
COP 4020 — Programming Languages 1 March 1, 2009

Homework 4: Declarative Concurrency
See Webcourses and the syllabus for due dates.
In this homework you will learn about the declarative concurrent model and basic techniques of declarative
concurrent programming. The programming techniques include stream programming and lazy functional
programming [Concepts] [UseModels]. A few problems also make comparisons with the declarative model and with
concurrency features in Java [MapToLanguages]. A few problems also make comparisons between programming
techniques [EvaluateModels]; you may want to look at Problem 27 on page 13 right now so you can be thinking
about it while you do the other problems.
Your code should be written in the declarative concurrent model, so you must not use cells and assignment in your Oz
solutions. (Furthermore, note that the declarative model does not include the primitive IsDet or the library function
IsFree; thus you are also prohibited from using either of these functions in your solutions.) But please use all
linguistic abstractions and syntactic sugars that are helpful.
For all Oz programing exercises, you must run your code using the Mozart/Oz system. For programming problems
for which we provide tests, you can find them all in a zip file, which you can download from the course resources
web page or from problem 1’s assignment on Webcourses. If the tests don’t pass, please try to say why they don’t
pass, as this enhances communication and makes commenting on the code easier and more specific to your problem.
Turn in (on Webcourses) your code and output of your testing for all exercises that require code. Please upload code
as text files with the name given in the problem or testing file and with the suffix .oz. Please use the name of the
main function as the name of the file. Please upload test output and English answers as plain text files with suffix
.txt or as PDF files with suffix .pdf. If you have a mix of code and English, use a text file with a .oz file suffix, and
put comments in the file for the English parts. (In any case, don’t put any spaces in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions that are compatible with the declarative model from the Oz library (base
environment), especially functions like Map and FoldR.
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
You might lose points even if your code is passing all the tests, if you don’t follow the grammar or if your code is
confusing or needlessly inefficient. Make sure you don’t have extra case clauses or unnecessary if tests, make sure
you are using as much function definitions/calls as needed, check if you are making unnecessary loops or passes in
your code, efficient code means full mark, working code does not necessarily mean full marks.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 4 of the textbook [RH04]. (See the syllabus for optional readings.)

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 4, through section 4.1 of the textbook [RH04] and answer the following questions.

1. (5 points) [Concepts] [MapToLanguages]

The declarative concurrent model of chapter 4 adds threads to Oz. Threads are known to cause difficulties for
reasoning about programs, because multiple threads can interleave their execution in many different orders. In a
language like Java, C, or C++, the program can observed these different execution orders, resulting in programs
that give different outputs, and are thus observably nondeterministic. What’s different about the declarative
concurrent model that makes it observably deterministic?

2. [Concepts]

Consider the following Oz code.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw4-tests.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
https://webcourses.ucf.edu/

2

declare
fun {By10 X}

local P in
thread P = X*10 end
P

end
end

Suppose we execute the expression {By10 2}+4000.

(a) (3 points) Describe two different interleavings that are possible in the execution of this expression.

(b) (2 points) What possible values can we observe for this expression?

Read chapter 4, through section 4.2 of the textbook [RH04] and answer the following questions.

3. [Concepts] [UseModels]

(a) (2 points) What example in section 4.2 demonstrates the use of dataflow behavior to give incremental
output?

(b) (3 points) What part of this example’s code makes it possible for the output to be incrementally produced?

Read chapter 4, through section 4.3 of the textbook [RH04] and answer the following questions.

4. (5 points) [Concepts] [MapToLanguages]

In addition to the types called Steams in Java and C#, which are commonly used for input/output, what other
kinds of objects in these languages behave like streams? In other words, what kind of object has operations that
allows one to ask for the next element in a sequence of elements, and to work with a potentially unbounded
sequence without the computation going into an infinite loop if only a finite amount of the sequence is needed?
Briefly explain.

5. (5 points) [UseModels]

Describe one way to program a producer-consumer architecture in Oz.

6. (5 points) [UseModels]

Briefly describe one technique for doing flow control in a stream-based system.

Read chapter 4, through section 4.4 of the textbook [RH04] and answer the following questions.

7. (5 points) [Concepts]

What operations in Oz determine when the value of a by-need suspension is “needed”?

Read chapter 4, through section 4.5 of the textbook [RH04] and answer the following questions.

8. (5 points) [Concepts] [MapToLanguages]

Would it be a good idea in Java (or C++, or C) if all functions were lazy by default? Briefly explain.

9. (5 points) [Concepts] [UseModels]

In what sense is using a bounded buffer a compromise between the data-driven and demand-driven models?

3

Read chapter 4, section 4.8 of the textbook [RH04] and answer the following questions.

10. (5 points) [EvaluateModels]

Is it possible for a server, such as a retail web site, to adequately serve multiple independent clients if it is
programmed solely using the declarative concurrent model? Briefly explain.

Read chapter 4, section 4.9.2 of the textbook [RH04] and answer the following questions.

11. (5 points) [Concepts] [EvaluateModels]

Why is it useful to support nonstrict evaluation on a multi-core (or parallel) processor?

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

The following problems are from the textbook [RH04, section 4.11].

Thread and Dataflow Behavior Semantics

The following problems explore the semantics of the declarative concurrent model.

12. (10 points) [Concepts]

Do problem 4 in section 4.11 of the textbook [RH04] (Order-determining concurrency).

13. This problem explores threads and dataflow in Java [MapToLanguages]

For more information about threads in Java see, for example, The Java Tutorial [CW98], which is online at
http://java.sun.com/docs/books/tutorial/. The concurrency section of that tutorial has several examples.

(a) (10 points) Write, in Java, write a version of the program in the textbook’s problem 4 (of section 4.11) in
which the Oz program’s dataflow variables A, B, C, and D are represented by fields (perhaps static fields) in
the Java code. Call your Java class FourThreads. This version the Java code does not need to faithfully
match the semantics of Oz exactly, just translate to Java in the most straightforward way possible.
Hints: You will need to either use package-visible fields or nest your subclasses of Thread or subtypes of
Runnable within your main FourThreads class. You can use anonymous inner classes to make your code
shorter.

(b) (5 points) How much extra code is present in the Java version compared with the Oz code?

(c) (5 points) Does your Java code have the possibility of race conditions? Briefly explain.

(d) (5 points) Does your Java code always give the same answer as the Oz Code? Briefly explain.

(e) (40 points) Write, in Java, a class IntDataflowVariable, with operations int get() and void set(int).
The get operation should suspend the calling thread until the set method is called. The set method should
throw an IllegalArgumentException if it is called again with a different argument than the value used the
first time it was called. Test by using it to write another version of the textbook’s problem 4 (of section 4.11)
using instances of your class IntDataflowVariable in place of the integer fields. Call this class
FourThreadsWithDataflow. Running this class’s main method should always give the same output as the
Oz code.

14. (10 points) [Concepts] [UseModels]

Do problem 5 in section 4.11 of the textbook [RH04] (The Wait Operation).

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/essential/concurrency

4

15. (20 points) [Concepts]

Do problem 8 in section 4.11 of the textbook [RH04] (Dataflow behavior in a concurrent setting).

Streams and Lazy Functional Programming

The following problems, many of which are due to John Hughes, relate to modularization of numeric code using
streams and lazy execution. In particular, we will explore the Newton-Raphson algorithm. This algorithm computes
better and better approximations to the square root of a floating point number N from a previous approximation X by
using the following curried function.

% $Id: Next.oz,v 1.2 2007/10/31 00:42:36 leavens Exp leavens $

declare
% Next: <fun {$ <Float>}: <fun {$ <Float>}: Float>>

fun {Next N}

fun {$ X}

(X + N / X) / 2.0

end
end

In the following the type <IStream T> means infinite lists of type T. Note that nil never occurs in a <IStream T>,
which has the following grammar:

〈IStream T〉 ::= T ‘|’ 〈IStream T〉

As an aid to writing code for this section, and for testing that code, we provide a library file containing predicates for
approximate comparisons of floating point numbers and for testing with approximate comparisons. The floating point
approximate comparison code is shown in Figure 1 on the next page. The testing code for floating point numbers is
shown in Figure 2 on page 6.

16.

(a) (10 points) [UseModels] Write a lazy function

IStreamIterate: <fun lazy {$ <fun {$ T}: T> T}: <IStream T>>

such that {IStreamIterate F X} takes a function F and a value X and returns the stream

X | {FX} | {F{FX}} | {F{F{FX}}} | . . . ,

that is, the stream whose ith item, counting from 1, is F i−1 applied to X .
The examples in Figure 3 on page 7 are written using the WithinTest procedure from Figure 2 on page 6.
Notice also that, since Next is curried, we don’t pass Next itself to IStreamIterate, but instead pass the
value of applying Next to some number.

(b) (5 points) [Concepts]
Why does IStreamIterate have to be declared to be lazy? Give a brief answer.

5

% $Id: FloatPredicates.oz,v 1.3 2007/10/23 02:14:21 leavens Exp leavens $

%% Some functions to do approximate equality of floating point numbers.

%% AUTHOR: Gary T. Leavens

declare
%% Return true iff the difference between X and Y

%% is no larger than Epsilon

fun {Within Epsilon X Y} {Abs X-Y} =< Epsilon end

%% Partly curried version of Within

fun {WithinMaker Epsilon} fun {$ X Y} {Within Epsilon X Y} end end

%% Return true iff the corresponding lists are

%% equal relative to the given predicate

fun {CompareLists Pred Xs Ys}

case Xs#Ys of
nil#nil then true

[] (X|Xr)#(Y|Yr) then {Pred X Y} andthen {CompareLists Pred Xr Yr}

else false
end

end

%% Return true iff the lists are equal

%% in the sense that the corresponging elements

%% are equal to within Epsilon

fun {WithinLists Epsilon Xs Ys}

{CompareLists {WithinMaker Epsilon} Xs Ys}

end

%% Return true iff the ratio of X-Y to Y is within Epsilon

fun {Relative Epsilon X Y} {Abs X-Y} =< Epsilon*{Abs Y} end

%% Partly curried version of Relative

fun {RelativeMaker Epsilon} fun {$ X Y} {Relative Epsilon X Y} end end

%% Return true iff the lists are equal

%% in the sense that the corresponging elements

%% are relatively equal to within Epsilon

fun {RelativeLists Epsilon Xs Ys}

{CompareLists {RelativeMaker Epsilon} Xs Ys}

end

%% A useful tolerance for testing

StandardTolerance = 1.0e~3

%% A convenience for testing, relative equality with a fixed Epsilon

ApproxEqual = {RelativeMaker StandardTolerance}

Figure 1: Comparisons for floating point numbers. This code is available in the course lib directory.

6

% $Id: FloatTesting.oz,v 1.5 2008/03/24 15:43:04 leavens Exp leavens $

% Testing for floating point numbers.

% AUTHOR: Gary T. Leavens

\insert ’FloatPredicates.oz’

\insert ’TestingNoStop.oz’

declare
%% TestMaker returns a procedure P such that {P Actual ’=’ Expected}

%% is true if {FloatCompare Epsilon Actual Expected} (for Floats)

%% or if {FloatListCompare Epsilon Actual Expected} (for lists of Floats)

%% If so, print a message, otherwise throw an exception.

fun {TestMaker FloatCompare FloatListCompare Epsilon}

fun {Compare Actual Expected}

if {IsFloat Actual} andthen {IsFloat Expected}

then {FloatCompare Epsilon Actual Expected}

elseif {IsList Actual} andthen {IsList Expected}

then {FloatListCompare Epsilon Actual Expected}

else false
end

end
in

proc {$ Actual Connective Expected}

if {Compare Actual Expected}

then {System.showInfo

{Value.toVirtualString Actual 5 20}

’ ’ # Connective # ’ ’

{Value.toVirtualString Expected 5 20}}

else {System.showInfo

’TEST FAILURE: ’

{Value.toVirtualString Actual 5 20}

’ ’ # Connective # ’ ’

{Value.toVirtualString Expected 5 20}

}

end
end

end

WithinTest = {TestMaker Within WithinLists StandardTolerance}

RelativeTest = {TestMaker Relative RelativeLists StandardTolerance}

Figure 2: Testing code for floating point. This puts output on standard output (the *Oz Emulator* window). The file
FloatPredicates is shown in Figure 1 on the preceding page. This file is available in the course lib directory. To use
it, copy the files from the course directory to your own directory and then put \insert ’FloatTesting.oz’ in your
file.

7

% $Id: IStreamIterateTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’IStreamIterate.oz’

\insert ’Next.oz’

\insert ’FloatTesting.oz’

{StartTesting ’IStreamIterate...’}

{WithinTest {List.take {IStreamIterate {Next 1.0} 1.0} 7}

’~=~’ [1.0 1.0 1.0 1.0 1.0 1.0 1.0]}

{WithinTest {List.take {IStreamIterate {Next 9.0} 1.0} 7}

’~=~’ [1.0 5.0 3.4 3.0235 3.0001 3.0 3.0]}

{WithinTest {List.take {IStreamIterate {Next 200.0} 1.0} 7}

’~=~’ [1.0 100.5 51.245 27.574 17.414 14.449 14.145]}

{RelativeTest {List.take {IStreamIterate {Next 0.144} 7.0} 9}

’~=~’ [7.0 3.5103 1.7757 0.92838 0.54174 0.40378 0.3802 0.37947 0.37947]}

{RelativeTest {List.take {IStreamIterate fun {$ X} X*X end 2.0} 9}

’~=~’ [2.0 4.0 16.0 256.0 65536.0 4.295e009 1.8447e019 3.4028e038

1.1579e077]}

{RelativeTest {List.take {IStreamIterate fun {$ X} X/3.0 end 10.0} 8}

’~=~’ [10.0 3.3333 1.1111 0.37037 0.12346 0.041152 0.013717 0.0045725]}

{StartTesting ’done’}

Figure 3: Tests for Problem 16 on page 4.

8

17.

(a) (10 points) [UseModels]
Write a function

Approximations: <fun {$ Float Float}: <IStream Float>>

such that {Approximations N A0} returns the infinite list of approximations to the square root of N, starting
with A0, according to the Newton-Raphson method, that is by iterating {Next N}. For example, the call
{Approximations 2.0 1.0} should compute the infinite stream:

1.0 | {{Next 2.0} 1.0}
| {{Next 2.0} {{Next 2.0} 1.0}}
| {{Next 2.0} {{Next 2.0} {{Next 2.0} 1.0}}}
| {{Next 2.0} {{Next 2.0} {{Next 2.0} {{Next 2.0} 1.0}}}}
| ...

More examples appear in Figure 4 on the following page.

(b) (5 points) [Concepts]
Does your function Approximations have to be declared to be lazy? Briefly explain.

18. (10 points) [UseModels]

Write a function

ConvergesTo: <fun {$ <IStream T> <fun {$ T T}: Bool>}: T>

such that {ConvergesTo Xs Pred} looks down the stream Xs to find the first two consecutive elements of Xs that
satisfy Pred, and it returns the second of these consecutive elements. (It will never return if there is no such pair
of consecutive elements.) Figure 5 on the following page gives some examples.

19. (10 points) [UseModels]

Using WithinMaker from Figure 1 on page 5 and other functions given above, in particular ConvergesTo, write a
function

SquareRoot: <fun {$ Float Float Float}: Float>

such that {SquareRoot A0 Epsilon N} returns an approximation to the square root of N that is within Epsilon.
The parameter A0 is used as an initial guess in the Newton-Raphson method. Examples are given in Figure 6 on
the next page.

20. (10 points) [UseModels]

Using RelativeMaker from Figure 1 on page 5 and the other pieces given above, in particular ConvergesTo,
write a function

RelativeSquareRoot: <fun {$ Float Float Float}: Float>

such that {RelativeSquareRoot A0 Epsilon N} returns an approximation to the square root of N that only has a
relative error of Epsilon. The parameter A0 is used as an initial guess in the Newton-Raphson method. When
iterating, keep going until the ratio of the difference between the last and the previous approximation to the last
approximation approaches 0, instead of waiting for the differences between the approximations themselves to
approach zero. (This is equivalent to iterating until the ratio of the last two approximations approaches 1.) This is
test for convergence is better for square roots of very large numbers, and for square roots of very small numbers.
Examples are given in Figure 7 on page 10.

9

% $Id: ApproximationsTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’Approximations.oz’

\insert ’FloatTesting.oz’

{StartTesting ’Approximations’}

{WithinTest {List.take {Approximations 1.0 1.0} 7}

’~=~’ [1.0 1.0 1.0 1.0 1.0 1.0 1.0]}

{RelativeTest {List.take {Approximations 2.0 1.0} 5}

’~=~’ [1.0 1.5 1.41667 1.41422 1.41421]}

{RelativeTest {List.take {Approximations 64.0 1.0} 5}

’~=~’ [1.0 32.5 17.2346 10.474 8.29219]}

{StartTesting ’done’}

Figure 4: Tests for Problem 17 on the previous page.

% $Id: ConvergesToTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’ConvergesTo.oz’

\insert ’FloatTesting.oz’

fun lazy {Repeat X} X|{Repeat X} end

{StartTesting ’ConvergesTo’}

{WithinTest {ConvergesTo

{Append [1.0 3.5 4.5] {Repeat 7.0}}

{WithinMaker 1.01}

}

’~=~’ 4.5}

{WithinTest {ConvergesTo

{Append [1.0 32.5 17.2346 10.474 8.29219 8.00515] {Repeat 8.0}}

{WithinMaker 0.5}

}

’~=~’ 8.00515}

{StartTesting ’done’}

Figure 5: Tests for Problem 18 on the previous page.

% $Id: SquareRootTest.oz,v 1.2 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’FloatTesting.oz’

\insert ’SquareRoot.oz’

{StartTesting ’SquareRoot’}

Millionth = 0.0000001

WithinMillionth = {TestMaker

Within

WithinLists

Millionth}

{WithinMillionth {SquareRoot 1.0 Millionth 2.0} ’~=~’ 1.41421356}

{WithinMillionth {SquareRoot 1.0 Millionth 4.0} ’~=~’ 2.0}

{WithinMillionth {SquareRoot 1.0 Millionth 64.0} ’~=~’ 8.0}

{WithinMillionth {SquareRoot 1.0 Millionth 3.14159} ’~=~’ 1.7724531}

{StartTesting ’done’}

Figure 6: Tests for Problem 19 on the preceding page.

10

% $Id: RelativeSquareRootTest.oz,v 1.2 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’FloatTesting.oz’

\insert ’RelativeSquareRoot.oz’

{StartTesting ’RelativeSquareRoot’}

TenThousandth = 0.000001

RelativeTenThousandth = {TestMaker

Relative

RelativeLists

TenThousandth}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 2.0}

’~=~’ 1.41421356}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 4.0}

’~=~’ 2.0}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 64.0}

’~=~’ 8.0}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 3.14159}

’~=~’ 1.7724531}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 9.0e24}

’~=~’ 3.0e12}

{RelativeTenThousandth {RelativeSquareRoot 1.0 TenThousandth 9.0e~40}

’~=~’ 3.0e~20}

{StartTesting ’done’}

Figure 7: Tests for Problem 20 on page 8.

11

21. (15 points) [UseModels]

You may recall that the derivative of a function F at a point X can be approximated by the following function.

% $Id: EasyDiff.oz,v 1.3 2007/10/31 00:44:27 leavens Exp leavens $

declare
fun {EasyDiff F X Delta} ({F (X+Delta)} - {F X}) / Delta end

Good approximations are given by small values of Delta, but if Delta is too small, then rounding errors may
swamp the result. One way to choose Delta is to compute a sequence of approximations, starting with a
reasonably large one. (In this way, if {WithinMaker Epsilon} is used to select the first approximation that is
accurate enough, this can reduce the risk of a rounding error affecting the result, as we will show in the next
problem.)

In this problem your task is to write a function

DiffApproxims: <fun {$ Float <fun {$ Float}: Float> Float}:
<IStream Float>>

such that {DiffApproxims Delta0 F X} returns an infinite list of approximations to the derivative of F at X,
where at each step, the current Delta is halved. Examples are given in Figure 8 on the following page.

Hint: do you need to make something lazy to make this work?

22. (15 points) [UseModels]

Using the pieces given above, in particular ConvergesTo and DiffApproxims, write a function

Differentiate: <fun {$ Float Float <fun {$ Float}: Float> Float}:
Float>

such that {Differentiate Epsilon Delta0 F N} returns an approximation that is accurate to within Epsilon
to the derivative of F at N. Use the previous problem (Problem 21) with Delta0 as the initial value for Delta.
Examples are given in Figure 9 on the next page.

Laziness Problems

The following problems explore more about laziness and its utility.

23. (10 points) [EvaluateModels]

Do problem 12 in section 4.11 of the textbook [RH04] (Laziness and incrementality).

24. (10 points) [EvaluateModels]

Do problem 13 in section 4.11 of the textbook [RH04] (Laziness and monolithic functions).

25. (20 points) [Concepts] [UseModels]

Do problem 16 in section 4.11 of the textbook [RH04] (By-need execution).

To explain this problem and provide a test, call your procedure that solves this problem RequestCalc. Note that
it should be a procedure, not a function. Then when run as in Figure 10 on the next page it should show in the
Browser window first Z, then it should show requestin, then the Z should change to O|_, then you should see
request2in, and then the first line should change to 0|1|_.

Hints: think about what actions in Oz request (demand) calculation of a variable identifier’s value. And think
about what new features we have in this chapter that can be used to prevent a thread from waiting for something.

26. (15 points) [Concepts] [EvaluateModels]

Do problem 19 in section 4.11 of the textbook [RH04] (Limitations of Declarative Concurrency). (Note: there is
a typo in the book, the Merge function has only two input streams, not three.)

12

% $Id: DiffApproximsTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’DiffApproxims.oz’

\insert ’FloatTesting.oz’

{StartTesting ’DiffApproxims’}

{WithinTest {List.take {DiffApproxims 500.0 fun {$ X} X*X end 20.0} 9}

’~=~’ [540.0 290.0 165.0 102.5 71.25 55.625 47.8125 43.9062 41.9531]}

{WithinTest {List.take {DiffApproxims 100.0 fun {$ X} X*X*X end 10.0} 8}

’~=~’ [13300.0 4300.0 1675.0 831.25 526.562 403.516 349.316 324.048]}

{StartTesting ’done’}

Figure 8: Tests for Problem 21 on the previous page.

% $Id: DifferentiateTest.oz,v 1.2 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’FloatTesting.oz’

\insert ’Differentiate.oz’

{StartTesting ’Differentiate’}

Millionth = 0.0000001

WithinMillionth = {TestMaker

Within

WithinLists

Millionth}

{WithinMillionth {Differentiate Millionth 500.0 fun {$ X} X*X end 20.0}

’~=~’ 40.0}

{WithinMillionth {Differentiate Millionth 100.0 fun {$ X} X*X*X end 10.0}

’~=~’ 300.0}

{StartTesting ’done’}

Figure 9: Tests for Problem 22 on the preceding page.

% $Id: RequestCalcTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’TestingNoStop.oz’

\insert ’RequestCalc.oz’

% Testing

declare Z

fun lazy {SGen Y} {Delay 5000} Y|{SGen Y+1} end
Z = {SGen 0}

{Browse Z}

{Delay 2000} {RequestCalc Z} {Browse requestin}

{Delay 2000} {RequestCalc Z.2} {Browse request2in}

Figure 10: Tests for Problem 25 on the preceding page.

13

27. (20 points) [EvaluateModels]

Make a table listing all the different programming techniques, the characteristics of problems that are best solved
with these techniques (i.e., when to use the techniques), and the name of at least one example of that technique.

programming problem
technique characteristics example(s)
recursion (over grammars)
higher-order functions
stream programming
lazy functions

Extra Credit Problems

Extra credit problems are entirely optional. See the course grading policy for details.

28. (10 points; extra credit) (10 points; extra credit) [Concepts]

Do problem 2 in section 4.11 of the textbook [RH04] (Threads and garbage collection).

Note that the code in the problem uses _ instead of a variable name as the argument to B and to Wait.

29. (20 points; extra credit) [Concepts]

Do problem 7 in section 4.11 of the textbook [RH04] (Programmed triggers using higher-order programming).
Note that the example mentioned in the problem is the example with DGenerate and DSum that is the first
example shown in section 4.3.3.1.

30. (15 points; extra credit) [Concepts]

Do problem 18 in section 4.11 of the textbook [RH04] (Concurrency and Exceptions). (Hint: the “abstract
machine semantics” is the operational semantics of Oz, which is described in the textbook’s sections 2.4, 2.7.2,
4.1, and 4.9.1. You don’t have to do anything formal or especially mathematical with the operational semantics.)

31. (20 points; extra credit) [Concepts]

The instructions for this homework state that you are not to use Oz’s built-in function IsDet in writing your
code, since that is not part of the declarative model. Show why the use of IsDet takes you outside the declarative
model by using it to simulate a Boolean-valued cell. (Of course, you are to do this only using the declarative
model and IsDet. In particular you must not use cells in your solution!) Let’s call the ADT that you are
programming CellWithIsDet. Then your code should have the following interface.

NewCellWithIsDet: <fun {$ Bool}: CellWithIsDet>
CWIDAccess: <fun {$ CellWithIsDet}: Bool>
CWIDAssign: <proc {$ CellWithIsDet Bool}>

Testing should show that you can change the value of a CellWithIsDet object from true to false and back again,
as shown in Figure 11 on the next page.

Points
This homework’s total points: 305. Total extra credit points: 65.

14

% $Id: CellWithIsDetTest.oz,v 1.1 2009/02/28 20:52:54 leavens Exp leavens $

\insert ’TestingNoStop.oz’

\insert ’CellWithIsDet.oz’

{StartTesting ’CellWithIsDet’}

declare
MyCWID = {NewCellWithIsDet true}
Alias = MyCWID

MyCWID2 = {NewCellWithIsDet false}
{Test {CWIDAccess MyCWID} ’==’ true}
{Test {CWIDAccess Alias} ’==’ true}
{Test {CWIDAccess MyCWID2} ’==’ false}
{CWIDAssign MyCWID false}
{Test {CWIDAccess MyCWID} ’==’ false}
{Test {CWIDAccess Alias} ’==’ false}
{Test {CWIDAccess MyCWID2} ’==’ false}
{CWIDAssign MyCWID2 true}
{Test {CWIDAccess MyCWID} ’==’ false}
{Test {CWIDAccess Alias} ’==’ false}
{Test {CWIDAccess MyCWID2} ’==’ true}
{CWIDAssign MyCWID2 true}
{Test {CWIDAccess MyCWID} ’==’ false}
{Test {CWIDAccess Alias} ’==’ false}
{Test {CWIDAccess MyCWID2} ’==’ true}
{CWIDAssign MyCWID2 false}
{Test {CWIDAccess MyCWID2} ’==’ false}
{CWIDAssign MyCWID2 false}
{Test {CWIDAccess MyCWID2} ’==’ false}
{CWIDAssign MyCWID2 true}
{Test {CWIDAccess MyCWID2} ’==’ true}
{StartTesting ’done’}

Figure 11: Testing for Problem 31 on the preceding page.

15

References
[CW98] Mary Campione and Kathy Walrath. The Java Tutorial Second Edition: Object-Oriented Programming for

the Internet. The Java Series. Addison-Wesley, Reading, MA, second edition, 1998.

[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June
2006. Version 1.3.2.

[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

