
1

Spring, 2009 Name:

COP 4020 — Programming Languages 1

Test on Declarative Programming Techniques

Special Directions for this Test
This test has 6 questions and pages numbered 1 through 7.
This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also
makes a difference for programming questions.
When you write Oz code on this test, you may use anything in the declarative model (as in chapters 2–3 of our
textbook). So you must not use not use cells or the library functions IsDet and IsFree. But please use all linguistic
abstractions and syntactic sugars that are helpful.
You are encouraged to define functions or procedures not specifically asked for if they are useful to your
programming; however, if they are not in the Oz base environment, then you must write them into your test. You can
use the built-in functions in the Oz base environment like Append, Member, Max, Filter, Map, and FoldR.

For Grading

Question: 1 2 3 4 5 6 Total

Points: 10 10 15 15 30 20 100

Score:



2

1. (10 points) [UseModels] Write an iterative function

Count: <fun {$ <List T> T}: Int>

that takes a list Lst of values of some type T and a value Sought of type T , and returns number of values in Lst
that are equal to Sought (using ==).

Your solution must have iterative behavior, and must be written using tail recursion. Don’t use any higher-order
functions or the Oz for loop syntax in your solution. (You are supposed to know what these directions mean.)

The following are examples, that use the Test procedure from the homework.

\insert ’Count.oz’

{Test {Count nil anatom} ’==’ 0}

{Test {Count [a b b a a c] a} ’==’ 3}

{Test {Count [a b b a a c] b} ’==’ 2}

{Test {Count [a b b a a c] c} ’==’ 1}

{Test {Count [u c f rules] c} ’==’ 1}

{Test {Count [u c f rules] u} ’==’ 1}

{Test {Count [u c f r u l e s] u} ’==’ 2}

{Test {Count [a fine mess have you a knife] a} ’==’ 2}

{Test {Count [4020 541 342 342 4020 641] 4020} ’==’ 2}

{Test {Count [4020 541 342 342 4020 641] 1} ’==’ 0}

{Test {Count [nil [3]] [3]} ’==’ 1}



3

2. (10 points) [UseModels] Write a function

Down: <fun {$ <List T>}: <List <List T>>>

that takes a list of some type T , Elems, and produces a list of singleton lists containing each element of Elems.
That is, the result has each element of Elems in their original order, but each is put in a 1-element list. The
following are examples.

\insert ’Down.oz’

{Test {Down nil} ’==’ nil}

{Test {Down [9 8 7 6 5 4 3 2 1 0]}

’==’ [[9] [8] [7] [6] [5] [4] [3] [2] [1] [0]]}

{Test {Down [shuttle launched tonight]} ’==’ [[shuttle] [launched] [tonight]]}

{Test {Down [da yes si oui yes ok ja yes]}

’==’ [[da] [yes] [si] [oui] [yes] [ok] [ja] [yes]]}

{Test {Down [1 2 3 4 2]} ’==’ [[1] [2] [3] [4] [2]]}

{Test {Down {Down [1 2 3 4 2]}} ’==’ [[[1]] [[2]] [[3]] [[4]] [[2]]]}



4

3. (15 points) [UseModels] Write a higher-order function

Map2: <fun {$ <List T> <List T> <fun {$ T T}: S>} : <List S>>

that takes two lists, Ls1 and Ls2, and a function F, and returns a list that is the same length as the shortest of Ls1
and Ls2, and in which the ith element is the result of applying F to the ith elements of Ls1 and Ls2 (in that
order). The following are examples.

\insert ’Map2.oz’

{Test {Map2 [7 4 3] [1 2 3] fun {$ M N} M-N end} ’==’ [6 2 0]}

local
fun {Radix10 X Y} X*10+Y end

in
{Test {Map2 nil nil Radix10} ’==’ nil}

{Test {Map2 [1 2] [1 2] Radix10} ’==’ [11 22]}

{Test {Map2 [4 0 2 0] [4 7 5 8] Radix10} ’==’ [44 7 25 8]}

{Test {Map2 [4] [4 7 5 8] Radix10} ’==’ [44]}

{Test {Map2 [6 4 0 2 0] [7 5 8] Radix10} ’==’ [67 45 8]}

end
{Test {Map2 [a good egg] [is over easy] fun {$ A B} A#B end}
’==’ [a#is good#over egg#easy]}

{Test {Map2 [richard cindy al freddie margo] [uk us de uk fr]

fun {$ Name Country} [Name Country] end}
’==’ [[richard uk] [cindy us] [al de] [freddie uk] [margo fr]]}



5

4. (15 points) [UseModels] Using FoldR, write the function

NoDuplicates: <fun {$ <List T>}: <List T>>

that for some type T takes a list of values of type T, Lst, and returns a list that is just like Lst except that it has no
duplicates. That is, each element only appears in the result if there are no elements that are == to it farther along
the list (towards the right, or end of the list). The following are examples.

\insert ’NoDuplicates.oz’

{Test {NoDuplicates nil} ’==’ nil}

{Test {NoDuplicates [b a]} ’==’ [b a]}

{Test {NoDuplicates [b b a]} ’==’ [b a]}

{Test {NoDuplicates [a b b a]} ’==’ [b a]}

{Test {NoDuplicates [b d a c a b b a]} ’==’ [d c b a]}

{Test {NoDuplicates [um no no no no yes no yes no]} ’==’ [um yes no]}

{Test {NoDuplicates [4 0 7 5 5 5 1 2 1 2]} ’==’ [4 0 7 5 1 2]}

Since you must use FoldR, write your answer by filling in the following outline (you can also write helping
functions if you wish).

fun {NoDuplicates Lst}
{FoldR

}
end



6

5. (30 points) [UseModels] This problem is about the following grammar for “sales data”:

〈SalesData〉 ::=
store(address: 〈String〉 amounts: 〈List 〈Int〉〉)

| group(name: 〈String〉 members: 〈List 〈SalesData〉〉)

Write a function MaxAmounts: <fun {$ <SalesData>}: <SalesData>> that takes a 〈SalesData〉, Data, and
returns a 〈SalesData〉 that is just like Data, except that in each store record, the list of amounts (in the field
amounts) is replaced by its maximum. Assume that each store record in Data has a list of amounts that is non-nil
and that each amount is positive. The following are examples using the Test function from the homework.

\insert ’MaxAmounts.oz’

{Test {MaxAmounts store(address: "The Bad One" amounts: [1])}

’==’ store(address: "The Bad One" amounts: [1])}

{Test {MaxAmounts store(address: "Waterford Lakes" amounts: [5 18 999 13 5])}

’==’ store(address: "Waterford Lakes" amounts: [999])}

{Test {MaxAmounts store(address: "Oviedo" amounts: [7 3 7 5 19 8 19 1])}

’==’ store(address: "Oviedo" amounts: [19])}

{Test {MaxAmounts

group(name: "Central Florida"

members: [store(address: "The Bad One" amounts: [1])

store(address: "Waterford Lakes" amounts: [5 18 999 13 5])

store(address: "Oviedo" amounts: [7 3 7 5 19 8 19 1])])}

’==’ group(name: "Central Florida"

members: [store(address: "The Bad One" amounts: [1])

store(address: "Waterford Lakes" amounts: [999])

store(address: "Oviedo" amounts: [19])])}



7

6. (20 points) [UseModels] This problem is about the following grammar for “rules”:

〈Rule T S〉 ::=
baseRule(<fun {$ T}: S>)

| extension(arg: T value: S otw: 〈Rule T S〉)

Write a function ApplyRule: <fun {$ <Rule T S> T}: S> that takes a 〈Rule T S〉, Rule, and a value of type
T , Val, and returns value of type S, by using the functionality of Rule. Applying a rule of the form baseRule(F)
to some value Val yields the value returned by the application {F Val}; that is the rule given by a base rule is the
algorithm computed by the function found in the baseRule record. Applying a rule of the form
extension(arg:X value:Y otw:SubRule) to some value Val yields Y if X == Val, and otherwise is the value of
applying SubRule to Val. The following are examples using the Test function from the homework.

\insert ’ApplyRule.oz’

{Test {ApplyRule baseRule(fun {$ T} T+1 end) 4019 } ’==’ 4020}

{Test {ApplyRule baseRule(fun {$ X} X*10+5 end) 6 } ’==’ 65}

{Test {ApplyRule baseRule(fun {$ X} [X on average] end) good} ’==’ [good on average]}

{Test {ApplyRule extension(arg: good value: super otw: baseRule(fun {$ X} [X on average] end)) good}

’==’ super}

{Test {ApplyRule

extension(arg: good value: great

otw: extension(arg: good value: super otw: baseRule(fun {$ X} [X on average] end)))
good}

’==’ great}

{Test {ApplyRule

extension(arg: good value: great

otw: extension(arg: good value: super otw: baseRule(fun {$ X} [X on average] end)))
poor}

’==’ [poor on average]}


