
COP 3223H — Honors Introduction to Programming with C February 8, 2019

Homework 3: Recursion in Python
See Webcourses and the syllabus for due dates.

General Directions
This homework should be done individually. Note the grading policy on cooperation carefully if you choose
to work together (which we don’t recommend).
In order to practice for exams, we suggest that you first write out your solution to each problem on paper,
and then check it typing that into the computer.
You should take steps to make your Python code clear, including using symbolic names for important
constants and using helping functions or procedures to avoid duplicate code.
Follow the grammar; we will take points off if you do not.
Also, it is a good idea to test your code yourself first, before running our tests, as it is easier to debug when
you run the code yourself.
Tests that are provided in hw3-tests.zip, which consists of several python files with names of the form
test_f.py, where f is the name of the function you should be writing, and also some other files. Your
function f should go in a file named f.py and the function itself should be named f . These conventions will
make it possible to test using pytest.
Pytest is installed already on the Eustis cluster. If you need help installing pytest on your own machine, see
the course staff or the running Python page.

Running Pytest from the Command Line
After you have pytest installed, and after you have written your solution for a problem that asks for a
function named f , you can run pytest on our tests for function f by executing at a command line

pytest test_f.py > f_tests.txt

which puts the output of the testing into the file f_tests.txt.

Running Pytest from within IDLE
You can also run pytest from within IDLE. To do that first edit a test file with IDLE (so that IDLE is running
in the same directory as the directory that contains the files), then from the Run menu select “Run module”
(or press the F5 key), and then execute the following statements:

import pytest
pytest.main(["test_f.py", "--capture=sys"])

which should produce the same output as the command line given above. Then you can copy and past the
test output into the file f_tests.txt to hand in.

What to turn in
For problems that ask you to write a Python procedure, upload your code as an ASCII file with suffix .py,
and also upload the output of running our tests (as an ASCII file with suffix .txt).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP3223H/syllabus.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml#Pytest

2

Problems
These problems use the LispList type defined in the file LispList.py, which is included in the homework
zip file. To make this work, put the following import in each file you write.

from LispList import *

Note that you are not allowed to use the built-in lists of Python; doing so will result in loss of all points for
the problem. Also, do not attempt to modify the LispList objects passed as arguments to the functions you
write; that will result in incorrect solutions.

1. (10 points) [Programming] Write a Python function, sub_from_each(loi, n) of

type: (LispList(int), int) -> LispList(int)

that takes a LispList of ints, loi and an int, n, and returns a new LispList that is like loi, except that the
ith element of the result is the ith element of loi minus the value of n. Tests for this are shown in
Figure 1.

$Id: test_sub_from_each.py,v 1.2 2017/02/09 18:57:34 leavens Exp $

from LispList import *
from sampleLispLists import * # test data, such as loi1_6, used below

from sub_from_each import *
def test_sub_from_each():

assert sub_from_each(loi1_6, 2) \

== Cons(-1, Cons(0, Cons(1, Cons(2, Cons(3, Cons(4, nil))))))

assert sub_from_each(nil, 99) == nil

assert sub_from_each(Cons(5, Cons(5, nil)), 3) == Cons(2, Cons(2, nil))

assert sub_from_each(Cons(5, nil), 3) == Cons(2, nil)

assert sub_from_each(loi999_twice_3, 99) \

== Cons(900, Cons(900, Cons(3-99, nil)))

assert sub_from_each(loi5down, 1) \

== Cons(4, Cons(3, Cons(2, Cons(1, Cons(0, nil)))))

Figure 1: Tests for sub_from_each.py. This uses the module sampleLispLists shown in Figure 2 on the
following page.

The tests in Figure 1 use some sample Lisp Lists that are collected into the module sampleLispLists,
which is shown in Figure 2 on the following page. (This is done to avoid repetition in the testing code.)

Remember to turn in both your file sub_from_each.py and the output of running our tests with pytest.
Your code and also the output of running our tests should be submitted to webcourses as ASCII text
files that you upload.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

3

$Id: sampleLispLists.py,v 1.1 2017/02/09 18:57:34 leavens Exp $

from LispList import *
Several samples of LispLists

nil = Nil()

loi12321 = Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

loi999999 = Cons(999999, nil)

loi999_twice_3 = Cons(999, Cons(999, Cons(3, nil)))

loi1_6 = Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Cons(6, nil))))))

loi55 = Cons(5, Cons(5, nil))

loi5down = Cons(5, Cons(4, Cons(3, Cons(2, Cons(1, nil)))))

def fromToOn(n, m, lst):

"""type: (int, int, LispList(int)) -> LispList(int)

Return the LispList(int) of form Cons(n, Cons(n+1, ..., Cons(m, lst)...))"""

if n > m:

return lst

else:
return Cons(n, fromToOn(n+1, m, lst))

loi1_12 = fromToOn(1, 12, Nil())

loi2_9 = fromToOn(2, 9, Nil())

loiup10down5 = fromToOn(1,10, loi5down)

Figure 2: The module sampleLispLists, which is used in testing for this homework.

4

2. (10 points) [Programming] Define a Python function, deleteEach(loi, val), of

type: (LispList(int), int) -> LispList(int)

which takes a Lisp list of ints, loi, and an int, val, and returns a new Lisp list that is like loi except that
every occurrence of val in loi (as determined by ==) is not present in the result. Note that, despite the
name, the argument list loi is unaffected by this function. Tests for deleteEach() are found in
Figure 3.

Hint: since you are not to modify the argument list in any way, your code should, in essence, make a
copy of loi, but omit copying every element that is == to val, if any.

$Id: test_deleteEach.py,v 1.1 2019/02/06 03:04:07 leavens Exp $

from LispList import *
from sampleLispLists import * # names like nil and lst12321 defined there

from deleteEach import *
def test_deleteEach():

"""Testing for deleteEach."""

assert deleteEach(loi12321, 1) == Cons(2, Cons(3, Cons(2, nil)))

Note: the argument is unchanged!

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert deleteEach(loi12321, 2) == Cons(1, Cons(3, Cons(1, nil)))

assert deleteEach(loi12321, 3) == Cons(1, Cons(2, Cons(2, Cons(1, nil))))

assert deleteEach(loi12321, 5) == loi12321

assert deleteEach(nil, 3223) == nil

assert deleteEach(Cons(2, Cons(3, Cons(2, Cons(1, nil)))), 1) \

== Cons(2, Cons(3, Cons(2, nil)))

assert deleteEach(loi999_twice_3, 999) == Cons(3, nil)

assert deleteEach(loiup10down5, 1) \

== fromToOn(2,10,Cons(5, Cons(4, Cons(3, Cons(2, nil)))))

assert deleteEach(Cons(-1, Cons(-1, Cons(-1, nil))), -1) == nil

Figure 3: Tests for deleteEach. This uses the module sampleLispLists shown in Figure 2 on page 3.

Remember to turn in both your file deleteEach.py and the output of running our tests with pytest.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

5

3. (10 points) [Programming] Define a Python function, deleteFirst(loi, val), of

type: (LispList(int), int) -> LispList(int)

which takes a Lisp list of ints, loi, an an int, val, and returns a new Lisp list that is just like loi except
that the first occurrence of val in loi (as determined by ==) is not present in the result. Note that,
despite the name, the argument list loi is unaffected by this function. Tests for deleteFirst() are
found in Figure 4 on the next page.

Hint: this is like deleteEach, but the code needs to not remove any occurrences of val after the first one
is found.

$Id: test_deleteFirst.py,v 1.1 2019/02/06 03:12:44 leavens Exp $

from LispList import *
from sampleLispLists import *
from deleteFirst import *
def test_deleteFirst():

"""Testing for deleteFirst"""

assert deleteFirst(loi12321, 1) == Cons(2, Cons(3, Cons(2, Cons(1, nil))))

Note: the argument is unchanged!

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert deleteFirst(loi12321, 2) == Cons(1, Cons(3, Cons(2, Cons(1, nil))))

assert deleteFirst(loi12321, 3) == Cons(1, Cons(2, Cons(2, Cons(1, nil))))

assert deleteFirst(loi12321, 5) == loi12321

assert deleteFirst(nil, 3223) == nil

assert deleteFirst(Cons(2, Cons(3, Cons(2, Cons(1, nil)))), 1) \

== Cons(2, Cons(3, Cons(2, nil)))

assert deleteFirst(loi999_twice_3, 999) == Cons(999, Cons(3, nil))

assert deleteFirst(Cons(-1, Cons(-1, Cons(-1, nil))), -1) \

== Cons(-1, Cons(-1, nil))

Figure 4: Tests for deleteFirst. This uses the module sampleLispLists shown in Figure 2 on page 3.

Remember to turn in both your file deleteFirst.py and the output of running our tests with pytest.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

6

4. (12 points) [Programming] Define a Python function, countEqual(item, lst), which for any type T
is of

type: T, LispList(T) -> int

and which takes an item (of some type T), item, and a Lisp list of elements of type T, lst, and returns
the number of elements in lst that are equal to (in the sense of ==) item. Tests for countEqual() are
found in Figure 5 on the next page.

$Id: test_countEqual.py,v 1.1 2019/02/07 22:13:22 leavens Exp $

from LispList import *
from sampleLispLists import *
from countEqual import *
def test_countEqual():

assert countEqual(3, nil) == 0

assert countEqual(1, loi12321) == 2

Note: the argument is unchanged!

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert countEqual(1, loi12321.tail()) == 1

assert countEqual(2, loi12321) == 2

assert countEqual(3, loi12321) == 1

assert countEqual(5, loi1_12) == 1

assert countEqual(5, loiup10down5) == 2

assert countEqual(2, loi2_9) == 1

assert countEqual(9, loi2_9) == 1

assert countEqual(51, fromToOn(1,100,Nil())) == 1

assert countEqual(6, loiup10down5) == 1

assert countEqual(5, loiup10down5) == 2

a_String_list = Cons("also", Cons("string", Cons("lists", nil)))

assert countEqual("also", a_String_list) == 1

assert countEqual("string", a_String_list) == 1

assert countEqual("lists", a_String_list) == 1

assert countEqual("home", a_String_list) == 0

pi2 = 3.14

assert countEqual(pi2, Cons(pi2, Cons(2.78, nil))) == 1

to10thrice = fromToOn(1,10,fromToOn(1,10,fromToOn(1,10,nil)))

assert countEqual(4, to10thrice) == 3

assert countEqual(1, to10thrice) == 3

assert countEqual(10, to10thrice) == 3

assert countEqual(19, to10thrice) == 0

Figure 5: Tests for countEqual. This uses the module sampleLispLists shown in Figure 2 on page 3.

Remember to turn in both your file countEqual.py and the output of running our tests with pytest.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

7

5. (15 points) [Programming] Define a Python function, insertAfter(lst, what, where), which for
any type T is of

type: (LispList(T), T, T) -> LispList(T)

that takes a Lisp list of elements of type T, lst, a value of type T, what, and a value of type T, where,
and returns a Lisp list of type T that is just like lst, but has what inserted after the first occurrence (as
determined by ==) of where. Tests for insertAfter() are found in Figure 6 on the next page.

$Id: test_insertAfter.py,v 1.1 2019/02/08 02:43:23 leavens Exp $

from LispList import *
from sampleLispLists import * # names like nil and lst12321 defined there

from insertAfter import *
def test_insertAfter():

assert insertAfter(loi12321, 99, 1) \

== Cons(1, Cons(99, Cons(2, Cons(3, Cons(2, Cons(1, nil))))))

Note: the argument is unchanged!

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert insertAfter(loi12321, 3500, 2) \

== Cons(1, Cons(2, Cons(3500, Cons(3, Cons(2, Cons(1, nil))))))

assert insertAfter(loi12321, 4210, 3) \

== Cons(1, Cons(2, Cons(3, Cons(4210, Cons(2, Cons(1, nil))))))

assert insertAfter(loi12321, 823, 0) == loi12321

assert insertAfter(loi1_6, 4758, 6) == fromToOn(1, 6, Cons(4758, nil))

assert insertAfter(loi999_twice_3, 1000, 999) \

== Cons(999, Cons(1000, Cons(999, Cons(3, nil))))

assert insertAfter(loi999_twice_3, 52, 3) \

== Cons(999, Cons(999, Cons(3, Cons(52, nil))))

assert insertAfter(loiup10down5, 27, 5) \

== fromToOn(1, 5, (Cons(27, fromToOn(6,10,loi5down))))

assert insertAfter(loiup10down5, 62, 10) \

== fromToOn(1, 10, Cons(62, loi5down))

assert insertAfter(fromToOn(10,151, Nil()), 923, 150) \

== fromToOn(10,150, Cons(923, Cons(151,nil)))

assert insertAfter(fromToOn(-3,125,nil),993, 125) \

== fromToOn(-3,125, Cons(993, nil))

assert insertAfter(fromToOn(1,332,nil),333333, 10001) \

== fromToOn(1,332,nil)

assert insertAfter(nil, 95, 21) == nil

assert insertAfter(nil, Cons(nil, nil), "foo") == nil

assert insertAfter(Cons(1, nil), 3223, 2) == Cons(1, nil)

Figure 6: Tests for insertAfter. This uses the module sampleLispLists shown in Figure 2 on page 3.

Remember to turn in both your file insertAfter.py and the output of running our tests with pytest.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

8

6. (20 points) [Programming] Define a Python function, superseteq(lst1, lst2), which for any type T
is of

type: (LispList(T), LispList(T)) -> bool

and which takes as arguments two Lisp lists whose elements are of type T, and returns a Boolean that
indicates whether every element of lst2 is also an element of lst1. That is, if you regard the lists as
representing sets, then the set of the elements in the first list is a superset (or equal to) the set of
elements in the second set. All tests comparing elements of type T should use == (that is elements x and
y are considered equal if they are such that x == y). Tests for superseteq() are found in Figure 7 on the
next page.

Do not use any Python lists in your solution.

Hint: you may want to write a helping function to determine if an item is a member of a list. However,
the countEqual function is probably not the right helping function for this purpose.

$Id: test_superseteq.py,v 1.1 2019/02/08 03:07:07 leavens Exp $

from LispList import *
from sampleLispLists import * # names like nil and lst12321 defined there

from superseteq import *
def test_member():

lst1 = Cons(1,nil)

assert superseteq(loi12321, lst1)

Note: the arguments are unchanged!

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert lst1 == Cons(1,nil)

assert not superseteq(lst1, loi12321)

Note: the arguments are unchanged!

assert lst1 == Cons(1, nil)

assert loi12321 == Cons(1, Cons(2, Cons(3, Cons(2, Cons(1, nil)))))

assert superseteq(loi12321, Cons(3, Cons(1, nil)))

assert not superseteq(loi12321, Cons(3, Cons(4, Cons(1, nil))))

assert superseteq(loi1_6, Cons(1, Cons(4, nil)))

assert superseteq(loi1_6, loi1_6)

assert superseteq(loi999_twice_3, Cons(3, Cons(999, nil)))

assert superseteq(loi999_twice_3, Cons(3, nil))

assert superseteq(loi999_twice_3, Cons(999, nil))

assert superseteq(loiup10down5, Cons(10, Cons(9, Cons(7, nil))))

assert not superseteq(Nil(), Cons(1, Nil()))

assert not superseteq(Nil(), Cons(2, Cons(1, Nil())))

assert not superseteq(Cons(2, Nil()), Cons(2, Cons(1, Nil())))

Figure 7: Tests for superseteq. This uses the module sampleLispLists shown in Figure 2 on page 3.

Remember to turn in both your file superseteq.py and the output of running our tests with pytest.

Points
This homework’s total points: 77.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

