
COP 4020 — Programming Languages I November 12, 2019

Homework 4: Erlang and Message Passing
Programming

See Webcourses and the syllabus for due dates.

Purpose
In this homework you will explore programming in Erlang, doing a bit of functional programming, then
concentrating on programming in the message passing model. [UseModels] [Concepts].

Directions
We will take some points off for: code with the wrong name, duplicated code, code with extra unnecessary
cases, or code that is excessively hard to follow. You should always assume that the inputs given to each
function will be well-typed, thus your code should not have redundancies or extra cases for inputs that are
not of the proper type. Avoid duplicating code by using helping functions, or library functions (when not
prohibited in the problems). It is a good idea to check your code for these problems before submitting.
For this homework we suggest that you work individually. (However, per the course’s grading policy you
can work in a group if you wish, provided that carefully follow the policy on cooperation described in the
course’s grading policy.)
Don’t hesitate to contact the staff if you are stuck at some point.

What to Turn In
For English answers, please paste your answer into the assignment as a “text answer” in the problem’s
“assignment” on Webcourses.
For each problem that requires code, turn in (on Webcourses) your code and output of testing with our test
cases. Please upload code as a plain (text) file with the name given in the problem or testing file and with the
suffix .erl (that is, do not give us a Word document or a PDF file for the code). Also upload the output from
our tests as a plain text file for that “assignment”.
For all Erlang programs, you must run your code with Erlang/OTP. See the course’s Running Erlang page
for some help and pointers on getting Erlang installed and running. Your code should compile properly; if it
doesn’t, then you probably should keep working on it. Email the staff with your code file if you need help
getting it to compile or have trouble understanding error messages. If you don’t have time to get your code
to compile, at least tell us that you didn’t get it to compile in your submission.
You are encouraged to use any helping functions you wish, and to use Erlang library functions, unless the
problem specifically prohibits that.

What to Read
Our recommended book is Joe Armstrong’s Programming Erlang, Second Edition [Arm13], in which we
recommend reading chapters 1-6 and 8-10. There is also an online tutorial Getting Started with Erlang
User’s Guide, available for free online. Also the tutorial book Learn you some Erlang for great good! is free
online (or you can order a print version).
For details on Erlang see the Erlang Reference Manual User’s Guide (Version 10.5, Sept. 17, 2019).
For the type notation used in the problems, see Types and Function Specifications, chapter 7 in the Erlang
Reference Manual User’s Guide.
See also the course code examples page and the course resources page.

https://webcourses.ucf.edu/
http://www.cs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.cs.ucf.edu/~leavens/COP4020/grading_policy.shtml
http://www.cs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.cs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.cs.ucf.edu/~leavens/COP4020/contact.shtml
https://webcourses.ucf.edu/
http://www.cs.ucf.edu/~leavens/COP4020/running_erlang.shtml
http://www.cs.ucf.edu/~leavens/COP4020/contact.shtml
http://erlang.org/doc/getting_started/users_guide.html
http://erlang.org/doc/getting_started/users_guide.html
https://learnyousomeerlang.com/
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/typespec.html
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/users_guide.html
http://www.cs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.cs.ucf.edu/~leavens/COP4020/resources.shtml


2

Testing Code
The testing code for Erlang is given in the testing.erl file supplied with this homework’s zip file. Note
that to run our tests in the Erlang Shell, all your modules involved must first be compiled. Then to execute
our tests in a module named m_tests, type m_tests:main(). to the Erlang Shell’s prompt.

Problems

Programming Language Concepts
1. (5 points) [Concepts] Answer the following question with “Yes” or “No” and give a brief explanation.

Does Erlang use static scoping?

2. (5 points) Answer the following question by naming the correct technical term.

What kind of type checking does Erlang use?

Sequential Programming in Erlang

In this section the problems review what you have learned using Haskell, but now using Erlang.

3. (10 points) [UseModels] In Erlang, without using any functions from Erlang’s lists module, write a
function concat/1, whose type is given by the following.

-spec concat(Lists :: [[T]]) -> [T].

The function concat takes a list of lists, Lists, and returns a list of all the elements formed by
concatenating the inner lists together in order. The following are examples written using the Erlang
testing module.

You can use the built-in operator ++ in your code, or any helping functions that you write. Run these
tests by compiling your file and the testing file, and then running concat_tests:main().

% Id : concattests.erl, v1.42019/10/3104 : 37 : 03leavensExpleavens
-module(concat_tests).
-import(testing,[dotests/2,eqTest/3]).
-export([main/0, tests/1]).
main() ->

compile:file(concat),

dotests("concat_tests Revision : 1.4", tests(fun concat:concat/1)).

-spec tests(CFun :: fun(([[T]]) -> [T])) -> testing:testCase([atom()]).
tests(CFun) ->

[eqTest(CFun([]), "==", []),
eqTest(CFun([[]]), "==", []),
eqTest(CFun([[fee], [fie], [fo], [fum]]), "==", [fee, fie, fo, fum]),
eqTest(CFun([[], [hmm], [], [okay]]), "==", [hmm, okay]),
eqTest(CFun([[keep], [ancient, lands], [your, storied, pomp], [cries, she]]),

"==", [keep, ancient, lands, your, storied, pomp, cries, she]),
eqTest(CFun([[four, score, nd, seven], [years, ago], [our, ancestors],

[brought, forth, on, this, continent], [a, new, nation]]),
"==", [four, score, nd, seven, years, ago, our, ancestors,

brought, forth, on, this, continent, a, new, nation]),
eqTest(CFun([[[more],[nested]], [[than],[before]]]),

"==", [[more], [nested], [than], [before]])
].



3

4. (20 points) [UseModels] This problem is about “sales data records.” There are two record types that are
involved in the type salesdata(), which are defined in the file salesdata.hrl (note that file extension
carefully, it’s hrl with an “h”) shown below and included with the testing files.

% Id : salesdata.hrl, v1.12013/04/1102 : 24 : 12leavensExp
% Record definitions for the salesdata() type.

-record(store, {address :: string(), amounts :: [integer()]}).
-record(group, {gname :: string(), members :: [salesdata:salesdata()]}).

The type salesdata() itself is defined by the following, which says that a sales data value is either a
store record or a group record.

% Id : salesdata.erl, v1.42015/03/1212 : 15 : 20leavensExp
-module(salesdata).
-include("salesdata.hrl").
-export_type([salesdata/0]).

-type salesdata() :: #store{} | #group{}.

Your task is to write, in Erlang, a function

-spec substaddr(SD :: salesdata:salesdata(), New :: string(), Old :: string()) -> salesdata:salesdata().

that takes a sales data record SD, two strings New and Old, and returns a sales data record that is just like
SD except that all store records in SD whose address field’s value is Old in SD are changed to New in the
result. See Chapter 10 of the Erlang Reference Manual for details about records in Erlang.

Your solution must follow the grammar; we will take points off for not following the grammar! In
particular, you should never call substaddr with a list argument; be sure to use a helping function for
lists instead.

Figure 1 on the following page has tests for this problem. To run our tests, run
substaddr_tests:main(). Note how the testing file does -include("salesdata.hrl"); your solution
file (substaddr.erl) must also include this directive if you want to use the Erlang record syntax.

To be clear, your solution should go in a file substaddr.erl, as the tests import substaddr/3 from that
file. Thus to use the record syntax and typing, your solution file substaddr.erl should start out as
follows. (Note that you cannot import the type salesdata/0 from salesdata.erl, as Erlang does not
currently permit type imports.)

-module(substaddr).
-export([substaddr/3]).
-include("salesdata.hrl").
-import(salesdata, [store/2, group/2]).

-spec substaddr(SD :: salesdata:salesdata(), New :: string(), Old :: string()) -> salesdata:salesdata().

http://erlang.org/doc/reference_manual/records.html
http://erlang.org/doc/reference_manual/records.html


4

% Id : substaddrtests.erl, v1.52019/10/3104 : 37 : 03leavensExpleavens
-module(substaddr_tests).
-include("salesdata.hrl").
-import(salesdata,[salesdata/0]).
-import(substaddr,[substaddr/3]).
-import(testing,[eqTest/3,dotests/2]).
-export([main/0]).

main() ->
compile:file(substaddr),

dotests("substaddr_tests Revision : 1.5", tests()).

tests() ->
[eqTest(substaddr(#group{gname = "StartUP!", members = []},

"Downtown", "50 Washington Ave."),

"==", #group{gname = "StartUP!", members = []}),
eqTest(substaddr(#store{address = "The Mall", amounts = [10,32,55]},

"110 Main St.", "The Mall"),

"==", #store{address = "110 Main St.", amounts = [10,32,55]}),
eqTest(substaddr(

#group{gname = "Target",

members = [#store{address = "The Mall", amounts = [10,32,55]}]},
"Substaddr", "OldAddress"),

"==",

#group{gname = "Target",

members = [#store{address = "The Mall", amounts = [10,32,55]}]}),
eqTest(substaddr(

#group{gname = "Target",

members = [#store{address = "The Mall", amounts = [10,32,55]},
#store{address = "Downtown", amounts = [4,0,2,0]}]},

"253 Sears Tower", "The Mall"),

"==",

#group{gname = "Target",

members = [#store{address = "253 Sears Tower", amounts = [10,32,55]},
#store{address = "Downtown", amounts = [4,0,2,0]}]}),

eqTest(substaddr(

#group{gname = "ACME",

members =

[#group{gname = "Robucks",

members = [#store{address = "The Mall", amounts = [99]},
#store{address = "Maple St.", amounts = [32]}]},

#group{gname = "Target",

members = [#store{address = "The Mall", amounts = [10,55]},
#store{address = "Downtown", amounts = [4]}]}]},

"High St.", "The Mall"),

"==", #group{gname = "ACME",

members =

[#group{gname = "Robucks",

members = [#store{address = "High St.", amounts = [99]},
#store{address = "Maple St.", amounts = [32]}]},

#group{gname = "Target",

members = [#store{address = "High St.", amounts = [10,55]},
#store{address = "Downtown", amounts = [4]}]}]})

].

Figure 1: Tests for problem 4.



5

5. (15 points) [UseModels] [Concepts] In Erlang, without using the lists module or any list
comprehensions, write a tail-recursive function

-spec count_matching (Pred::fun((T) -> boolean()), Lst::list(T)) -> non_neg_integer().

that takes a predicate, Pred, and a list, Lst, and returns the number of elements in Lst that satisfy Pred.
Examples are shown in Figure 2.

Note that your code must use tail recursion and is not allowed to use any functions from the lists
module or list comprehensions.

Hint: In Erlang, you can call a fuction closure, say Pred on an argument X using the syntax Pred(X).
However, you cannot call an arbitrary function in the guard of an if expression, as the syntax only
allows guard sequences there. See Section 8.17 and Section 8.25 of the Erlang Reference Manual User’s
Guide for details. Instead of using an if-expression, try using a case expression instead.

% Id : countmatchingtests.erl, v1.42019/10/3104 : 37 : 03leavensExpleavens
-module(count_matching_tests).
-import(count_matching,[count_matching/2]).
-import(testing,[dotests/2,eqTest/3]).
-export([main/0]).
main() ->

compile:file(count_matching),

dotests("count_matching_tests Revision : 1.4", tests()).

tests() ->
[eqTest(count_matching(fun (X) -> X == 3 end, [3,2,1]), "==", 1),

eqTest(count_matching(fun (X) -> X == 3 end, [2,1]), "==", 0),

eqTest(count_matching(fun (X) -> X == 3 end, []), "==", 0),

eqTest(count_matching(fun (X) -> X > 4 end, [5,5,1,2,7,9,8,4,20]), "==", 6),

eqTest(count_matching(fun ({X,Y}) -> X == Y end,
[{3,3},{7,5},{4,3},{4,4}]), "==", 2),

eqTest(count_matching(fun ({X,Y}) -> 3*X+1 == Y end,
[{3,3},{3,10},{4,13},{4,4},{27,82}]), "==", 3),

eqTest(count_matching(fun ({X,Y}) -> X*2 == Y end,
[{3,6},{7,15},{7,14},{7,13},{92,184},{1,2}]), "==", 4)

].

Figure 2: Tests for problem 5.

http://erlang.org/doc/reference_manual/expressions.html#id78310
http://erlang.org/doc/reference_manual/expressions.html#id81911
http://erlang.org/doc/reference_manual/users_guide.html
http://erlang.org/doc/reference_manual/users_guide.html


6

Concurrent Actor Programming in Erlang

6. (10 points) [UseModels] In Erlang, write a stateless server in a module named power. This server
responds to messages of the form {Pid, power, N, M}, where Pid is the sender’s process id, N and M
are non-negative integers. When the server receives such a message, it responds by sending a message
of the form {answer, Res} to Pid, where Res is NM, that is N raised to the Mth power. In your solution
you can use the library function math:pow, which is defined so that math:pow(N,M) returns NM. Figure 3
has tests for this problem. To run our tests, run power_tests:main().

% Id : powertests.erl, v1.62019/11/1220 : 38 : 36leavensExpleavens
-module(power_tests).
-export([main/0]).
-import(power,[start/0]).
-import(testing,[dotests/2,eqTest/3]).
main() ->

compile:file(power),

dotests("power_tests Revision : 1.6", tests()).

tests() ->
PS = start(),

[eqTest(compute_power(PS, 0,0),"==",1.0),

eqTest(compute_power(PS, 22,0),"==",1.0),

eqTest(compute_power(PS, 1,1),"==",1.0),

eqTest(compute_power(PS, 6,1),"==",6.0),

eqTest(compute_power(PS, 2,3),"==",8.0),

eqTest(compute_power(PS, 3,8),"==",6561.0),

eqTest(compute_power(PS, 3,4),"==",81.0),

eqTest(compute_power(PS, 3,3),"==",27.0),

eqTest(compute_power(PS, 3,2),"==",9.0),

eqTest(compute_power(PS, 5,10),"==",9765625.0),

eqTest(compute_power(PS, 5,2),"==",25.0)].
%% helper for testing, NOT for you to implement.

compute_power(PS, N, M) ->
PS ! {self(), power, N, M},
receive {answer, Res} -> Res

after 9000 ->
'expecting a tuple of the form {answer, Res}'

end.

Figure 3: Tests for problem 6.



7

7. (15 points) [UseModels] Write, in Erlang, a module var, whose start/1 function returns the process
id of a server. The server’s state contains a value, which is initially the value given to start/1 as its
argument. The server responds to the following messages:

• {assign, NewVal}, which makes the server continue with NewVal as its new value.

• {Pid, fetch}, which causes the serve to send the message {value, Value} to Pid, where Value
is the server’s current value. The server’s value is unchanged by this message.

Do not use the ets, dets, or mnesia modules in your solution. (This is to keep the problem simple.)
Instead, store the value in an argument to the server’s loop, as we have shown in class.

There are tests in Figure 4.

% Id : vartests.erl, v1.42019/10/3104 : 37 : 03leavensExpleavens
-module(var_tests).
-import(var, [start/1]).
-import(testing,[eqTest/3,dotests/2]).
-export([main/0,vfetch/1,bassign/2]).

main() ->
compile:file(var),

dotests("var_tests Revision : 1.4", tests()).

-spec tests() -> [testing:testCase(integer())].
tests() ->

B1 = var:start(1),

B2 = var:start(2),

[eqTest(vfetch(B1),"==",1),
eqTest(vfetch(B2),"==",2),

eqTest(bassign(B1,99),"==",99),

eqTest(vfetch(B1),"==",99),

eqTest(vfetch(B2),"==",2),

eqTest(bassign(B2,3),"==",3),

eqTest(bassign(B2,5),"==",5),

eqTest(bassign(B2,5),"==",5),

eqTest(vfetch(B2),"==",5),

eqTest(vfetch(B1),"==",99),

eqTest(vfetch(B2),"==",5)

].

% The following functions are used for testing purposes.

% You don't have to implement them again.

vfetch(Pid) ->
Pid!{self(), fetch},
receive

{value, Value} ->
Value

after 3000 ->
io:format("timeout waiting for {value, Value} message~n"),

exit(wrong_message)
end.

bassign(Pid, Value) ->
Pid!{assign, Value},
Value.

Figure 4: Tests for problem 7.



8

8. (20 points) [UseModels] In an Erlang module named noter, write a function start/0, which creates a
log server and returns its process id. A server created by noter:start() keeps track of a list of log
entries. The entries are simply Erlang values (of any type). The server responds to two types of
messages:

• {Pid, log, Entry}, where Pid is the sender’s process id, and Entry is a value. This message
causes the server to remember Entry in its list. The server responds by sending to Pid a message
of the form {SPid, logged}, where SPid is the server’s process id.

• {Pid, fetch}, where Pid is the sender’s process id. The server responds by sending a message to
Pid of the form {SPid, log_is, Entries}, where SPid is the server’s process id, and Entries is
a list of all the entries that have been previously received by the log server (SPid), in the order in
which they were received (oldest first).

Figure 5 contains tests for this problem. To run our tests, run noter_tests:main().

% Id : notertests.erl, v1.12019/11/0902 : 57 : 05leavensExpleavens
-module(noter_tests).
-import(noter,[start/0]).
-import(testing,[dotests/2,eqTest/3]).
-export([main/0,logThenFetch/2,log/2,fetch/1]).
main() ->

compile:file(noter),

dotests("noter_tests Revision : 1.1", tests()).

tests() ->
L1 = noter:start(),

L2 = noter:start(),

[eqTest(fetch(L1),"==",[]),
eqTest(fetch(L2),"==",[]),
eqTest(logThenFetch(L1,[starting,middle,ending]),"==",[starting,middle,ending]),
eqTest(logThenFetch(L2,[start,between,last]),"==",[start,between,last]),
eqTest(logThenFetch(L1,[final]),"==",[starting,middle,ending,final]),
eqTest(logThenFetch(L1,[really]),"==",[starting,middle,ending,final,really]),
eqTest(logThenFetch(L2,[ultimate]),"==",[start,between,last,ultimate]),
eqTest(fetch(L1),"==",[starting,middle,ending,final,really])

].
% helpers for testing (client functions), NOT for you to implement

logThenFetch(Noter, []) ->
fetch(Noter);

logThenFetch(Noter, [Entry|Entries]) ->
log(Noter, Entry),

logThenFetch(Noter, Entries).

log(Noter, Entry) ->
Noter ! {self(), log, Entry},
receive {Noter, logged} -> logged;

_ -> 'wrong message format received in response to log message'

end.
fetch(Noter) ->

Noter ! {self(), fetch},
receive {Noter, log_is, Entries} -> Entries;

_ -> 'wrong message format received in response to log_is message'

end.

Figure 5: Tests for problem 8.



9

9. (25 points) [Concepts] [UseModels] In Erlang, write a barrier synchronization server in a module
barrier. In barrier synchronization, a group of processes wait until all of them have are done executing
up to a certain point (the barrier). You will write a function start/1, which takes a positive integer,
which is the size of the group of processes, and creates a barrier synchronization server, returning its
process id. The barrier synchronization server tracks in its state the number of processes that are still
running (are not yet done), and the process ids of all processes that have reached the barrier. The server
responds to messages of the following forms:

• {Pid, done}, where Pid is the process id of the sender. The server responds sending a message to
Pid of the form {SPid, ok}, where SPid is the server’s own process id. What it does next depends
on whether Pid was the last process in the group to finish. If Pid is the last process in the group to
be done (i.e., if there are no other running processes), then Pid and all the processes that have
previously sent such a done message are sent a message of the form {SPid, continue}, which
lets them continue past the barrier. If there are other running processes, then the server just
remembers Pid in the list of processes that have reached the barrier (and are thus waiting).

• {Pid, how_many_running}, where Pid is the process id of the sender. The server responds by
sending a message to Pid of the form {SPid, number_running_is, Running}, where SPid is the
server’s own process id and Running is the number of processes in the group that have not yet
reached the barrier. The server continues with an unchanged state.

You can assume that each process in the group only sends a done message to the server once. (But
despite this, the server does not “reset” or start over, but keeps running once all the processes in the
group are done.)

Figure 6 on the next page contains tests for this problem. To run our tests, run barrier_tests:main().



10

% Id : barriertests.erl, v1.42019/10/3104 : 37 : 03leavensExpleavens
-module(barrier_tests).
-export([main/0]).
-import(barrier,[start/1]).
-import(testing,[dotests/2,eqTest/3]).
-import(lists,[map/2,foreach/2]).
main() ->

compile:file(barrier),

dotests("barrier_tests Revision : 1.4", tests()).

tests() ->
Br = barrier:start(4),

Workers = map(workerCreator(Br),[1,2,3,4]), %% start the workers

[eqTest(num_running(Br), "==", 4),

begin

send_finish(hd(Workers)),
eqTest(num_running(Br), "==", 3)

end,
eqTest(num_released(), "==", 0),

begin

send_finish(hd(tl(Workers))),
eqTest(num_running(Br), "==", 2)

end,
eqTest(num_released(), "==", 0),

begin

foreach(fun(W) -> send_finish(W) end, tl(tl(Workers))),
eqTest(num_running(Br), "==", 0)

end,
eqTest(num_released(), "==", 4)

].
%% helpers for testing (client functions), NOT for you to implement

workerCreator(Barrier) -> fun(_Num) ->
TPid = self(),
spawn(fun() -> worker_fun(Barrier, TPid) end)

end.
%% worker_fun acts under control of the testing code's finish message, telling

%% it when the barrier acknowledges its done message and when it's released.

worker_fun(Barrier, TestingPid) ->
receive {TestingPid, finish} -> ok end,
Barrier ! {self(), done},
receive {Barrier, ok} -> TestingPid ! {self(), ok} end,
receive {Barrier, continue} -> ok end,
TestingPid ! {self(), released}.

%% send finish to the worker process and get an ack (for testing purposes).

send_finish(Pid) ->
Pid ! {self(), finish},
receive {Pid, ok} -> ok end.

%% How many processes are not finished (still running)?

num_running(Barrier) ->
Barrier ! {self(), how_many_running},
receive {Barrier, number_running_is, Num} -> Num end.

%% How many released messages have been received by the testing process?

num_released() -> num_released(0).

num_released(N) -> receive {_Pid, released} -> num_released(N+1)

after 0 -> N

end.

Figure 6: Tests for problem 9.



11

10. (25 points) [UseModels] In this problem you will write an election server and two client functions. The
three functions you are to implement are the following.

-spec start() -> pid().

The start/0 function which creates a new election server and returns its process id.

-spec vote(ES::pid(), Candidate::atom()) -> ok.

The vote/2 function takes as arguments the process id of an election server, and a candidate’s name (an
atom). By sending messages to the election server, this function casts a single vote the candidate. After
the server has received the vote, this function returns the atom ok to the caller.

-spec results(ES::pid()) -> [{atom(), non_neg_integer()}].

The results/1 function takes the election server’s process id as an argument. It returns a list of pairs of
the form {Candidate, Vote}, where Candidate is a candidate’s name, and Vote is the total number of
votes cast for the candidate. The returned list sorted in the order given by lists:sort/1, i.e., in
non-decreasing order by the candidate’s name. This function does not change the state of the server.

Figure 7 contains tests for this problem. To run our tests, run electionserver_tests:main().

% Id : electionservertests.erl, v1.32019/10/3104 : 37 : 03leavensExpleavens
-module(electionserver_tests).
-import(electionserver,[start/0, vote/2, results/1]).
-import(testing,[dotests/2,eqTest/3]).
-export([main/0]).
main() ->

compile:file(electionserver),

dotests("electionserver_tests Revision : 1.3", tests()).

tests() ->
ES = start(), E2 = start(),

[eqTest(results(ES),"==",[]),
begin vote(ES, clinton), vote(ES, clinton), vote(ES, christy),

eqTest(results(ES),"==",[{christy,1},{clinton,2}])
end,
begin vote(ES, christy), vote(ES, christy), vote(ES, christy),

vote(ES, abel), vote(ES, baker), vote(ES,clinton),

eqTest(results(ES),"==",[{abel,1},{baker,1},{christy,4},{clinton,3}])
end,
eqTest(results(E2),"==",[]),
begin vote(E2, ucf), vote(E2, usf), vote(E2, fiu), vote(E2, uf),

vote(E2, ucf), vote(E2, ucf), vote(E2, fsu),

eqTest(results(E2),"==",[{fiu,1},{fsu,1},{ucf,3},{uf,1},{usf,1}])
end

].

Figure 7: Tests for problem 10.



12

11. (30 points) [UseModels] [Concepts] In Erlang, write a module eventdetector, which has a function
start/2 that takes two arguments: InitialState, and TransitionFun. For each type of state, S, the
InitialState has type S and the TransitionFun has type fun((S,atom()) ->{S,atom()}); that is, it
is a function that takes a state and an atom and returns a pair of a state and an atom. A call to start/2
makes a server process that tracks a state and a list of observers. The observers are remembered by
remembering their process ids. An event detector server responds to the following messages.

• {Pid, add_me}, which sends the message {added} (i.e., a singleton tuple containing the atom
added) to the process id Pid, and then adds the process id Pid to the head of the list of observers
that the event detector is remembering. (The remembered state is unchanged.)

• {Pid, add_yourself_to, EDPid}, which sends the message {self(), add_me} to EDPid, and
then waits for the server EDPid to respond with the message {added}, which it sends to Pid. (The
remembered state and list of observers of this event detector itself are unchanged.)

• {Pid, state_value}, which sends the current state of the server to Pid in a message of the form
{value_is, State}, where State is the event detector’s remembered state. (The remembered
state and list of observers of this event detector are unchanged.)

• an atom, which causes the event detector to call TransitionFun on the current state and the atom
received, which yields a pair {NewState, Event}. If Event is the atom none, then no observers
are sent messages; otherwise, if Event is any other atom (other than none), then Event is sent to all
observers in the server’s list of observers (in the order of that list). After handling any needed
notification of the observers, then the event detector continues with the state NewState and an
unchanged list of observers.

Figure 8 on the next page through Figure 10 on page 14 contain some examples from the file
eventdetector_tests.erl. To run our tests execute eventdetector_tests:main().

Points
This homework’s total points: 180.

References
[Arm13] Joe Armstrong. Programming Erlang, Second Edition: Software for a Concurrent World.

Pragmatic Programmers, LLC, second edition, 2013.



13

% Id : eventdetectortests.erl, v1.102019/10/3104 : 37 : 03leavensExpleavens
-module(eventdetector_tests).
-import(testing, [eqTest/3, dotests/2]).
-export([main/0, setup/0, tests/6, addObserver/2, getValue/1, feed/2]).

main() ->
compile:file(eventdetector),

{CountGoGos, CountGadgets, CountGGGs,

AccumGoGos, AccGGGs, AccumMatches} = setup(),

dotests("eventdetector_tests Revision : 1.10",
tests(CountGoGos, CountGadgets, CountGGGs,

AccumGoGos, AccGGGs, AccumMatches)).

setup() ->
GoGo = eventdetector:start(zero, fun gogodetect/2),

Gadget = eventdetector:start(init, fun gadgetdetect/2),

GoGoGadget = eventdetector:start(start, fun gogogadget/2),

Matcher = eventdetector:start(0, fun matchingdetect/2),

CountGoGos = eventdetector:start(0, fun count/2),

addObserver(GoGo, CountGoGos),

addObserver(GoGo, GoGoGadget),

addObserver(Gadget, GoGoGadget),

AccumGoGos = eventdetector:start([], fun accumulate/2),

addObserver(GoGo, AccumGoGos),

CountGadgets = eventdetector:start(0, fun count/2),

addObserver(Gadget, CountGadgets),

CountGGGs = eventdetector:start(0, fun count/2),

AccGGGs = eventdetector:start([], fun accumulate/2),

addObserver(GoGoGadget, CountGGGs),

AccumMatches = eventdetector:start([], fun accumulate/2),

addObserver(Matcher, AccumMatches),

feed(GoGo, [go,stop,go,stop,stop,go,go,go,go,stop,go,stop,go,go]),
feed(Gadget, [gadget,trinket,blanket,gadget,gadget,widget,omlet,capulet,

gadget,gadget,gadget,gadget,trinket]),
feed(Matcher, [left,right,left,left,right,right,right,left,left,right]),
timer:sleep(200), % time for messages to be delivered... (hack)

{CountGoGos, CountGadgets, CountGGGs,

AccumGoGos, AccGGGs, AccumMatches}.

tests(CountGoGos, CountGadgets, CountGGGs,

AccumGoGos, AccGGGs, AccumMatches) ->
[eqTest(getValue(CountGoGos),"==",4),
eqTest(getValue(CountGadgets),"==",7),

eqTest(getValue(CountGGGs),"==",0),

eqTest(getValue(AccumGoGos),"==",[gogo,gogo,gogo,gogo]),
eqTest(getValue(AccGGGs),"==",[]),
eqTest(getValue(AccumMatches),"==",[matched,matched,matched])
].

% Helpers for testing, not for you to implement.

% Some transition functions, for testing purposes only.

gogodetect(zero, go) -> {go, none};
gogodetect(go, go) -> {go, gogo};
gogodetect(_, _) -> {zero, none}.

Figure 8: Testing for problem Problem 11 on the previous page, part 1 of 3.



14

gadgetdetect(init, gadget) -> {init, gadget};
gadgetdetect(init,_) -> {init,none}.

gogogadget(start, gogo) -> {gogo, none};
gogogadget(start, _) -> {start, none};
gogogadget(gogo, gadget) -> {start, gogogadget};
gogogadget(gogo, _) -> {start, none}.

matchingdetect(N, left) -> {N + 1, none};
matchingdetect(1, right) -> {0, matched};
matchingdetect(N, right) -> {N-1, none}.

accumulate(Lst, Event) -> {[Event|Lst], none}.

count(N, _Event) -> {N+1, none}.

% Hook up an observer to an event detector

-spec addObserver(pid(), pid()) -> ok.
addObserver(EDPid, ObsPid) ->

ObsPid ! {self(), add_yourself_to, EDPid},
receive

{added} -> ok
after 3000 ->

io:format("timeout waiting for {added} message~n"),

exit(wrong_message)
end.

% Get the state value of an event detector.

-spec getValue(pid()) -> any().

getValue(Pid) ->
Pid ! {self(), state_value},
receive

{value_is, State} -> State

after 3000 ->
io:format("timeout waiting for {value_is, State} message~n"),

exit(wrong_message)
end.

Figure 9: Testing for problem Problem 11 on page 12, part 2 of 3.

% A testing helper. Feeds a list of atoms to the Pid argument.

-spec feed(pid(),[atom()]) -> done.

feed(_Pid, []) -> done;

feed(Pid, [A|As]) ->
Pid ! A,

feed(Pid, As).

Figure 10: Testing for problem Problem 11 on page 12, part 3 of 3.


