
1

Spring, 2008 Name:

COP 4020 — Programming Languages I

Test on the Declarative Model

Special Directions for this Test
This test has 9 questions and pages numbered 1 through 5.

This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also

makes a difference for programming questions.
When you write Oz code on this test, you may use anything we have seen in chapters 1–2 of our textbook. But

unless specifically directed, you should not use imperative features (such as cells) or the library functions IsDet and
IsFree. Problems relating to the kernel syntax can only use features of the kernel language.

You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-
ming; however, if they are not in the Oz base environment, then you must write them into your test.

For Grading
Problem Points Score

1 15
2 5
3 5
4 15
5 10
6 10
7 10
8 15
9 15

2

1. Consider the following Oz statement in the kernel language.

M = proc {$ Ls F G ?R}
case Ls of

cons(hd: H tl: T) then local FRes in
{F H FRes}
local TailRes in

R = cons(hd: FRes tl: TailRes)
{M T F N TailRes}

end
end

else R = nil
end

end

(a) (5 points) [Concepts] Write, below, in set brackets, the entire set of the variable identifiers that occur free
in the statement above. For example, write {V,W} if the variable identifiers that occur free are V and W .
If there are no variable identifiers that occur free, write {}.

(b) (10 points) [Concepts] Write, below, in set brackets, the entire set of the variable identifiers that occur
bound in the statement above. For example, write {V,W} if the variable identifiers that occur bound are
V and W . If there are no variable identifiers that occur bound, write {}.

2. [Concepts] Consider the following Java method declaration.

public int run(int x, int y) {
q = x+3;
return q;

}

(a) (2 points) Write below, in set brackets, the entire set of identifiers that occur free in the Java code above.

(b) (3 points) Write below, in set brackets, the entire set of identifiers that occur bound in the Java code above.

3. (5 points) [Concepts] In Oz, a closure stores an environment that remembers the values of variables that occur
in the body of a procedure. Does it store values for the identifiers that occur free or for those that occur bound?

3

4. (15 points) [Concepts] Desugar the following Oz code into kernel syntax by expanding all syntactic sugars.
(Assume that Plus and Y are declared elsewhere.)

fun {Comp F G X}
Z = {Plus X Y}

in
{F {G Z}}

end

5. (10 points) [Concepts] Which of the following are correct statements about scoping in Oz. (Circle the letters of
all the following that are correct. Don’t circle incorrect statements. There may be zero, one, two, or more
correct statements.)

(a) Oz uses dynamic scoping for identifiers, which is why Oz also uses dynamic type checking.

(b) Oz uses dynamic scoping for identifiers, which makes it easy to predict the values of identifiers.

(c) Oz uses static scoping for identifiers, which makes it impossible to do static type checking.

(d) Oz uses static scoping for identifiers, which makes it possible to statically predict the types of identifiers.

(e) Oz uses static scoping for identifiers, which requires it to make closures for procedure values.

4

6. (10 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that
happens.

local Sum Total in
Total = 0
fun {Sum Ls}

case Ls of
nil then Total

[] H|T then Total=Total+H
{Sum T}

end
end
{Show {Sum 1|2|3|nil}}

end

7. (10 points) [Concepts] What is the output, if any, of the following code in Oz? Briefly explain why that output
appears.

local P Unk W in
P = person(height: 62 weight: 190 age: Unk)
W = 55
case P of

building(height: H weight: W age: A) then {Browse first#H#W#A}
[] person(height: H weight: 190) then {Browse second#H}
[] person(height: H weight: W age: A) then {Browse third#H#W#A}
[] person(height: H weight: X age: A) then {Browse fourth#H#X#A}
else {Browse none}
end

end

5

8. (15 points) [Concepts] Which of the following are correct statements about syntactic sugars and linguistic
abstractions. (Circle the letters of all the following that are correct. Don’t circle incorrect statements. There
may be zero, one, two, or more correct statements.)

(a) Programmers will often use syntactic sugars and linguistic abstractions, because they make it easier to
write programs.

(b) Programmers will avoid using syntactic sugars and linguistic abstractions, because they are always
strictly less efficient than writing out the desugared form.

(c) Language designers use syntactic sugars and linguistic abstractions as an easy way to explain and
implement complex, but helpful, syntax.

(d) Language designers use syntactic sugars and linguistic abstractions to confuse and baffle programmers
with complex and useless syntax.

(e) Syntactic sugars and linguistic abstractions are a bad way to extend a programming language, since they
lead to complications that programmers do not need.

9. (15 points) [Concepts] Which of the following are correct statements about exception handling. (Circle the
letters of all the following that are correct. Don’t circle incorrect statements. There may be zero, one, two, or
more correct statements.)

(a) Good programmers do not need exception handling mechanisms because good programmers never make
mistakes that cause exceptions.

(b) Languages need an exception handling mechanism so programmers can avoid cluttering their code with
tests of status codes or condition codes.

(c) Throwing an exception immediately terminates the running of the entire program and cannot be stopped
under program control.

(d) Throwing an exception starts a search for an exception handler, which can control what happens when
some exception is thrown.

(e) When a try statement has a finally clause, the finally clause’s body is only executed when the
body of the try statement throws an exception.

