
COP 3402 — Systems Software February 21, 2023

Homework 3:
Parser and Declaration Checker for PL/0

See Webcourses and the syllabus for due dates.

1 Purpose

In this homework your team [Collaborate] will implement a parser for the context-free syntax of the PL/0
language [UseConcepts] [Build], and also a declaration checker for the PL/0 language without procedure
declarations and procedure calls. This subset of PL/0 is defined in Section 7 below.

2 Directions

For this homework, we are providing several files in the hw3-tests.zip file in the course homeworks
directory. Do not change any of these provided files, as they are used in our testing.

Your compiler will both produce and use abstract syntax trees (ASTs). Your compiler’s parser will
produce ASTs that will be tested by the unparser we provide and also passed to your compiler’s decla-
ration checker. Thus, your code must use the abstract syntax trees (ASTs) whose type is declared in the
provided file ast.h. Your code should also use the functions provided in the file ast.c to aid in build-
ing ASTs. In addition, your code must use the error message facilities provided in utilities.h and
utilities.c as well as the unparser provided in the files unparser.c and unparser.h (and also
a private header file unparserInternal.h). The error messages and unparsing are part of our testing,
and the unparser expects that the ASTs conform to the declarations given in the provided file ast.h.

For the implementation, your code must be written in 2017 ANSI standard C and must compile with
gcc and run correctly on Eustis, when compiled with the -std=c17 flag.1 We recommend using the gcc
flags -std=c17 -Wall and fixing all warnings before turning in this assignment.

You must also use your lexer from homework 2 and the tokens it generates in your parser (for this we
provide all the files we provided in homework 2, including token.h). (If you do not have a working
lexer, talk to the course staff.)

Note that we will randomly ask questions of students in the team to ensure that all team members un-
derstand their solution; there will be penalty of up to 10 points (deducted from all team members’ scores
for that assignment) if some team member does not understand some part of the solution to an assignment.

For this homework, you are not allowed to submit code generated by a parser generator (such as yacc
or ANTLR).

1. (150 points) Implement and submit your code for a PL/0 parser that checks for syntax errors and build
ASTs, together with the output of our tests named hw3-asttest*.pl0 (where * is a digit or letter)
and hw3-parseerrtest*.pl0. Your group must implement a recursive-descent parser and have
it build the abstract syntax trees (ASTs) declared in the provided file ast.h; for this you may use
the functions provided in the file ast.c (see Section 7.2 below). Our tests for this part require your
code to use the unparser provided in unparser.c, unparser.h, and unparserInternal.h
to print a textual representation of these ASTs.

1See this course’s resources page for information on how to access Eustis.

http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutCollaborate
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutUseConcepts
http://www.cs.ucf.edu/~leavens/WWW/COP3402/about.shtml#OutBuild
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/resources.shtml#course

2

Have your main function call a function in the parser to open the file provided on the command line
(we suggest naming it parser_open and putting it in a file named parser.c); that function should
call your lexer_open function. Then call a function to parse the program and return its AST. (We
suggest naming the function that parses a program something like parseProgram.) During pars-
ing your parser should report any syntax errors using the function parse_error_unexpected,
which is declared in the provided file utilities.h (and implemented in utilities.c). Af-
ter parsing, if there were no parse errors, then your main function must call our provided function
unparseProgram, and pass it the FILE* stdout and the AST returned by the parser for the pro-
gram.

Note that the provided tests named hw3-astttest*.pl0 are syntactically legal and should not
have parse errors (or declaration errors). However, the tests named hw3-parseerrtest*.pl0
contain one or more parse errors.

2. (100 points) Implement and submit your code for the declaration checker (which can be submitted
along with the parser of the previous problem) as well as the output of our tests in the files named
hw3-asttest*.pl0 and hw3-declerrtest*.pl0. For full credit, your declaration checker
must work by traversing the ASTs returned by the parser (and declared in the provided file ast.h).
(If your declaration checker works in some other way, then we will deduct 40 points from your group’s
score for this part.) That is, your main function must pass the AST returned by your parser to a func-
tion that walks the AST, builds a symbol table during its walk over the constant and variable declara-
tions ASTs, while noting any duplicate declarations, and must produce an error report for all uses of
identifiers (in statements and expressions) that have not been declared in the program. Use the func-
tion parse_error_general, declared in the provided file utilities.h (and implemented in
utilities.c) for error reporting, as that is assumed in our testing.

3 What to Turn In

Your team must submit on Webcourses a single zip file containing solutions to both problems. (That is,
you only need to submit one zip file in total for this homework, not one for each problem.) This zip file
must include:

1. A plain text file, called sources.txt, that names all the .c source files used to implement your
compiler. (The file names in sources.txt should be separated by either blanks or newlines.) The
files needed for your lexer should also be included. For example, your sources.txt file might
look like the following:

ast.c token.c reserved.c lexer.c file_location.c id_attrs.c
parser.c unparser.c utilities.c
scope_symtab.c scope_check.c compiler_main.c

(The order of these names should not matter if you include the header files in each .c file that de-
clare all the names used in that .c file.)

2. Each source file that is needed to compile both your compiler and VM with gcc -std=c17 on
Eustis, including all needed header files.

3. The output files that result from running our tests. These are the .myo files created by the provided
Makefile.

You can use the Unix command

3

make submission.zip

on Eustis to create a zip file that has all these files in it, after you have created your sources.txt file
and run our tests (using the command make check-outputs) to create the .myo files.

We will take points off for not passing the tests and some points off for: code that does not work prop-
erly, duplicated code, code with extra unnecessary cases, or code that is excessively hard to follow. Avoid
duplicating code by using helping functions, or library functions. It is a good idea to check your code for
these problems before submitting.

Don’t hesitate to contact the staff if you are stuck at some point. Your code should compile properly;
if it doesn’t, then you probably should keep working on it. Email the staff with your code file if you need
help getting it to compile or have trouble understanding error messages. If you don’t have time to get your
code to compile, at least tell us that you didn’t get it to compile in your submission.

4 What to Read

You may want to read Systems Software: Essential Concepts (by Montagne) in which we recommend read-
ing chapter 6 (pages 103-117).

5 Overview

The following subsections specify the interface between the Unix operating system (as on Eustis) and the
parser as a program.

5.1 Inputs

Your compiler will be passed a single file name as its only command line argument. This file name is the
name of a file that contains the input PL/0 program to be compiled. Note that this input program file is not
necessarily legal according to the grammar for the subset of PL/0 you are to implement. For example, if
the file name argument is hw3-asttest1.pl0 (and both the compiler executable, ./compiler, and
the file hw3-asttest1.pl0 are in the current directory), then the following command line (given to the
shell on Eustis)

./compiler hw3-asttest1.pl0 > hw3-asttest1.myo 2>&1

will run your compiler on the program in hw3-asttest1.pl0 and put the unparsed AST and any error
messages into the file hw3-asttest1.myo.

The same thing can also be accomplished using the make command on Unix:

make hw3-asttest1.myo

5.2 Outputs

The output of the unparser, which is a textual display of the AST for the program, must be sent to standard
output (stdout). All error messages must be sent to standard error output (stderr). See subsection 7.9
for more details about error messages.

4

5.3 Exit Code

When the compiler finishes without detecting any errors, it should exit with a zero error code (which indi-
cates success on Unix). However, when the parser encounters an error it should terminate with a non-zero
exit code (which indicates failure on Unix).

6 What Must be Done

Your compiler (i.e., its main function) must make the following happen:

1. Run a function to initialize the parser to work on the given input file; this will involve (eventually)
calling lexer_open on the input file name that is passed to your program.

2. Parse the program (using tokens obtained by calling lexer_next and generate an AST for it,
checking for parse errors. The parser will return a pointer to an AST; in what follows we suppose
this is called progast.

3. Close the input file (this should involve calling lexer_close).

4. Run our provided unparser by calling the function unparseProgram with the arguments stdout
and the program’s AST (progast).

5. Perform any required initialization on your compiler’s symbol table (we suggest calling a function to
initialize it, which might involve initializing any static variables in your symbol table module).

6. Using the AST (progast), build the symbol table and check the AST for identifiers that are de-
clared more than once or uses of identifiers for which there is no corresponding declaration, issuing
an error message for such problems.

7. Return a success exit code (we assume that any errors have already caused the program to exit with a
failure exit code).

(Steps 5 and 6 are needed for declaration checking; if your compiler is not (yet) doing declaration
checking, then these steps could be omitted.)

Using the error message facilities in the provided utilities module (composed of the files utilities.h
and utilities.c) will cause your compiler to exit with a failure exit code when it issues its first error
message (but see Section 8 below).

7 PL/0 Subset

The language you will be compiling for this homework is a subset of PL/0 without procedures or the call
statement.

Since this subset of PL/0 does not contain the reserved words “procedure” or “call,” these can be
treated as identifiers by your lexical analyzer. However, at your option, you may leave these as reserved
words for future use (in a later homework). (Our tests will not use these strings of characters.)

5

⟨program⟩ ::= ⟨block⟩ .

⟨block⟩ ::= ⟨const-decls⟩ ⟨var-decls⟩ ⟨stmt⟩

⟨const-decls⟩ ::= {⟨const-decl⟩}
⟨const-decl⟩ ::= const ⟨const-def⟩ {⟨comma-const-def⟩} ;
⟨const-def⟩ ::= ⟨ident⟩ = ⟨number⟩
⟨comma-const-def⟩ ::= , ⟨const-def⟩

⟨var-decls⟩ ::= {⟨var-decl⟩}
⟨var-decl⟩ ::= var ⟨idents⟩ ;
⟨idents⟩ ::= ⟨ident⟩ {⟨comma-ident⟩}
⟨comma-ident⟩ ::= , ⟨ident⟩

⟨stmt⟩ ::= ⟨ident⟩ := ⟨expr⟩
| begin ⟨stmt⟩ {⟨semi-stmt⟩} end
| if ⟨condition⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨condition⟩ do ⟨stmt⟩
| read ⟨ident⟩
| write ⟨expr⟩
| skip

⟨semi-stmt⟩ ::= ; ⟨stmt⟩
⟨empty⟩ ::=

⟨condition⟩ ::= odd ⟨expr⟩
| ⟨expr⟩ ⟨rel-op⟩ ⟨expr⟩

⟨rel-op⟩ ::= = | <> | < | <= | > | >=

⟨expr⟩ ::= ⟨term⟩ {⟨add-sub-term⟩}
⟨add-sub-term⟩ ::= ⟨add-sub⟩ ⟨term⟩
⟨add-sub⟩ ::= ⟨plus⟩ | ⟨minus⟩
⟨term⟩ ::= ⟨factor⟩ {⟨mult-div-factor⟩}
⟨mult-div-factor⟩ ::= ⟨mult-div⟩ ⟨factor⟩
⟨mult-div⟩ ::= ⟨mult⟩ | ⟨div⟩
⟨factor⟩ ::= ⟨ident⟩ | ⟨sign⟩ ⟨number⟩ | (⟨expr⟩)
⟨sign⟩ ::= ⟨plus⟩ | ⟨minus⟩ | ⟨empty⟩

Figure 1: Context-free grammar for the concrete syntax of this homework’s subset of PL/0. The grammar
uses a terminal font for terminal symbols, and a bold terminal font for reserved words.
As in EBNF, curly brackets {x} means an arbitrary number of (i.e., 0 or more) repetitions of x. Note that
curly braces are not terminal symbols in this grammar. Also note that an else clause is required in each
if-statement.

6

⟨ident⟩ ::= ⟨letter⟩ {⟨letter-or-digit⟩}
⟨letter⟩ ::= a | b | . . . | y | z | A | B | . . . | Y | Z
⟨number⟩ ::= ⟨digit⟩ {⟨digit⟩}
⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
⟨letter-or-digit⟩ ::= ⟨letter⟩ | ⟨digit⟩
⟨plus⟩ ::= +
⟨minus⟩ ::= -
⟨mult⟩ ::= *
⟨div⟩ ::= /

⟨ignored⟩ ::= ⟨blank⟩ | ⟨tab⟩ | ⟨vt⟩ | ⟨formfeed⟩ | ⟨eol⟩ | ⟨comment⟩
⟨blank⟩ ::= “A space character (ASCII 32)”
⟨tab⟩ ::= “A horizontal tab character (ASCII 9)”
⟨vt⟩ ::= “A vertical tab character (ASCII 11)”
⟨formfeed⟩ ::= “A formfeed character (ASCII 12)”
⟨newline⟩ ::= “A newline character (ASCII 10)”
⟨cr⟩ ::= “A carriage return character (ASCII 13)”
⟨eol⟩ ::= ⟨newline⟩ | ⟨cr⟩ ⟨newline⟩
⟨comment⟩ ::= ⟨pound-sign⟩ {⟨non-nl⟩} ⟨newline⟩
⟨pound-sign⟩ ::= #
⟨non-nl⟩ ::= “Any character except a newline”

Figure 2: Lexical grammar of PL/0. The grammar uses a terminal font for terminal symbols. Note
that all ASCII letters (a-z and A-Z) are included in the production for ⟨letter⟩. Again, curly brackets {x}
means an arbitrary number of (i.e., 0 or more) repetitions of x. Note that curly braces are not terminal
symbols in this grammar. Some character classes are described in English, these are described in a Ro-
man font between double quotation marks (“ and ”). Note that all characters matched by the nonterminal
⟨ignored⟩ are ignored by the lexer (except that each instance of ⟨eol⟩ ends a line).

7.1 Syntax

The context-free grammar for this subset of PL/0 is defined in Figure 1 and its lexical grammar is defined
in Figure 2.

Note that the lexical grammar is unchanged from the prior homework in which you implemented a
lexer. However, you need not treat “procedure” or “call” as reserved words, although you may do
that if you want to use the lexer without change from your previous homework.

7.2 ASTs

The type for abstract syntax trees (ASTs) is defined in the provided files ast.h, with helping functions in
ast.c.

The file ast.h declares a type named AST and a type AST_list. The type AST_list is a (linked)
list of ASTs.

7

7.2.1 The AST Type

An AST is a C struct containing the following fields:

• A field named file_loc that gives the AST’s (starting) file location. That is, it gives information
about the place in a PL/0 source file where (the start of) the first token that was parsed into the AST
was found: its filename, line number, and column number.

The file location has the type file_location, which is a type defined in file_location.h,
which is a provided file. The file location is used in error messages.

• A field named type_tag that indicates what kind of AST is held in the data field (see the next
item below).

These type tags are members of the enumerated type AST_type, which is declared in the pro-
vided file ast.h. Each of these tags corresponds to a nonterminal symbol in the abstract syntax
of PL/0 (see Figure 4). For example, program_ast corresponds to the nonterminal ⟨program⟩ and
const_decl_ast corresponds to a list of ⟨const-decl⟩. Each of these may be the tag of a node
in the AST returned by the parser, with the exception of op_expr_ast, which is only intended
to be used to return intermediate results from parsing an ⟨add-sub-term⟩ or ⟨mult-div-factor⟩ in the
concrete syntax (see Figure 1).

• A field named data that holds the struct type corresponding to the type tag (see the previous item
above). This field is a C union, meaning that it can hold any one of the declared struct types corre-
sponding to the tags of the union, which can be thought of as subfields.

For example, when the type_tag field is program_ast, then the union holds a program_t
struct named program. Thus if progast has the type AST *, and if progast->type_tag
is program_ast, then progast->data.program is a struct of type program_t with fields
cds, vds, and stmt that can be accessed by the expressions progast->data.program.cds,
progast->data.program.vds, and progast->data.program.stmt, respectively. The
type of progast->data.program.cds will be AST_list, and each element of that list will
be an AST with type_tag field const_decl_ast. Suppose that your compiler has a variable
of type AST * named cd, that holds such a constant declaration AST (i.e., where cd->type_tag
is const_decl_ast). Then the data field will hold a const_decl_t with fields name and
num_val that can be accessed by the expressions cd->data.const_decl.name and
cd->data.const_decl.num_val, respectively.

The combination of the type tag and the union make the AST into what is called a “tagged, discrim-
inated union,” where the type tag always describes the contents of the union part. The correspondence is
given in Figure 3.

A good example of how to write a tree walk over the ASTs is given in the provided file unparser.c.

7.2.2 AST Lists

In some ASTs some of the fields hold lists of other AST. In the provide ast.h file there is a type AST_list
that describes such lists and several operations that work on such lists.

The ASTs that hold lists, are as follows.

• A program AST (with type tag program_ast) contains two lists: a list of constant declaration
ASTs (in the field cds) and a list of variable declaration ASTs (in the field vds).

8

type tag corresponding corresponding
(AST_type) (sub)field struct type
program_ast program program_t
const_decl_ast const_decl const_decl_t
var_decl_ast var_decl var_decl_t
assign_ast assign_stmt assign_t
begin_ast begin_stmt begin_t
if_ast if_stmt if_t
while_ast while_stmt while_t
read_ast read_stmt read_t
write_ast write_stmt write_t
skip_ast skip_stmt skip_t
odd_cond_ast odd_cond odd_cond_t
bin_cond_ast bin_cond bin_cond_t
op_expr_ast op_expr op_expr_t
bin_expr_ast bin_expr bin_expr_t
ident_ast ident ident_t
number_ast number number_t

Figure 3: Correspondence between type tags, union tags (names of subfields of data), and the type of the
struct that appears in the union when the type tag is as is given. See the provided file ast.h.

⟨program⟩ ::= {⟨const-decl⟩} {⟨var-decl⟩} ⟨stmt⟩
⟨const-decl⟩ ::= const ⟨ident⟩ = ⟨number⟩
⟨var-decl⟩ ::= var ⟨ident⟩
⟨stmt⟩ ::= ⟨ident⟩ := ⟨expr⟩

| begin ⟨stmt⟩ {⟨stmt⟩}
| if ⟨condition⟩ then ⟨stmt⟩ else ⟨stmt⟩
| while ⟨condition⟩ do ⟨stmt⟩
| read ⟨ident⟩
| write ⟨expr⟩
| skip

⟨condition⟩ ::= odd ⟨expr⟩ | ⟨expr⟩ ⟨rel-op⟩ ⟨expr⟩
⟨rel-op⟩ ::= = | <> | < | <= | > | >=
⟨expr⟩ ::= ⟨expr⟩ ⟨bin-arith-op⟩ ⟨expr⟩ | ⟨ident⟩ | ⟨number⟩
⟨bin-arith-op⟩ ::= + | - | * | /

⟨op-expr⟩ ::= ⟨bin-arith-op⟩ ⟨expr⟩

Figure 4: Abstract Syntax for PL/0. Here the curly brackets, as in {x}, means a possibly empty list of x.
Note that ⟨op-expr⟩ is intended only as an intermediate form during parsing, and is not used directly by
any of the other rules.

9

• A begin statement AST (with type tag begin_stmt), contains a list of statement ASTs in the field
stmts.

The ast module (in the provided files ast.h and ast.c) defines the following functions that work on
lists of (pointers to) ASTs:

/ * $ Id : a s t . h , v 1 . 1 3 2 0 2 3 / 0 2 / 2 1 0 3 : 3 2 : 5 1 l e a v e n s Exp l e a v e n s $ * /
/ / Re tu rn an AST l i s t t h a t i s empty
extern AST_list ast_list_empty_list();

/ / Re tu rn an AST l i s t c o n s i s t i n g o f j u s t t h e g i v e n AST node (a s t)
extern AST_list ast_list_singleton(AST *ast);

/ / Re tu rn t r u e j u s t when l s t i s an empty l i s t (and f a l s e o t h e r w i s e)
extern bool ast_list_is_empty(AST_list lst);

/ / R e q u i r e s : ! a s t _ l i s t _ i s _ e m p t y (l s t)
/ / Re tu rn t h e f i r s t e l e m e n t i n an A S T _ l i s t
extern AST *ast_list_first(AST_list lst);

/ / R e q u i r e s : ! a s t _ l i s t _ i s _ e m p t y (l s t)
/ / Re tu rn t h e r e s t o f t h e A S T _ l i s t (which i s n u l l i f i t i s empty)
extern AST_list ast_list_rest(AST_list lst);

/ / R e q u i r e s : ! a s t _ l i s t _ i s _ e m p t y (l s t) and a s t _ l i s t _ i s _ e m p t y (a s t _ l i s t _ r e s t (l s t))
/ / Make n e w t a i l t h e t a i l o f t h e A S T _ l i s t s t a r t i n g a t l s t
extern void ast_list_splice(AST_list lst, AST_list newtail);

/ / Re tu rn t h e l a s t e l e m e n t i n t h e AST l i s t l s t .
/ / The r e s u l t i s o n l y NULL i f a s t _ l i s t _ i s _ e m p t y (l s t) ;
extern AST_list ast_list_last_elem(AST_list lst);

7.3 Creating ASTs

The ASTs are similar to what would be the desired parse trees for the abstract syntax shown in Figure 4.
The abstract syntax is related to the concrete syntax (shown in Figure 1) by omitting intermediate levels
(for example, ⟨block⟩, ⟨term⟩, and ⟨factor⟩), punctuation (e.g., semicolons and commas), and reserved
words.

For example a program AST consists of a list of ASTs for the constant declarations, a list of ASTs
for the variable declarations, and an AST for the program’s statement. In the list of ASTs for the constant
and variable declarations, there is one item (i.e., one AST) in the list per declaration, so the (the grouping
present in the original program is ignored. To be specific the following PL/0 program (in our subset)

const a = 1, b = 2;
const c = 3;
var x, y;
var z;
skip.

will be represented by a program AST that contains: a constant declaration list consisting of 3 constant
declaration ASTs (one each for a, b, and c, each of which will have the type tag const_decl_ast), a
variable declaration list consisting of 3 variable declaration ASTs (one each for x, y, and z, each of which
will have the type tag var_decl_ast), and a statement AST (with type tag skip_ast).

10

The ASTs for statements have distinct type tags that depend on the particular kind of statement (see
Figure 3). For example while an if-statement and a while-statement are both kinds of statements, their
ASTs have different type tags (if_ast and while_ast, respectively).

The functions declared in ast.h (and implemented in ast.c) can be used to create different kinds of
ASTs with the corresponding type tags.

7.4 Semantics

This subsection describes the semantics of PL/0. For this homework, you are not implementing this se-
mantics, except to issue error messages for duplicate declarations of an identifier or uses of an identifier
that has not been declared.

Nonterminals discussed in this subsection refer to the nonterminals in the context-free grammar de-
fined in Figure 1.

A ⟨program⟩ consists of zero-or-more constant declarations (⟨const-decls⟩), zero-or-more variable dec-
larations (⟨var-decls⟩), followed by a statement.

All constants and variables are (short) integers. The execution of a program declares the named con-
stants and variables, and initializes the constants and variables. Then it runs the statement.

It is an error if an ⟨ident⟩ is declared more than once, as either a constant or a variable.

7.4.1 Constant Declarations

The ⟨const-decls⟩ specify zero or more constant declarations.
Each constant declaration, of the form ⟨ident⟩ = ⟨number⟩, declares that ident is a (short) integer

constant that is initialized to the value given by ⟨number⟩. The scope of such a constant declaration is the
area of the program’s text that follows the declaration.

It is an error for an ⟨ident⟩ to be declared as a constant more than once. It is an error for the program to
refer to the ⟨ident⟩ on the left hand side of an assignment statement.

7.4.2 Variable Declarations

The ⟨var-decls⟩ specify zero or more variable declarations.
Each variable declaration, of the form ⟨ident⟩, declares that ⟨ident⟩ is a (short) integer variable that

is initialized to the value 0. The scope of such a variable declaration is the area of the program’s text that
follows the declaration.

It is an error for an ⟨ident⟩ to be declared as a variable if it has already been declared as a constant or
as a variable.

Unlike constants, variable names may appear on the left hand side of an assignment statement.

7.4.3 Statements

A program contains a single statement that is run when the program starts executing.

Assignment Statement An assignment statement has the form ⟨ident⟩ := ⟨expr⟩. It evaluates the ex-
pression ⟨expr⟩ to obtain a value and then it assigns it to the variable named by ⟨ident⟩. Thus, immediately
after the execution of this statement, the value of the variable ⟨ident⟩ is the value of ⟨expr⟩.

It is an error if the left hand side ⟨ident⟩ has not been declared as a variable.

11

Begin Statement A begin statement has the form begin S1;S2; . . . ;Sn end (where n ≥ 1) and is
executed by first executing statement S1, then if S1 finishes without encountering an error S2 is executed,
and so on, in sequence.

Conditional Statement A conditional statement has the form if C then S1 else S2 and is executed
by first evaluating the condition C. When C evaluates to true, then S1 is executed; otherwise, if C evalu-
ates to false (i.e., if it does not encounter an error), then S2 is executed.

Note that there are no parentheses around the condition.

While Statement A while statement has the form while C do S and is executed by first evaluating the
condition C. If C evaluates to false, then S is not executed and the while statement finishes its execution.
When C evaluates to true, then S is executed, followed by the execution of while C do S again. Note
that C is evaluated each time, not just once.

Read Statement A read statement of the form read x, where x is a declared variable identifier, reads a
single character from standard input and puts its ASCII value into the variable x. The value of x will be set
to -1 if an end-of-file or an error is encountered on standard input.

It is an error if x has not been previously declared as a variable.

Write Statement A write statement of the form write e, first evaluates the expression e, and if that
expression yields a value in the range 0 to 255, then it writes that value to standard output as an ASCII
character. Otherwise, if e yields a value outside the range 0 to 255 (i.e., a value less than 0 or greater than
255), then an error occurs.

Skip Statement A skip statement of the form skip does nothing and does not change the program’s
state.

7.4.4 Conditions

A ⟨condition⟩ is an expression that has a Boolean value: either true or false.

Odd Condition A ⟨condition⟩ of the form odd e first evaluates the expression e. If the value of e is an
odd integer (i.e., it is equal to 1 modulo 2), then the value of the condition is true. If the value of e is even,
then the value of the condition is false.

Relational Conditions A ⟨condition⟩ of the form e1 r e2 first evaluates e1 and then e2, obtaining inte-
ger values v1 and v2, respectively. (If either evaluation encounters an error, then the condition as a whole
encounters that error.) Then it compares v1 to v2 according to the relational operator r, as follows:

• if r is =, then the condition’s value is true when v1 is equal to v2, and false otherwise.

• if r is <>, then the condition’s value is true when v1 is not equal to v2, and false when they are equal.

• if r is <, then the condition’s value is true when v1 is strictly less than v2, and false otherwise.

• if r is <=, then the condition’s value is true when v1 is less than or equal to v2, and false when v1 >
v2.

• if r is >, then the condition’s value is true when v1 is strictly greater than v2, and false otherwise.

12

• if r is >=, then the condition’s value is true when v1 is greater than or equal to v2, and false when
v1 < v2.

7.5 Expressions

An ⟨expr⟩ of the form e1 o e2 first evaluates e1 and then e2, obtaining integer values v1 and v2, respec-
tively. (If either evaluation encounters an error, then the expression as a whole encounters that error.) Then
it combines v1 and v2 according to the operator o, as follows:

• An expression of the form e1+e2 (i.e., a binary operator expression where the operator o is +) yields
the value of v1 + v2, according to the semantics of the type short int in C.

• An expression of the form e1-e2 yields the value of v1 − v2, according to the semantics of the type
short int in C.

• An expression of the form e1*e2 yields the value of v1 × v2, according to the semantics of the type
short int in C.

• An expression of the form e1/e2 yields the value of v1/v2, according to the semantics of the type
short int in C. The expression encounters an error if v2 is zero.

There are also a few other cases of expressions that do not involve binary operators. These have the
following semantics:

• An identifier expression, of the form x, has as its value the value of the integer stored in the constant
or variable named x.

It is an error if x has not been previously declared as a constant or variable.

• An expression of the form sn, where s is a ⟨sign⟩ and n is a ⟨number⟩ yields the value of the base 10
literal n if the sign s is + or ⟨empty⟩. However, if the sign s is -, then the value is the negated value
of the base 10 literal n according to the semantics of the type short int in C.

Note that there is no AST for negating a number, since the AST can hold the negation; thus the
negated value is simply stored as a number AST.

• An expression of the form (e) yields the value of the expression e.

7.6 Simple Examples of Inputs and Outputs

7.6.1 Inputs without Errors

Consider the following input in the file hw3-asttest3.pl0, (note that the suffix is lowercase ‘P’, low-
ercase ‘L’, and the numeral zero, i.e., ‘0’) which is included in the hw3-tests.zip file in the course
homeworks directory.

$Id: hw3-asttest3.pl0,v 1.1 2023/02/19 20:12:22 leavens Exp $
var x, y;
x := y.

This should produce the expected output found in the following file (hw3-asttest3.out).

var x;
var y;
x := y
.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

13

In this case the input has no syntax errors and no declaration errors, so the output is from the unparser,
which uses the AST built by the compiler’s parser.

7.7 Inputs with Parse Errors

Consider the following input in the file hw3-parseerrtest2.pl0, which is included in the hw3-tests.zip
file in the course homeworks directory.

$Id: hw3-parseerrtest2.pl0,v 1.1 2023/02/19 20:12:22 leavens Exp $
begin

write 49;
.

end.

This should produce the expected output (on stderr), which is found in the following file
(hw3-parseerrtest2.out).

hw3-parseerrtest2.pl0: line 4, column 3: syntax error, Expecting one of: identsym, beginsym, ifsym, whilesym, readsym, writesym or skipsym, but saw a periodsym token (".")

In this case the input has a syntax error, as indicated by the error message, and the compiler exits with
a failure exit code when it issues an error message; thus no AST is ever given to the unparser, so the error
message is the only output.

7.8 Inputs with Declaration Errors

Undeclared Identifiers Consider the following input in the file hw3-declerrtest0.pl0, which is
included in the hw3-tests.zip file in the course homeworks directory.

$Id: hw3-declerrtest0.pl0,v 1.1 2023/02/19 20:12:22 leavens Exp $
x := 0.

This should produce the expected output which is found in the following file
(hw3-declerrtest0.out).

x := 0
.
hw3-declerrtest0.pl0: line 2, column 1: identifer "x" is not declared!

In this case the input has a declaration error: as indicated by the error message there is no declaration
for the identifier “x,” that is used in the statement. Since the parser finished without detecting any syntax
errors, the AST is actually created and so the output shows the unparsed AST (which was sent to stdout)
followed by the error message (which was sent to stderr).

Multiple Declarations Consider the following input in the provided file hw3-declerrtest1.pl0.

$Id: hw3-declerrtest1.pl0,v 1.1 2023/02/19 20:12:22 leavens Exp $
var x, y, x;
x := 7.

This should produce the expected output, which is found in the following file (hw3-declerrtest1.out).

var x;
var y;
var x;
x := 7
.
hw3-declerrtest1.pl0: line 2, column 11: variable "x" is already declared as a variable

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/
http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

14

In this case the identifier “x,” is declared twice, as indicated by the error message. Since the parser
finished without detecting any syntax errors, the AST is actually created and so the output shows the un-
parsed AST (which was sent to stdout) followed by the error message (which was sent to stderr).

7.9 Errors that Must be Detected

Your code must detect the following errors (in addition to the lexical errors detected in the previous home-
work):

1. Syntax errors, whenever an input does not follow the concrete syntax of our subset of PL/0 as de-
fined by Figure 1 (and Figure 2). The error message must state which tokens were expected (possi-
ble) and the file location that is noted in the error message should be the location of the unexpected
token.

2. Declaration errors, whenever an identifier is declared more than once as a constant or as a variable.
The error message must state what the identifier was being declared as, the name of the identifier,
and what kind of declaration (constant or variable) was the previous declaration.

3. Declaration errors, whenever an identifier is used in a statement (including any conditions and ex-
pressions within it) that has not been previously declared. The error message must give the identifier
being used and its (starting) location in the input file.

Error messages sent to stderr should start with a file name, a colon, a space and the line and col-
umn numbers, followed by a space. Use the provided function lexical_error (found in the utilities module
(utilities.h and utilities.c) to produce such error messages.

There are examples of programs with syntax (i.e., parse) errors in hw3-parseerrtest*.pl0,
where * is replaced by a number (or letter). The expected output of each test is found in a file named the
same as the test input but with the suffix .out. For example, the expected output for the test file named
hw3-parseerrtest3.pl0 is in the file hw3-parseerrtest3.out.

There are also examples of programs with declaration errors in hw3-declerrtest*.pl0, where
* is replaced by a number (or letter). The expected output of each test is found in a file named the same as
the test input but with the suffix .out. For example, the expected output of hw3-declerrtest3.pl0
is in the file hw3-declerrtest3.out.

7.10 Checking Your Work

You can check your own compiler by running the tests using the following Unix shell command on Eustis,
which uses the Makefile from the hw3-tests.zip file in the course homeworks directory.

make check − o u t p u t s

Running the above command will generate files with the suffix .myo; for example your output from
test hw3-errtest3.pl0 will be put into hw3-errtest3.myo.

8 Error Recovery

While not part of this homework assignment, you might be interested in exploring how to improve the er-
rors in the compiler. However, you should only investigate this issue once you have gotten your compiler
working perfectly.

The basic issue is that the compiler stops whenever it encounters an error, only issuing one error mes-
sage. There are several ways in which this could be improved, including:

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

15

lexical error recovery In lexical error recovery, the lexer keeps on working after issuing an error mes-
sage. The easiest way to do this is to discard illegal characters (after issuing an error message), and
to truncate identifiers and numeric literals that are too large (after issuing an error message). Reach-
ing the end-of-file during a comment could simply terminate the comment and return an end-of-file
token to the parser, after issuing an error message.

syntactic error recovery In syntactic error recovery, the parser keeps on working after issuing an error
message. In a recursive-descent parser of the sort you are implementing, one can make special cases
for certain errors (e.g., assuming that a missing semicolon is present). However, to prevent infinite
loops in the parser, it is best not to insert tokens, but to delete tokens, e.g., when parsing a statement,
to delete tokens up to the next semicolon or end. See the survey article by Hammond and Rayward-
Smith [1] for more information and references.

A Hints

We will give more hints in the class’s lecture and lab sections.
Recursion is your friend in this assignment. Write code trusting that the functions you call work prop-

erly and concentrate on understanding what each function is responsible for doing (e.g., which tokens it
consumes and what kind of ASTs it creates).

Note that we are providing (in the hw3-tests.zip file in the course homeworks directory) both a
declaration of the relevant types involved in ASTs (in ast.h and file_location .h) and several functions
to create and return (pointers to dynamically allocated) ASTs.

Use the functions declared in the provided ast module (ast.h and ast.c) to create ASTs and ma-
nipulate the lists of ASTs involved.

For a good example of how to do a tree walk on the ASTs (e.g., to build a symbol and check declara-
tions and identifier uses), see the provided file unparser.c.

To check declarations, you will need a symbol table. A symbol table is a mapping from identifiers (i.e.,
strings) to attributes. You can use the provided id_attrs module (files id_attrs .h and id_attrs .c) for the
attributes.

You are allowed to use a fixed-sized array for your symbol table, as long as it holds at least 4K identi-
fiers and their associated attributes.

You do not need to make use of the lexer_output module (in the provided files lexer_output .h and
lexer_output .c) in this homework, although that may be helpful for debugging the (lexical) syntax of your
own tests. Nevertheless, the sources for the lexer_output module are provided, in case your lexer uses
them.

References

[1] K. Hammond and V. Rayward-Smith. A survey on syntactic error recovery and repair. Computer
Languages, 9(1):51–67, 1984.

http://www.cs.ucf.edu/~leavens/COP3402/homeworks/

