
COP 3223H — Honors Introduction to Programming with C February 19, 2019

Homework 4: Loops in Python
See Webcourses and the syllabus for due dates.

General Directions
This homework should be done individually. Note the grading policy on cooperation carefully if you choose
to work together (which we don’t recommend).
In order to practice for exams, we suggest that you first write out your solution to each problem on paper,
and then check it typing that into the computer.
You should take steps to make your Python code clear, including using symbolic names for important
constants and using helping functions or procedures to avoid duplicate code.
It is a good idea to test your code yourself first, before running our tests, as it is easier to debug when you
run the code yourself.
Tests that are provided in hw4-tests.zip, which consists of several python files with names of the form
test_f.py, where f is the name of the function you should be writing, and also some other files. Your
function f should go in a file named f.py in the same directory as test_f.py and the function itself should
be named f . These conventions will make it possible to test using pytest.
Pytest is installed already on the Eustis cluster. If you need help installing pytest on your own machine, see
the course staff or the running Python page.

Running Pytest from the Command Line
After you have pytest installed, and after you have written your solution for a problem that asks for a
function named f , you can run pytest on our tests for function f by executing at a command line

pytest test_f.py > f_tests.txt

which puts the output of the testing into the file f_tests.txt.

Running Pytest from within IDLE
You can also run pytest from within IDLE. To do that first edit a test file with IDLE (so that IDLE is running
in the same directory as the directory that contains the files), then from the Run menu select “Run module”
(or press the F5 key), and then execute the following statements:

import pytest
pytest.main(["test_f.py", "--capture=sys"])

which should produce the same output as the command line given above. Then you can copy and past the
test output into the file f_tests.txt to hand in.

What to turn in
For problems that ask you to write a Python procedure, upload your code as an ASCII file with suffix .py,
and also upload the output of running our tests (as an ASCII file with suffix .txt).

Problems
1. [Programming] This question relates for loops, while loops, and recursion in Python, by having you

program a function to compute dot products in three different ways.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP3223H/syllabus.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml#Pytest
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

2

In Python, we can imagine that lists of numbers represent vectors; for example the list
[0.0, 1.0, 2.0] represents the vector 〈0.0, 1.0, 2.0〉, with 0th element 0.0, 1th element 1.0 and 2th

element 2.0. (Recall that Python uses 0-based indexing.)

The dot product function takes two vectors, v1, and v2, of the same length, and returns the sum v1[i]
times v2[i] for all indexes i in range(len(v1)). The argument vectors should be unchanged and the
function should not print anything. Examples are shown in Figure 1, where dpf is used to stand for a dot
product function. This file, and the other testing files mentioned below, is provided in the
hw4-tests.zip file.

$Id: DotProductTesting.py,v 1.2 2019/02/18 22:10:06 leavens Exp $

from math import isclose

def DotProductTesting(dpf):

"""Test the dot_product function given in the argument dpf.

Note that dpf will be one of the functions that a student writes."""

assert dpf([],[]) + 0 == 0 + 0

assert dpf([1],[1]) == 1

loi1020 = [10,20]

loi56 = [5,6]

assert dpf(loi1020,loi56) == 50+120

the arguments are unchanged

assert loi1020 == [10,20]

assert loi56 == [5,6]

assert isclose(dpf([3.14,2.78,9.1],[1.0,2.0,3.0]), 3.14+2.78*2.0+9.1*3.0)

assert dpf(list(range(5)), list(range(5))) == 0+1+2*2+3*3+4*4

assert dpf(list(range(10)), list(range(10,20))) \

== 0+1*11+2*12+3*13+4*14+5*15+6*16+7*17+8*18+9*19

assert isclose(dpf(list(range(10))+[3.14], list(range(10,20))+[2.781]), \

0*10+1*11+2*12+3*13+4*14+5*15+6*16+7*17+8*18+9*19+3.14*2.781)

assert dpf([-3,-5],[-4,-9]) + 0 == -3*-4 + -5*-9 + 0

Figure 1: Tests for a function argument, dpf, that is supposed to implement the dot product function.

(a) (10 points) Write the dot product function in Python using a for loop (and without using while or
recursion in the code). Call this function dot_product_for and place it in a file named
dot_product_for.py. Tests for this version are in the file shown in Figure 2.
Your solution must make use of a for loop in an essential way.

$Id: test_dot_product_for.py,v 1.1 2019/02/18 22:10:06 leavens Exp $

from dot_product_for import *
from DotProductTesting import *
def test_dot_product_for():

"""Testing for dot_product_for."""

DotProductTesting(dot_product_for)

Figure 2: Tests for the function dot_product_for, which uses the code in DotProductTesting.py shown in
Figure 1.

(b) (10 points) Write the dot product function in Python using a while loop (and without using for,
range, or recursion). Call this function dot_product_while and place it in a file named
dot_product_while. Tests for this version are in the file shown in Figure 3 on the following page.

3

Your solution must make use of a while loop in an essential way.

$Id: test_dot_product_while.py,v 1.1 2019/02/18 22:10:06 leavens Exp $

from dot_product_while import *
from DotProductTesting import *
def test_dot_product_while():

"""Testing for dot_product_while."""

DotProductTesting(dot_product_while)

Figure 3: Tests for the function dot_product_while, which use the code in DotProductTesting.py shown
in Figure 1 on the preceding page.

(c) (10 points) Write the dot product function in Python using recursion (and without using a loop of
any kind). Call this function dot_product_rec and place it in a file named dot_product_rec.
Tests for this version are in the file shown in Figure 4.
Your solution must make use of recursion in an essential way.

$Id: test_dot_product_rec.py,v 1.2 2019/02/19 05:23:38 leavens Exp $

from dot_product_rec import *
from DotProductTesting import *
def test_dot_product_rec():

"""Testing for dot_product_rec."""

DotProductTesting(dot_product_rec)

Figure 4: Tests for the function dot_product_rec, which use the code in DotProductTesting.py shown in
Figure 1 on the previous page.

If you find it useful, you can use the helping functions shown in Figure 5 on the following page,
which define the functions isEmpty, first, and tail for Python lists. Note, however, that these are
not methods, so you would write isEmpty(v) to test if a vector v is empty. This file is included in
the hw4-tests.zip file.

Remember to turn in all the source code files: dot_product_for.py, dot_product_while.py, and
dot_product_rec.py as well as the output of running each of the tests with pytest. Your code and also
the output of running our tests should be submitted to webcourses as ASCII text files that you upload.

2. (20 points; extra credit) (extra credit) The code for a recursive function f is said to be tail-recursive if
whenever it calls itself, it has no more computation to do after the recursive call returns. Thus, if each of
the calls of f from within the code for f are of the form return f(...), then the function f is
tail-recursive.1 Another way to say this is that recursive calls to f need not send their results to any
“pending computation,” since they are immediately used in a return. Tail recursion can often be
accomplished by using a helping function that is tail recursive and has extra arguments. These extra
arguments correspond to the local variables (often accumulators and counters) used in writing a while
loop.

For this extra credit problem, write and test, using the file test_dot_product_tr, which is shown in
Figure 6 on the next page, a tail-recursive implementation of the dot product function, named
dot_product_tr. (Note, the code for this function must not use any loops, but only tail-recursion.)

Turn in both your source code and the results of running our tests.

1Some functional language compilers and interpreters optimize tail-recursive calls.

4

$Id: seq_ops.py,v 1.2 2019/02/18 19:51:21 leavens Exp $

Some helping functions for Python sequences

that make them look more like LispLists.

These all work on sequences of any element type.

def isEmpty(seq):

"""type: sequence(T) -> bool

Ensures: result is len(seq) > 0"""

return len(seq) == 0

def first(seq):

"""type: sequence(T) -> T

Requires: len(seq) > 0

Ensures: result is seq[0]"""

return seq[0]

def tail(seq):

"""type: sequence(T) -> sequence(T)

Requires: len(seq) > 0

Ensures: result is seq[1:]"""

return seq[1:]

Figure 5: Helping functions on Python sequences that implement functions similar to the methods on
LispLists.

$Id: test_dot_product_tr.py,v 1.1 2019/02/18 22:10:06 leavens Exp $

Note that this is an EXTRA CREDIT PROBLEM, you don't have to do it!

from dot_product_tr import *
from DotProductTesting import *
def test_dot_product_rec():

"""Testing for dot_product_tr."""

DotProductTesting(dot_product_tr)

Figure 6: Tests for the function dot_product_tr, which use the code in DotProductTesting.py shown in
Figure 1 on page 2.

3. (15 points) [Programming] The graph of a function f for a list of arguments a is a list of pairs of the
form (ai, f(ai)), where ai is the ith element of a.

Your task in this problem is to write a Python function, graph(f, argList), of

type: (T->U, list(T)) -> list(pair(T,U))

for all types T and U, that takes a function, f, and a list of arguments, argList, and returns a list of pairs,
such that for all i in range(0,len(argList)), the ith element of the result is the pair
(argList[i], f(argList[i])). Tests for graph are given in Figure 7 on the following page.

Hints: Accumulate a list of the pairs in a variable.

4. (25 points) [Programming] The derivative of a function f at a point x can be (numerically)
approximated by the function easydiff shown in Figure 8 on page 6. Good approximations are given
by small values of delta, but if delta is too small, then rounding errors may swamp the result.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

5

$Id: test_graph.py,v 1.1 2019/02/19 03:14:23 leavens Exp $

from graph import graph

def test_graph():

"""Testing for graph."""

the functions used in this test are defined below...

assert graph(plus1,[]) == []

assert graph(plus1,[5, 10, 11, 9, 10]) \

== [(5,6), (10,11), (11,12), (9,10), (10,11)]

loi37420 = [3, 7, 4, 2, 0]

assert graph(odd, loi37420) \

== [(3,True), (7,True), (4,False), (2,False), (0,False)]

the argument is unchanged

assert loi37420 == [3, 7, 4, 2, 0]

assert graph(multBy3, list(range(6))) \

== [(0,0), (1,3), (2,6), (3,9), (4,12), (5,15)]

loi323000 = list(range(32,3000))
gmb3big = graph(tnp1, loi323000)

for i in loi323000:

n = i-32

assert gmb3big[n] == (i, tnp1(i))

loi1100 = list(range(1,100))
ghail = graph(hailstone, loi1100)

for j in loi1100:

m = j-1

assert ghail[m] == (j, hailstone(j))

some helping functions for testing

def plus1(n):

return n+1

def multBy3(n):

return n*3

def odd(n):

return n % 2 == 1

def tnp1(n):

if odd(n):

return plus1(multBy3(n))

else:
return n

def hailstone(n):

return tnp1(n) // 2

Figure 7: Tests for graph.

One way to choose delta is to compute a sequence of approximations, starting with a reasonably large
one, and keep halving delta until the result stabilizes.

Your task in this problem is to write a Python function approxDerivAt(delta, f, x, epsilon) of
type: (float, float -> float, float, float) -> float that takes an initial value of delta,
which is a float that is strictly greater than 0.0, a function f that takes a float and returns a float, a float x,
and a value epsilon that is strictly greater than 0.0 and returns an approximation to the derivative of f
at x that is accurate to within epsilon.

6

$Id: easydiff.py,v 1.1 2019/02/19 04:39:32 leavens Exp $

def easydiff(f, x, delta):

"""type: (float -> float, float, float) -> float

Requires: delta > 0.0

Ensures: result is (f(x+delta) - f(x)) / delta"""

return (f(x+delta) - f(x)) / delta

Figure 8: The easydiff function. This function is provided in the file hw4-tests.zip.

Hint: use a while loop and the fabs function from the math module to compute absolute values of
differences. Keep halving delta while testing the result of easydiff(f, x, delta) until the value
stabilizes in the sense that:

fabs(easydiff(f,x,delta) - easydiff(f,x,delta/2)) < epsilon

is True. Then return the value of easydiff(f,x,delta/2).

Tests for approxDerivAt are shown in Figure 9 on the following page.

Points
This homework’s total points: 70.

References
[Hay84] B. Hayes. Computer recreations: On the ups and downs of hailstone numbers. Scientific American,

250(1):10–16, January 1984.

[LV92] Gary T. Leavens and Mike Vermeulen. 3x+ 1 search programs. Computers and Mathematics with
Applications, 24(11):79–99, December 1992.

7

$Id: test_approxDerivAt.py,v 1.1 2019/02/19 04:39:32 leavens Exp $

from math import isclose

from approxDerivAt import *

def test_approxDerivAt():

"""Testing for approxDerivAt."""

eps = 1.0e-5

The functions used as the second argument are found below...

assert isclose(approxDerivAt(1.0, id, 2.0, eps), 1.0, abs_tol=eps)

assert isclose(approxDerivAt(1.0, id, 0.0, eps), 1.0, abs_tol=eps)

assert isclose(approxDerivAt(4.0, linear, 0.0, eps), 1.0, abs_tol=eps)

assert isclose(approxDerivAt(1.0, square, 3.0, eps), 6.0, abs_tol=eps)

assert isclose(approxDerivAt(1.0, square, 5.0, eps), 10.0, abs_tol=eps)

assert isclose(approxDerivAt(1.0, square, 0.25, eps), 0.5, abs_tol=eps)

assert isclose(approxDerivAt(1.0, xp1TimesXm1, 5.0, eps), 10.0, abs_tol=eps)

assert isclose(approxDerivAt(4.0, pow4, 10.0, eps), 20.0*10.0**3+6.0*10.0**2, abs_tol=eps)

assert isclose(approxDerivAt(4.0, pow4, 2.0, eps), 20.0*2.0**3+6.0*2.0**2, abs_tol=eps)

assert isclose(approxDerivAt(4.0, pow4, 2.0, 0.1), 20.0*2.0**3+6.0*2.0**2, abs_tol=0.1)

assert isclose(approxDerivAt(1.0, pow4, 0.5, 0.1), 20.0*0.5**3+6.0*0.5**2, abs_tol=0.1)

functions of type float -> float for use in testing

def id(x):
return x

def linear(x):

return x+2

def square(x):

return x*x

def xp1TimesXm1(x):

return x*x - 1

def pow4(x):

return 5.0*x**4.0 + 2.0*x**3.0

Figure 9: Tests for approxDerivAt.

