
COP 4020 — Programming Languages I August 29, 2010

Homework 1: Introduction to Programming Concepts
See webcourses and the syllabus for due dates.
In this homework you will learn some of the basics of Oz and the Mozart system [UseModels], and, more
importantly, you will get an overview of programming concepts [Concepts].

General Directions
Answers to English questions should be in your own words; don’t just quote text from the textbook.
For all Oz programing exercises, you must run your code using the Mozart/Oz system (use the “Feed Buffer” item in
the Oz menu to run a file’s code). See the course’s “Running Oz” page for instructions about installation and
troubleshooting of the Mozart/Oz system on your own computer.
For programming problems for which we provide tests, you can find them all in a zip file, which you can download
from Webcourses in the attachments to problem 1.
If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes commenting
on the code easier and more specific to your problem.
Our tests use the functions in the course library’s TestingNoStop.oz. The Test procedure in this file can be passed
an actual value, a connective (which is used only in printing), and an expected value, as in the following statement.

{Test {CombA 4 3} ’==’ 24 div (6*1)}

The Assert procedure in this file can be passed a boolean, as in the following statement

{Assert {Comb J I} == {CombB J I}}

Calls to Assert produce no output unless they are passed the argument false. Note that you would not pass to
Browse or Show a call to Test or Assert, since neither of these procedures returns a value. If you’re not sure how to
use our testing code, ask us for help.

What to turn in
For problems that require code, you must turn in both: (1) the code file and (2) the output of our tests. Please upload
code as text files with the name given in the problem or testing file and with the suffix .oz. Please use the name of the
main function as the name of the file. Please upload test output and English answers either directly into the answer
box in the webcourses assignment, or as plain text files with suffix .txt. When you upload files, don’t put spaces or
tabs in your file names!
Your code should compile with Oz, if it doesn’t you should keep working on it. (Email the staff with your code file if
you need help getting it to compile.)

Other directions
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions from the Oz library (base environment).
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 1 of the textbook [VH04] (except section 1.7). But you may also want to
refer to the reference and tutorial material on the Mozart/Oz web site. See also the course resources page.

http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw1-tests.zip
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip
http://www.eecs.ucf.edu/~leavens/COP4020/lib/TestingNoStop.oz
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#OtherProblems
http://www.mozart-oz.org/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Reading Problems
The problems in this section are intended to get you to read the book, ideally in advance of class meetings.

Read section 1.1 and 1.2 of the textbook [VH04] and answer the following questions.

1. [UseModels]

(a) (2 points) What does {Browse funny} do in Oz?

(b) (3 points) What kind of character must a variable identifier, start with in Oz?

(c) (5 points) Can variables in Oz be assigned a value more than once? (Answer “yes” or “no” and give a brief
explanation.

Read sections 1.3-1.15 of the textbook and answer the following questions.

2. (5 points) [Concepts] [UseModels] This question deals with lists that represent “3 address instructions.” Such
lists always have 4 elements and look something like [add 2 5 7] where the symbol add tells what instruction it
is, and the numbers 2, 5, and 7 stand for register numbers or addresses. These lists will always have exactly 4
elements. Using Oz’s pattern matching feature, write a function that returns true just when the second and third
elements of such a list are equal (i.e., compare equal using ==), and false otherwise. Call this function
First2OpsEqual. The following are some tests, found in the file First2OpsEqualTest.oz; you should run these
tests on your code and hand in the output along with your code (as described above).

To run our tests, put your file First2OpsEqual.oz and our test file First2OpsEqualTest.oz in the same
directory. Then run our tests by feeding the buffer First2OpsEqualTest.oz to Oz. You will have to look at the
Oz Emulator buffer to see the output. Upload to webcourses your First2OpsEqual.oz file and paste the
contents of the *Oz Emulator* buffer into the answer box in Webcourses. (See also the general directions at the
beginning of this homework.)

% $Id: First2OpsEqualTest.oz,v 1.1 2010/08/12 00:40:17 leavens Exp leavens $

\insert ’First2OpsEqual.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’First2OpsEqualTest $Revision: 1.1 $’}

% If you fix your code, then you may have to restart Oz to make these pass...

{Test {First2OpsEqual add|2|7|5|nil} ’==’ false}
{Test {First2OpsEqual add|3|3|5|nil} ’==’ true}
{Test {First2OpsEqual mult|3|3|8|nil} ’==’ true}
{Test {First2OpsEqual divide|0|1|8|nil} ’==’ false}
{Test {First2OpsEqual sub|1|1|8|nil} ’==’ true}
{StartTesting ’done’}

Hint: Note that you can program this with a single pattern match in a single case expression. Note: Be sure to
put your code in a file named First2OpsEqual.oz, otherwise our testing code won’t find your solution. Our tests
only call First2OpsEqual on lists that are 4 elements long, so you should assume that the inputs will have that
type.

You are prohibited from using the numeric field deference operators, such as .1 and .2, in your solution.

See the course examples page for many examples of Oz functions.

3. (5 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that happens.

local SetIt It in
It = good

SetIt = proc {$ X}

It = X

end
{SetIt bad}

{Browse ’It is ’#It}

end

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

3

4. (5 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that happens.

local X in
X = X+1

{Browse ’X is ’#X}

end

4

Read sections 1.3-1.15 of the textbook and answer the following questions.

5. (5 points) [Concepts] According to chapter 1, what problems does nondeterminism cause in concurrent
programming?

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

The textbook problems are from the Concepts, Techniques and Models of Computer Programming book [VH04,
section 1.18].

6. (20 points) [UseModels]
Do problem 2 in chapter 1, calculating combinations. Note that this should be done without using cells or
assignment (that is, in the declarative model).
Your solution’s Oz code should be in a file Comb.oz, and that file should contain two functions. Part (a)’s solution
should be called CombA, and part (b)’s solution called CombB.
Hint: use the function Comb from section 1.3, and use recursion. Don’t write the same code twice, instead make
function calls. In Oz, use div to divide two integers; for example, 12 div 4 returns 3.
You must test your code using Mozart/Oz. After doing your own tests (with Show or Browse) you must run our
tests. To do this, put your file Comb.oz and our test file CombTest.oz in the same directory. Then run our tests by
feeding the buffer CombTest.oz to Oz. You will have to look at the *Oz Emulator* buffer to see the output. Then
upload your Comb.oz file to webcourses and paste the contents of the *Oz Emulator* buffer into the answer box
in Webcourses. (See also the general directions at the beginning of this homework.)
If you have trouble running our tests, see the troubleshooting section of the course’s running Oz page. If that
doesn’t help, contact the course staff.
See the course examples page for many examples of Oz functions.

7. (10 points) [UseModels]
Do problem 5 in chapter 1, lazy evaluation.

8. (10 points) [UseModels]
Do Problem 7 in chapter 1, explicit state.

9. (15 points) [UseModels]
Do problem 10 in chapter 1, explicit state and concurrency.

10. [Concepts]
Consider the code in Figure 1 on the following page, which is also included in the files available for download
with this homework from Webcourses (see the attachments to problem 1).
(a) (5 points) What symbol is shown (in the emulator on the line above the dot that shows that the run is

complete) when you feed ReserveSeat.oz to Oz? Do you get the same output each time?
(b) (5 points) What is shown in the emulator when you comment out the indicated line containing

{Delay {OS.random}}?
(c) (5 points) Is the implementation of Oz permitted to introduce delays where the statement

{Delay {OS.rand}} appears in Figure 1 on the next page?
(d) (5 points) Suppose the threads in Figure 1 on the following page were created at unpredictable times by

HTTP requests. Would you recommend the way Figure 1 on the next page is coded (with the
{Delay {OS.rand}} commented out) as a reliable way to achieve the effect of giving the seat to the first
visitor to the associated website? Answer “yes” or “no” and give a brief reason.

http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#troubleshooting
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
https://webcourses.ucf.edu/

5

% $Id: ReserveSeat.oz,v 1.3 2010/08/29 22:51:56 leavens Exp leavens $

declare
TheSeat = {NewCell nobody}

proc {ReserveSeat Who}

if @TheSeat == nobody

then
{Delay {OS.rand}} % comment this out for part (b), discussed in part (c)

TheSeat := Who

end
end

local Done A B C D E F G in
thread {ReserveSeat amy} Done=A end
thread {ReserveSeat bob} A=B end
thread {ReserveSeat carli} B=C end
thread {ReserveSeat dan} C=D end
thread {ReserveSeat eloise} D=E end
thread {ReserveSeat fred} E=F end
thread {ReserveSeat gayle} F=G end
G=unit

{Wait Done}

{System.showInfo @TheSeat}

{System.showInfo "."}

end

Figure 1: Oz code in the file ReserveSeat.oz, which is included in the hw1-test.zip file.

Points
This homework’s total points: 105.

References
[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT

Press, Cambridge, Mass., 2004.

