Spring, 2017 Name:

(Please don’t write your id number!)

Exam 2: Python Programming with Recursion and
Loops

Directions

The code for the LispList type used in the homework and in some problems on this exam is found in
Figure|l on the following page|

For this exam you are permitted one page of notes. It is a good idea to condense your notes into a small
amount of ready reference material.

If you need more space, use the back of a page. Note when you do that on the front.

Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your answers are sloppy and hard to read, you may lose some points.

For Grading
Question: 1 2 3 Total
Points: 30 35 35 100

Score:

$Id: LispList.py,v 1.1 2017/02/27 04:52:50 leavens Exp §
import abc
class LispList(abc.ABC):
pass
class Nil(LispList):
def __init__ (self):
"""Initialize this empty list
pass
def __eq_ (self, 1st):
"""Return True just when 1lst is also an instance of Nil."""
return isinstance(lst, Nil)
def __repr__ (self):
"""Return a string representing this Nil instance.
return "Nil()"
def __str__ (self):
"""Return a string showing the elements of self."""
return "[]"
def isEmpty(self):
"""Return whether this list is empty.
return True

class Cons(LispList):
def __init__ (self, hd, tl):
"""Initialize this Cons with head hd and tail t1."""
self.car = hd
self.cdr = tl
def __eq_ (self, 1st):
"""Return True just when self is structurally equivalent to 1st.
return isinstance(lst, Cons) and 1lst.first() == self.first() \
and lst.tail() == self.tail()
def _ _repr_ (self):
"""Return a string representing this list.
return "Cons(" + repr(self.first()) + ", " + repr(self.tail()) + ")"
def elements_str(self):
"""Return a string of the elements of self, separated by commas.
if self.tail().isEmpty():
return str(self.first())
else:
return str(self.first()) + ", " + self.tail().elements_str()
def __str__ (self):
"""Return a string showing the elements of self."""
return "[" + self.elements_str() + "]"
def isEmpty(self):
"""Return whether this list is empty.
return False
def first(self):
"""Return the first element of this list.
return self.car
def tail(self):
"""Return the rest of this list.
return self.cdr

wnn

Figure 1: Code for LispList, which is used in some problems.

1. (30 points) [Programming] Define a Python function, multBy(1st,val), of
type: (LispList(int),int) -> LispList(int)
that takes a LispList of ints, 1st, and an int, val, and returns a new LispList of ints that is like 1st but

with each element multiplied by val; that is, the nt" element of the result should be val times the n'"
element of 1st. (The argument 1st should not be modified at all.)

Tests for this problem appear in Figure[2]

$Id: test_multBy.py,v 1.1 2017/02/27 04:52:50 leavens Exp $
from LispList import =
from multBy import =
def test_multBy():
"""Testing for multBy().
assert multBy(Nil(), 8) == Nil(Q)
1st3223 = Cons(3, Cons(2, Cons(2, Cons(3, Nil()))))
assert multBy(1lst3223, 5) == Cons(15, Cons(10, Cons(10, Cons(15, Nil()))))
multBy does not change the argument 1ist
assert 1st3223 == Cons(3, Cons(2, Cons(2, Cons(3, Nil()))))
assert multBy(Cons(10, Cons(20, Cons(30, Nil()))), 7) \
== Cons(70, Cons(140, Cons(210, Nil())))
assert multBy(Cons(3, Cons(4, Nil())), 0) == Cons(0, Cons(0, Nil()))

Figure 2: Tests for multBy.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

2. (35 points) [[Programming] Define a Python function, sumSgDiffs(x, 1lst) of

type: (int, LispList(int)) -> int

that when given an int, x, and a LispList of ints, 1st, returns the sum of the squares of the differences
between x and each element of 1st. Tests for this problem appear in Figure 3]

$Id: test_sumSqDiffs.py,v 1.1 2017/02/27 04:52:50 leavens Exp $
from LispList import =
from sumSqDiffs import =
def test_sumSgDiffs():
"""Testing for sumSgDiffs().
assert sumSgDiffs(5, Nil()) ==
assert sumSgDiffs(4, Cons(1l, Nil())) == (4-1)*=2
1st3223 = Cons(3, Cons(2, Cons(2, Cons(3, Nil()))))
assert sumSgDiffs(7, 1st3223) == (7-3)#%2 + (7-2)*%2 + (7-2)*%2 + (7-3)*+%2
sumSqDiffs does not change the argument 1ist
assert 1st3223 == Cons(3, Cons(2, Cons(2, Cons(3, Nil()))))
assert sumSgDiffs(20, Cons(10, Cons(20, Cons(30, Nil())))) \
== (20-20)#*2 + (20-10)*+2 + (20-20)**2 + (20-30)**2
assert sumSqgDiffs(5, Cons(3, Cons(4, Nil()))) == 5

Figure 3: Tests for sumSgDiffs.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

3. (35 points) [Programming] Define a function, count5s(num), of

type:

int -> int

that takes a non-negative int, num, and returns the number of 5’s that appear in the decimal
representation of num.

In your solution you must not convert num into a string or a sequence, and thus you must not use
formatting or the functions str() or repr (). However, you may use Python’s modulo operator, %, and
Python’s integer division operator //. (Recall that in Python 15 % 10is 5 and that15 // 10is 1.)

Examples appear in Figure [

$Id: test_count5s.py,v 1.1 2017/03/01 02:38:11 leavens Exp leavens §
from count5s import =
def test_count5s():

"""Testing for count5s()

assert
assert
assert
assert
assert
assert
assert
assert
assert
assert

count5s(0) ==

count5s(4) ==

count5s(5) ==

count5s(10) ==

count5s(15) ==

count5s(55) ==

count5s(99550005) == 3
count5s(55555) ==
count5s(525153545000321) ==
count5s(555555555555555555555) == 21

Figure 4: Tests for count5s.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

