is optional, you will not turn this in), do problems
5 (the case statement) and 6 (the case statement again) in the textbook. These problems allow you to check your
understanding of the case statement using the Oz implementation.

17. (20 points) [Concepts]
Do the textbook’s problem 4 (if and case statements). For your answers, give a both a rule for the translation
and translate our challenge examples using your translation rule. (That is, don’t just show us your translation of
our example, but give both the rule and your translation.) Check your translated examples, which should be Oz
code, by executing them in the Oz system. For each example, both the original code and its translation should
run and give the same results.
What we mean by a translation (or desugaring) rule is shown by the following example rule that desugars an
arbitrary but fixed call to a procedure P with an expression E as an argument. Such a call can be translated as
follows:

{P E}
⇒

local X in X=E {P X} end

In the part of the solution that translates a case statement into a statement that uses if statements, you can use
the built-in functions IsRecord, Label, and Arity, as well as the operators . and == (see the Mozart/Oz system
document The Oz Base Environment [DKS06]). (You can use . and == infix, as you don’t have to translate all the
way to the kernel language.)
Finally, for this problem it seems most sensible to only consider inputs that are in kernel syntax. This is sensible
because we can use other rules to desugar an if or case statement that uses more than kernel syntax into one that
only uses kernel syntax. This assumption will also simplify what you have to do.
As a challenge example for translating if to case, you are to translate the following example. (Note that in this
example, X is a free variable identifier, so if you want to run it, you will have to declare X and give it a value.)
if X

then {Browse ’was true’}

else {Browse ’was false’}

end

Describe your translation for the case statement for an arbitrary, but fixed, pattern of the form
L(F1 : P1 · · ·Fn : Pn). That is, your translation rule for case should start out with:

case X of L(F1 : P1 · · ·Fn : Pn) then S1 else S2 end
⇒

. . . if . . .

where X is a variable identifier, L is a literal, n ≥ 0, F1, . . . , Fn are field names in sorted order, P1, . . . , Pn are
variable identifiers (that we assume, without loss of generality, are distinct from the names of built-in functions),
and S1 and S2 are statements
As a challenge example for translating case to if, you are to translate the following example. (Note that in this
example, Y and C are free variable identifiers, so if you want to run it, you will have to declare both of these and
give them values.)



10

case Y of
winter(city: C country: K) then {Browse C#K}

else {Browse ’nope’#C}

end

18. (10 points) [Concepts]

Do problem 8 (control abstraction) in the textbook.

For this problem, please put your code for part (b) in a fileOrElse.oz and (after doing your own testing) use our
test cases (in OrElseTest.oz) to test your code.

19. (25 points) [Concepts] [UseModels]

Do the book’s problem 9 (tail recursion) parts (a), (b), and (c), but see below for special directions regarding
parts (a) and (b).

For part (a), use The Oz Base Environment [DKS06], to find identifiers that you can use in place of the infix
operators, so that your expansion into kernel syntax will, for example, use Value.’==’ instead of the infix
operator == and Number.’-’ instead of -. Put your answer for this part into a text file named tailrecursion.oz.
Test your code by making at least one call to each procedure.

For part (b), instead of writing out an answer in detail, just describe how large the stack would become in each of
the two cases.

20. (10 points) [Concepts] [UseModels]

Do problem 10 (expansion into kernel syntax). Again, use The Oz Base Environment [DKS06], to find the
identifiers that you can use in place of the infix operators. Also, according to The Oz Notation [HK06], if a case
statement is missing an else clause, you should add

else raise error(kernel(noElse ...) ...) end

as an implicit else clause (even though this steps outside the declarative model by using exceptions).

21. (10 points) [Concepts]

Do problem 13 (unification) from the textbook.

Extra Credit Problems

Extra credit problems are entirely optional. See the course grading policy for details.

22. (20 points; extra credit) [Concepts]

Using the operational semantics presented in the book (or the notes), trace the execution of the code in the
textbook’s problem 7.

Points
This homework’s total points: 229. Total extra credit points: 20.



11

References
[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June

2006. Version 1.3.2.

[HK06] Martin Henz and Leif Kornstaedt. The Oz Notation. mozart-oz.org, June 2006. Version 1.3.2.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.


