
COP 3223H — Honors Introduction to Programming with C January 25, 2019

Homework 1: Python Numeric Functions
See Webcourses and the syllabus for due dates.

General Directions
This homework should be done individually. Note the grading policy on cooperation carefully if you choose
to work together (which we don’t recommend).
In order to practice for exams, we suggest that you first write out your solution to each problem on paper,
and then check it typing that into the computer.
You should take steps to make your Python code clear, including using symbolic names for important
constants.
Tests that are provided in hw1-tests.zip, which consists of several python files with names of the form
test_f.py, where f is the name of the function you should be writing. Your function f should go in a file
named f.py and the function itself should be named f . These conventions will make it possible to test using
pytest.
Pytest is installed already on the Eustis cluster. To install pytest on your own machine, execute the following
command from the shell (or terminal window):

pip3 install -U pytest

See pytest.org’s installation page for more details.
After you have pytest installed, and after you have written your solution for a problem that asks for a
function named f , you can run pytest on our tests for f by executing at a command line

pytest test_f.py > f_tests.txt

which puts the output of the testing into the file f_tests.txt.
You can also run pytest from within IDLE. To do that first edit a test file with IDLE (so that IDLE is running
in the same directory as the directory that contains the files), then from the Run menu select “Run module”
(or press the F5 key), and then execute the following statements:

import pytest
pytest.main(["test_f.py", "--capture=sys"])

which should produce the same output as the command line given above. Then you can copy and paste the
test output into the file f_tests.txt to hand in.

What to turn in
For problems that ask you to write a Python function, upload your code as an ASCII file with suffix .py, and
also upload the output of running our tests (as an ASCII file with suffix .txt).
In your Python code files, include your name (and any statements about cooperation or collaboration as
required by the grading policy, as needed) as comments at the top of the file. Don’t edit the output of our
tests.

Problems
1. (6 points) [Programming] Define a Python function, moons(years), which takes a number, years, and

returns return the number of lunar months that a person that age has lived.

For this problem we will follow many cultures and use the “sidereal month” as the definition of a lunar
month, which is the time it takes for the moon to return to the same (apparent) place in the sky. A
sidereal month lasts 27.321661 days. A year is 365.25 days long.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP3223H/syllabus.shtml
http://docs.pytest.org/en/latest/getting-started.html
http://www.cs.ucf.edu/~leavens/COP3223H/running_python.shtml#Pytest
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

2

Tests for this problem appear in Figure 1. Run the tests as indicated above and save the output in a .txt
file to hand in.

$Id: test_moons.py,v 1.2 2019/01/25 12:53:51 leavens Exp leavens $

from moons import moons

from math import isclose

Sidereal_Month = 27.321661 #days

Days_in_Year = 365.25

def test_moons():

"""Tests for the moons function."""

assert isclose(moons(1), Days_in_Year / Sidereal_Month)

assert isclose(moons(18), 18 * Days_in_Year / Sidereal_Month)

assert isclose(moons(19), 19 * Days_in_Year / Sidereal_Month)

assert isclose(moons(20), 20 * Days_in_Year / Sidereal_Month)

assert isclose(moons(30), 30 * Days_in_Year / Sidereal_Month)

assert isclose(moons(40), 40 * Days_in_Year / Sidereal_Month)

assert isclose(moons(50), 50 * Days_in_Year / Sidereal_Month)

oldest human lived 122 years and 164 days

assert isclose(moons(122.449315), 122.449315 * Days_in_Year / Sidereal_Month)

some turtles and a clam have lived 500 years

assert isclose(moons(500), 500 * Days_in_Year / Sidereal_Month)

a bristlecone pine is thought to be about 5000 years old

assert isclose(moons(5000), 5000 * Days_in_Year / Sidereal_Month)

Figure 1: Tests for moons, found in the file test_moons.py.

Remember to turn in both your file moons.py and the output of running our tests. These should be
submitted to webcourses as ASCII text files that you upload.

2. (8 points) [Programming] Define a Python function, discriminant(a,b,c) that when given 3
numbers, a, b, and c, returns the quadratic discriminant b2 − 4 · a · c.

Tests for this problem appear in Figure 2.

$Id: test_discriminant.py,v 1.2 2019/01/25 12:53:51 leavens Exp leavens $

from discriminant import discriminant

from math import isclose

def test_discriminant():

"""Test the discriminant function."""

assert isclose(discriminant(0, 0, 0), 0)

assert isclose(discriminant(3, 4, 5), -44)

assert isclose(discriminant(3.0, 5.0, 4.0), -23.0)

assert isclose(discriminant(1.0, 10.0, 1.0), 96.0)

assert isclose(discriminant(27.0, 2.0, 1.0), -104.0)

assert isclose(discriminant(3.14, 2.781, 0), 7.733961000000001)

assert isclose(discriminant(6.0, 10.0, -1.0), 124)

assert isclose(discriminant(1.5e-2,6.7789,3.1e-4), 45.95346661000001)

Figure 2: Tests for discriminant, found in the file test_discriminant.py.

Remember to turn in both your file discriminant.py and the output of running our tests. These should
be submitted to webcourses as ASCII text files that you upload.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming

3

3. (8 points) [Programming] A “light-second” is a unit of length, the distance that light travels in a
second; it is defined to be exactly 299,792,458 meters. Define a Python function, lightSecs(miles)
that when given a number of miles returns the equivalent of that length in light-seconds.

Note that a mile is 1609.344 meters.

Tests for this problem appear in Figure 3.

$Id: test_lightSecs.py,v 1.2 2019/01/25 12:53:51 leavens Exp leavens $

from lightSecs import lightSecs

from math import isclose

def test_lightSecs():

"""Test the lightSecs function."""

assert isclose(lightSecs(1), 5.368193752225749e-06)

assert isclose(lightSecs(299792458 / 1609.344), 1.0)

assert isclose(lightSecs(1000), 0.005368193752225748)

distance to Mars (on average) from earth is about 140 million miles

assert isclose(lightSecs(140e6), 751.5471253116048)

distance to Voyager 1 on 1/11/2019 at about 11:28pm

assert isclose(lightSecs(13491749492), 72426.32532954932)

approximate distance to the closest star, Proxima Centari

assert isclose(lightSecs(25e15), 134204843805.6437)

Figure 3: Tests for lightSecs, found in the file test_lightSecs.py.

Remember to turn in both your file lightSecs.py and the output of running our tests. These should be
submitted to webcourses as ASCII text files that you upload.

4. (10 points) [Programming] Define a Python function, marsweight(earthweight) that when given a
person’s weight in pounds (of force) on Earth, earthweight, returns the number of pounds (of force)
that a scale (brought from earth) would register for that person on the surface of Mars.

You can calculate the weight by using Newton’s law of gravitation, which says that the gravitational
force (which is what weight is) between two masses m1 and m2 separated by a distance of r meters is
given by

F = G ·m1 ·m2/r
2. (1)

The mass of Mars is approximately 0.64171e24 kg1 The radius of Mars is approximately 3389.5
kilometers. Here the force would be in units of Newtons (N). Newton’s gravitational constant, G, is
equal to 6.764e− 11 N ·m/kg2. On Earth, a pound (of weight) is equivalent to 0.453592 kg (of mass).
Conversely, 1 Newton (N) of force is equivalent to 0.224809 pounds of force

Hint: convert the given weight to a mass (in kg), then use Newton’s law of gravitation to solve for the
force (in N) on the surface of Mars between Mars and that mass, then covert back to pounds of force.

Tests for this problem appear in Figure 4 on the next page.

Remember to turn in both your file marsweight.py and the output of running our tests. These should be
submitted to webcourses as ASCII text files that you upload.

Points
This homework’s total points: 32.

1 These facts about Mars are from https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html.

http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming
http://www.cs.ucf.edu/~leavens/COP3223H/about.shtml#OutProgramming
https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

4

$Id: test_marsweight.py,v 1.2 2019/01/25 12:53:51 leavens Exp leavens $

from marsweight import marsweight

from math import isclose

def test_marsweight():

"""Test the marsweight function."""

assert isclose(marsweight(1), 0.3801305841547296, rel_tol=2e-2)

assert isclose(marsweight(120), 45.615670098567556, rel_tol=2e-2)

assert isclose(marsweight(150), 57.019587623209425, rel_tol=2e-2)

assert isclose(marsweight(200), 76.02611683094592, rel_tol=2e-2)

Figure 4: Tests for marsweight, found in the file test_marsweight.py.

