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Abstract 

A Very Large Scale Robotic (VLSR) system may consist of from hundreds to perhaps tens of thousands or more autonomous 
robots. The costs of robots are going down, and the robots are getting more compact, more capable, and more flexible. Hence, 
in the near future, we expect to see many industrial and military applications of VLSR systems in tasks such as assembling, 
transporting, hazardous inspection, patrolling, guarding and attacking. In this paper, we propose a new approach for distributed 
autonomous control of VLSR systems. We define simple artificial force laws between pairs of robots or robot groups. The 
force laws are inverse-power force laws, incorporating both attraction and repulsion. The force laws can be distinct and 
to some degree they reflect the 'social relations' among robots. Therefore we call our method social potential fields. An 
individual robot's motion is controlled by the resultant artificial force imposed by other robots and other components of the 
system. The approach i.s distributed in that the force calculations and motion control can be done in an asynchronous and 
distributed manner. We also extend the social potential fields model to use spring laws as force laws. This paper presents 
the first and a preliminary study on applying potential fields to distributed autonomous multi-robot control. We describe 
the generic framework of our social potential fields method. We show with computer simulations that the method can yield 
interesting and useful behaviors among robots, and we give examples of possible industrial and military applications. We also 
identify theoretical problems for future studies. © 1999 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

1.1. Motivation: Very Large Scale Robotics (VLSR) 
systems 

Much of  the earlier work on robotic motion planning 
has considered the case of  only a single or a few robots 
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(see, e.g., the survey paper by Schwartz and Sharir 
[31], the book by Latombe [18], and the references 
therein). However, in the last decade, there has been 
a quickly growing literature on planning and cooper- 
ative control for systems of  many robots. The main 
reason for this is probably the perceivable industrial 
and military applications of  systems of  many robots 
in the near future, as the costs of  individual robots are 
going down, and as the robots are getting much more 
compact  (utilizing the emerging miniaturized manu- 
facturing capabilities, the robots are l ikely to be made 
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even at microscopic sizes for medical purposes), more 
capable, and more flexible, with sensing systems that 
will handle outside information faster and more accu- 
rately. Note that in the 1980s, electronic circuits went 
through a similar revolution in decreased physical size 
scale, cost and integration as the industry transitioned 
to VLSI. 

We suggest the use of the term Very Large Scale 
Robotic (VLSR) systems for describing systems with 
hundreds to perhaps tens of thousands of autonomous 
robots. Possible industrial applications of VLSR sys- 
tems include hazardous inspection, underwater or 
outer-space exploration, assembling, and transporta- 
tion. Guarding, escorting, patrolling, and strategic and 
aggressive behaviors such as stalking an attacking are 
some examples of military applications. 

In order to make effective use of the VLSR systems, 
we may wish the robots to exhibit some forms of co- 
operative behaviors. For example, we can use robots to 
clean, harvest or patrol a large area instead of human 
beings. The robots may need at times to cluster very 
tightly together, and at other times to scatter evenly in 
their working area so that the work can be partitioned 
evenly among them. Sometimes they need to spread 
out far away from their original position to explore, for 
example. In this paper, we propose a new distributed 
approach for the control of such VLSR systems. 

1.2. Distributed control versus centralized control 

A centralized-control paradigm assumes a single 
control which collects the information of the entire 
system (e.g. the states of all the robots), and then 
plans the motion for each individual robot. A central- 
ized control may involve very high computational and 
communication complexity, may require very compli- 
cated planars, and lack of flexibility and robustness. 
(For complexity results, see [15,25]; for some works 
in the centralized approach, see [10,12,32].) 

In a distributed-control paradigm, each robot deter- 
mines its motion by observing the environment and 
by using some rules. This is done locally in the sense 
that a robot's plan is not based on the whole informa- 
tion of the system, but only on information accessible 
to itself. It does not know the plans of other robots ei- 
ther. However, with properly designed rules, the sys- 
tem may display desired global behaviors, or achieve 
predefined goals. 

The theme of distributed control has long existed in 
robotics and in AI. In different contexts, an individual 
in the studied systems is sometimes called a robot, 
sometimes an agent, and sometimes a particle. The 
rules are sometimes called social laws, and sometimes 
called basic behaviors. 

Moses and Tennenholtz [22,23] investigated several 
basic principles and formal aspects of distributed con- 
trol with social laws. Shoham and Tennenholtz [33] 
studied the complexity of automatically deriving use- 
ful social laws to achieve certain goals. Parker [24] 
studied the problem of balancing global knowledge 
and local knowledge in designing cooperative robotic 
systems. He regards the information derivable from 
a robot's sensory and reflecting the environment near 
the robot as local knowledge, while global knowledge 
includes global goals, or information about the whole 
system that can only be obtained through communi- 
cation channels other than sensory. 

Interesting experimental results (mostly computer 
simulations) have been obtained in studies of using 
distributed control to achieve some specific goals. Sug- 
ihara and Suzuki [34] studied the problem of letting a 
group of robots form approximately geometric objects, 
such as circles and polygons. Their approach is to let 
the robots run an identical program asynchronously, 
where the program consists of instructions like "If 
d > D, then move towards the farthest robot", where d 
may be the distance between the robot and its farthest 
neighbor, and D is a fixed constant. Here a program 
can be considered as defining the rules. Mataric [20] 
uses the terminology behavior-based systems. In this 
system, each robot is programmed with a collection 
of simple behaviors such that the system will show 
some collective behaviors. For example, if each robot 
is programmed to compute the angle of the nearest 
two robots and to turn away from it, the system dis- 
plays dispersion behavior. Gross and Deneubourg [14] 
studied how to use a group of robots to harvest by 
distributed control. Brooks, Maes, Mataric, and More 
[6] proposed to use many small autonomous robots to 
do lunar base construction. In their experimental sys- 
tem, the robots work without explicit coordination or 
communication, but nevertheless cooperate to achieve 
tasks such as digging out trenches. 

Beni and Hackwood [3] studied what is called the 
swarm intelligence. A swarm, which is a collection of 
units, can converge to a wide range of distributions, 
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while no unit of the swarm is aware of the distribution 
it is working to realize. The swarm distributions can 
be determined by solving asynchronously systems of 
linear equations describing a difference equation with 
periodic boundary conditions. 

For more studies in distributed control using simple 
rules, see [2,4,35] and references therein. 

The distributed-control framework has also been 
applied to other fields such as Artificial Life (see 
[8,14] for some examples) and Computer Graphics. 
Reynolds [27] has successfully synthesized birds' be- 
haviors such as collision avoidance, velocity matching 
and flock centering. A bird of his has limited vision 
and thus can only access information of nearby birds. 
To avoid collision with other birds and obstacles, a 
bird uses a steer-to-avoid rule. 

The distributed-control paradigm seems to have 
strong justifications from studies in sociobiology. The 
group patterns by which animals search for food, 
attack enemies, and protect their own territories are 
surprisingly sophisticated (see [38] of Wilson), yet 
these patterns are accomplished by a distributed rather 
than a centralized control. For example, in the study 
of grouping behavior, observed data in [5,21] and 
computer simulations in [36] suggest that an individ- 
ual is controlled by the sum of an attraction force (to 
stay with the group) and a repulsion force (to keep its 
own territory) to disp].ay the grouping behavior. 

1.3. Previous work in the potential field method 

Artificial potential methods have been previously 
used for obstacle-avoidance path planning. Work in 
this area was pioneered by Khatib [17], whose idea 
was simple and elegant. Imagine that in the configu- 
ration space of a robot (where the robot is a point), 
we assign negative electrical charges to the robot and 
the configuration obstacles, and positive charges to the 
goal configuration. Thus a potential field is formed 
with very high potentials close to the configuration 
obstacles and minimum potential at the goal configu- 
ration. The robot, guided by the potential fields, will 
go from high potential configurations to low potential 
configurations and hopefully will eventually get to the 
the goal configuration. 

Potential field methods have been shown to be 
efficient and powerful in solving difficult motion 
planning problems such as one with high degrees of 

freedom (see [1,7,9,11,28,37] and references therein). 
However, because of the local-minima problem (i.e., 
a robot can be caught in a local minimum rather 
than the global minimum), except the work of Rimon 
and Koditschek [29,30], most of the potential-based 
methods are heuristics. Note that in [29], to avoid the 
local-minima problem, a combination of various force 
fields is used and the boundaries may not satisfy the 
definition of a potential field. 

In the study of path planning using potential fields, 
the major concern is collision avoidance for a single 
robot. It can be regarded as a special case of a more 
general VLSR system described below. However, gen- 
erating complex behavior by interaction via potential 
fields poses more significant challenges. 

1.4. Social potential fields: A distributed control for 
VLSR systems 

Within a distributed-control framework, we propose 
to use artificial potential fields as control laws. We al- 
low the global controller to define (possibly distinct) 
pair-wise potential laws for ordered pairs of compo- 
nents (i.e., robots, obstacles or objectives) of a VLSR 
system. Each robot senses the resultant potential field 
from all other components (or as an approximation, at 
least the neighboring components) and acts under the 
resultant force. Once the force laws are defined, force 
calculations can be carried out by individual robots in 
a distributed manner, thus the control is completely 
distributed. 

The force laws are inverse-power laws similar to 
those found in molecular dynamics. They are inverse- 
power laws of distances incorporating both attraction 
and repulsion. For example, we can define a force law 
where attraction dominates over long distances and re- 
pulsion dominates over short distances. A main reason 
for choosing inverse-power force laws as control laws 
is that studies have shown that molecules and plasma 
gases, while obeying simple inverse-power force laws, 
form interesting and complex patterns and exhibit a 
wide variety of dynamics. Our inverse-power laws are 
more general than the usual molecular force laws. In 
fact, the parameters of the force laws (i.e. the constants 
and the exponents) can be chosen arbitrarily. Indeed 
the parameters are chosen to reflect the relations of 
robots, e.g. whether they should stay close together or 
far apart. Using the force laws, the resulting system 
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displays "social" behaviors such as clustering, guard- 
ing, escorting, patrolling and so on. Thus we call our 
method social potential fields. 

We also extend the social potential fields model to 
use spring laws as force laws. While the inverse-power 
laws are powerful in controlling the robots to form dis- 
tributions like a more or less evenly distributed clus- 
ter, the spring laws can let the robots assemble into 
predefined exact structures. 

In this paper, we describe the generic framework 
for social potential field control. We describe a hierar- 
chical methodology for designing potential force laws 
to achieve given behaviors, which we feel is a practi- 
cal approach. We illustrate this hierarchical methodol- 
ogy with a number of non-trivial examples (including 
computer simulations) which show the use of the pro- 
posed method to form interesting and useful behaviors 
among robots. We also point out possible industrial 
and military applications where our proposed method 
is useful. And also an important aim of this paper is 
to raise theoretical questions for future studies. 

Nevertheless, we admit that this paper presents only 
a preliminary study of applying potential fields to dis- 
tributed multi-robot control, since there is no known 
procedure for determining the potential laws to derive 
a given specified set of robotic behaviors. In Section 4, 
for some very restricted cases, we propose an iterative 
procedure to determine the parameters of a force law 
to achieve a given behavior. However the procedure is 
heuristic since we can not determine its convergence. 
In fact, the exact complexity of the simulation problem 
(determining the behavior induced by a set of poten- 
tial laws) is not known. Reif and Tate [26] have shown 
that the complexity of determining the dynamics of an 
n-body potential system (e.g., the movement of n elec- 
trons with electrostatic potentials) is polynomial space 
hard, so the problem can not be decided efficiently by 
any known method. Therefore the problem of finding 
potential laws to achieve a given behavior may have 
no easy solution, except for the practical approach we 
suggest, i.e., our hierarchical methodology. 

1.5. Organization of the paper 

Section 1 discusses the motivation for our work, in- 
troduces the basic idea of social potential fields, and 
surveys related works. We describe the generic frame- 
work of the social potential fields method in Section 2. 

Section 3 describes our hierarchical methodology for 
designing potential force laws to achieve given behav- 
iors, and gives some examples (including computer 
simulations) of applying the proposed method in cre- 
ating interesting and useful behaviors among robots, 
for example clustering, guarding, escorting, as well 
as demining (detection of mines by a group of au- 
tonomous robots). In Section 4, we propose a heuristic 
iterative procedure for determining the parameters of a 
force law for a given behavior. Section 5 describes an 
extension to the social potential fields model, namely, 
using spring laws as control laws. We draw conclu- 
sions in Section 6. 

2. Our social potential fields model 

2.1. Inverse-power force laws 

In a VLSR system, the robots are considered as 
point particles named 1, 2 . . . . .  n with positions at 
X1, X2 . . . . .  Xn in a fixed Euclidean space at a fixed 
time. Let rij = IIXi - Xj II be the Euclidean distance 
between robots i and j .  The force defined from robot 
j to robot i has the form 

f i , j ( X i ,  X j )  : i,j a (k) 
k = l  (rij) i,j ~ rij / 

Thus the force defined from j to i is a sum of L 
inverse-power laws where the kth inverse-power law 
is of the form 

c(k) 
~ k ) t ( X J r ~ X i  ) • 

(rij) i,j ] 

Our force laws may differ from those in molecular 
systems in that we allow the global controller to arbi- 
trarily define distinct laws for separate pairs of robots. 
The coefficient c~ ~) and the inverse power tr. (k) ~,j are 
constants dependiIig on the ordered pair (i, j )  and k. 

We generally require tri!k/) to be positive but the coeffi- 

c~k~ can be either positive or negative, depending cient 
on whether it is an attractive force or a repulsive one. 

k r 
Note that if tr,.(t~ ) is greater than tr,(k, ) then the kth 

term of this sum--~dominates for smaller--Srij whereas the 
Uth term of this sum dominates for larger rij. Typically 



J.H. Reif, H. Wang~Robotics and Autonoraous Systems 27 (1999) 171-194 175 

(with the exception of pursuit applications), for fixed 

the kth term with the smallest Or/(.k/) will have i and j ,  

a negative (repulsive) coefficient c~k} tO help insure 
that the robots do not collide. The force laws usually 
have the following property. As the distance between 
two robots becomes larger, the force between them 
gets smaller. When two robots get too close to each 
other, the force can get very strong to avoid collision 
between these two robots. 

Also, note that force laws are not necessarily sym- 
metric; force F/,j can be different from force Fj,i. 

At a fixed time, the overall artificial force applied 
by the entire VLSR system upon a robot i is 

Fi = E Fi, j(Xi,  Xj) .  
j ~  

2.2. Succinct definitions of force laws between 
groups of  robots 

Robots are assigned to various (not necessarily dis- 
joint) groups, where a group defines some common 
behaviors for robots in the same group. For example, 
robots in a group called Cleaner are required to do 
cleaning and are required to form an even distribution 
pattern. Groups are not necessarily disjoint. A robot 
may belong to several groups and inherit all the be- 
haviors from those groups. 

We can define force laws between pairs of 
groups. Let $1, $2 . . . . .  Sm be fixed groups of robots 
1, 2 . . . . .  n. Any robot in group S' imposes the same 
force on any robot (other than itself) in group S. Let 
Fs,s, denote this force law. Suppose the robot in S' is 
at position X',  the robot in S at position X, and the 
distance between them is r. Then the force is 

k=l ra~ )s' ] " 

The force law is again a sum of L inverse-power laws 
each of the form 

rtrS,S r 

where the coefficient C(sk.~s , and the inverse power (/0 Ors, S r 

are constants depending on ordered pair (S, S') and k 
(k) tO be positive). For (again, we generally :require Ors,s' 

S = S', the force law defines the force for a pair of 
robots in the same group. Fs,s, is zero for the pairs of 
groups between which there is no force relation. 

The force from robot j to robot i, where j # i, is 
defined to be 

Fi,j(Xi,  Xj)  = E Fs, s,(Xi,  Xj ) ,  
VS, S r s.t. i~SAj~S ~ 

which is simply the sum of the forces Fs,s,(Xi, Xj) 
induced by pairs of groups {S, S f) where i • S and 
j • S ~. The overall artificial force applied by the entire 
VLSR system upon a robot i is again 

Fi = E Fi,j (rij). 
js~i 

Note that even though a robot may belong to different 
groups among which some force laws are defined, the 
robot does not impose forces on itself. 

We can see that once the robots are assigned to 
groups, the complexity of defining force laws is re- 
duced. The number of force laws is reduced from 
n(n - 1) for all ordered pairs of individual robots to 
m (m - 1) for all ordered pairs of groups, where n is the 
number of robots and m the number of groups in the 
system. Usually, the number of robots is much larger 
than the number of groups in a VLSR system. Each 
robot can maintain a more succinct table of force laws 
defined for pairs of groups, which is easier to maintain 
and to modify. 

2.3. Local autonomous control forces 

We consider the resultant force calculated by each 
individual robot using force laws, i.e. Fi as defined 
in Section 2.1, as a global control force. It is global 
in that it coordinates the robots and determines the 
distribution of the robots in the system. Consider the 
scenario of a group of robots doing gold prospecting 
(or more realistically, garbage collecting). The robots 
should have an even distribution over the working area, 
neither crowding together nor getting too far away. 
This can be achieved by properly designed force laws. 
At the same time, for a robot to work properly, it 
should be able to move smoothly in an unknown and 
dynamic environment, avoiding obstacles. But most 
importantly it should be able to approach and collect 
gold. The control that allows a robot this kind of be- 
havior is termed as a local control force. The local 
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control force may include force to avoid collision with 
obstacles and force to approach an object, etc. This 
kind of local control can be accomplished by programs 
like "Walk sideways if there is an obstacle in front at 
distance d". 

There are various schemes in combining the global 
and the local control forces. One scheme is to assign 
different weights to different kinds of forces and to 
combine them by a weighted sum. In this scheme, the 
weights can also change depending on the situation. 
For example, in the gold-mining example given above, 
the weight on force to approach gold should be small 
at the beginning, since at the initial stage it is more 
important to let the robots disperse. Once a more or 
less even distribution has been achieved (and this can 
be observed by the global controller), the global con- 
troller can notify the robots to increase the weight on 
force to approach gold. In another scheme, a robot lis- 
tens to only one of the two forces at a time, depending 
on which one has a larger magnitude. 

Imagine the situation where there is a wall-like ob- 
stacle that lies in the middle of a working area and 
whose size is comparable with the size of the working 
area. The wall-like obstacle may effectively prevent 
the robots from spreading to the working area on the 
other side of the wall, and thus interfere with the de- 
sign of the social potential laws. Also if one part of 
the working area is filled with big obstacles, the work- 
ing robots may populate that part less densely than 
other parts of the working area. We say that an obsta- 
cle is local, if its size can be ignored when compared 
with the size of the working area. Otherwise, the ob- 
stacle is said to be significant. In most practical cases 
where we are concerned, the obstacles are local. In 
these cases, though the local control force is necessary 
for the robots to function properly, we believe that the 
force does not play a significant role in determining 
the behaviors of the robots. Behaviors different from 
the ones designed by the global control forces may 
actually help the global controller to identify signifi- 
cant obstacles whose sizes are comparable to the size 
of the working space, and inform the global controller 
to re-think its plan. For example, a river through an 
unknown working area may be discovered. 

In the examples and simulations discussed in 
Section 3, we focus on how the global control force 
controls the behaviors of the systems. The local con- 
trol force is not taken into account. 

2.4. Sensing 

Note that the absolute positions of robots are used 
in force calculations as described in previous subsec- 
tions. A robot can maintain its absolute position if it 
knows its initial absolute position and it keeps updat- 
ing its current position as it moves. From time to time, 
a robot may readjust this piece of information by con- 
suiting the global controller. The absolute position of 
a robot is accessible to other cooperative robots by 
communication via electromagnetic radiation, such as 
radio frequency, infrared, or ultrasonic. 

In most cases, relative positions are sufficient in cal- 
culating forces. In this case, each robot carries its own 
coordinate system, and itself is a natural choice for 
the origin of the coordinate system. There are many 
techniques that have been developed for range finding 
[16]. Among them are the triangulation range finder, 
ultrasonic, and laser time-of-flight range finder. While 
all these techniques have some drawbacks (e.g., com- 
putational complexity, limited surface orientation or 
limited spatial resolution), our social potential tech- 
nique is relatively robust and generally may not re- 
quire exact measurements. Thus it seems likely that 
any of these sensing methods would suffice. Relatives 
positions have to be used in calculating forces from 
non-cooperative components, such as obstacles in nat- 
ural settings and enemy robots and so on. 

Note that in either sensing through sensors or 
through communication channels, the group(s) to 
which a robot belongs should be identified too in 
order to choose appropriate force laws. 

2.5. Types of  robots 

We have identified three types of robots which are 
basic in building a VLSR system with complexity, 
namely, a leading robot, a landmark robot and an ordi- 
nary robot. Most robots in a VLSR system are ordinary 
robots, whose motions are controlled by the global 
control forces. 

A leading robot is a robot whose motion is either 
programmed beforehand, or controlled directly by the 
global controller. A leading robot is not affected by the 
force laws from other robots, but does impose force 
laws on other robots. Usually there are only a few 
leading robots in a VLSR system, but they can be 
used to form or to change the behaviors of a system 
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effectively (for an example, see the use of leading 
robots in Section 5.4). 

A landmark robot is used by the system as a land- 
mark. Generally a landmark robot is static and it is 
not subject to force laws from other robots. But it im- 
poses forces on other robots. For example, a landmark 
robot can be used to mark a place of interest to attract 
more ordinary robots. Or we can use a group of land- 
mark robots to mark out, at least approximately, the 
boundary of a working area, so that ordinary robots, 
sensing repulsion forces from the landmark robots, 
will stay within the working area. In Section 3.2, land- 
mark robots are used to mark out significant obstacles 
(i.e., obstacles whose sizes are comparable with the 
size of the working area) to guide the ordinary robots 
effectively. 

A landmark robot can be a real robot (but static), in 
which case its existence can be detected by the ordi- 
nary robots through sensors or communication chan- 
nels. It can also be implemented virtually, by letting 
the ordinary robots carrying a table of landmark robots 
and their absolute positions. Note that in this case, an 
ordinary robot needs to be aware of its own absolute 
positions and use the absolute position in calculating 
forces from the landmark robots. 

The type of a robot can be changed by the global 
controller. But such cases should be rare in order to 
avoid heavy communication to and from the global 
controller. 

2.6. Distributed calculation of forces by autonomous 
robots 

Even though the force laws are defined globally 
by a global controller, the actual control is carried 
out in a distributed manner. Each robot is equipped 
with sensors and also has a table of force laws, thus 
force calculations can be done simultaneously by 
individual robots. Each robot carries out a cycle of 
operations including sensing, calculating the global 
control force and the local control force, and real- 
izing the control to motion. The robots usually act 
asynchronously. 

Let F i be the comhined force (of the global and the 
local control forces) calculated by robot i. There are 
several ways that robot i 's motion can be controlled 
by the force Fi. For example, robot i can gain an 
acceleration proportional to Fi. Or it can move in the 
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direction of Fi, either for a length proportional to the 
magnitude of Fi, or for a fixed length. 

2.7. Convergence and stability of the system 

A state of a VLSR system is a snapshot of the sys- 
tem which describes the robots' positions, their ve- 
locities, and other relevant information. A behavior of 
the system can be static, in which case the behavior 
can be described by a state, or it can be dynamic (and 
should be periodic in this case). A dynamic behav- 
ior can be described by a function mapping [0, T] to 
a state space, where T is the length of a period. We 
say that a VLSR system has converged to a behav- 
ior/3 if the system is displaying/3 (possibly within a 
predefined error term) over a long enough period of 
time. The converged behavior is called the equilibrium 
behavior. 

A density function is a function which for a position 
in the space gives the density of robots at that posi- 
tion. Note that a density function describes a distribu- 
tion, but not a state of a VLSR system. Even though a 
density function conveys less information than a state 
does, it suffices to describe certain behaviors. For ex- 
ample, a behavior of an evenly distributed cluster of 
robots covering a designated area can be sufficiently 
described by a density function. In fact, in cases like 
this, a density function describes the whole picture of 
a system better than a state (with the exact positions 
of all robots) does. Let D(x), where x is a position in 
a given space, be the desired density function. We say 
that a system has converged to D(x) after time 3, if 

f (D~(x)  < ~, /> r, D(x)) 2 for t 

where D~(x) is the density function of the system at 
time t, and E is a predefined error term. Note that 
even though the distribution has converged, it does not 
necessarily mean that each robot stays close to a fixed 
position. They may still move around. 

We can extend the density function to be a function 
not only of position, but also of time. Thus periodic 
distributions can be described by the extended density 
functions, and whether a system has converged to a 
periodic distribution can also be judged accordingly. 

We can help to stabilize the system by adding a 
damping factor. For example, we can set a thresh- 
old such that a global control force smaller than the 
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threshold is regarded as zero. Or we can always reduce 
the global control force by a small fraction. The func- 
tionality of a damping factor is similar to a friction 
term that dampens a robot's movement by reducing 
energy change from potential energy to kinetic energy 
and helps to stabilize the system. In particular, the ad- 
dition of a damping factor insures that the system will 
tend toward zero kinetic energy during periods when 
there is no other input of energy (such as from local 
autonomous control forces) into the system. Note: lo- 
cal autonomous control forces, if limited and random, 
may be analogous to certain quantum effect in molec- 
ular dynamics which can continuously and randomly 
perturb the system, keeping the kinetic energy to non 
zero. 

Also note that in particular, the damping factor 
may help to stop a robot from oscillating, under both 
inverse-power law control and spring-law control. 

2.8. Changing system behaviors dynamically 

The force laws are not necessarily fixed over time. 
Instead, they can be changed by the global controller 
in order to change the behaviors of the system dynam- 
ically. Changing the behaviors dynamically is neces- 
sary in some cases. For example, at working time, we 
may want the robots to spread out over the work field 
evenly. Once the work is done, we may want the robots 
to gather together tightly so that they may be stored 
compactly. And again when they are needed for work, 
they should display a sparsely and evenly distributed 
pattern. When to change the behaviors is judged by 
the global controller, who can collect global informa- 
tion once in a while through sensors or communication 
with robots. Another example of changing the behav- 
iors dynamically is given in Section 3.5. 

Also note that the global controller can also change 
the behaviors of the system dynamically by controlling 
the leading robots. This technique is especially used 
in spring-law control; see Section 5.4. What's more, 
the type of a robot or the group(s) to which it belongs 
can also be changed by the global controller. This may 
also change the behaviors of the system. 

Note that this paper attempts to describe (in most 
part qualitatively) a generic framework for applying 
potential fields to distributed multi-robot control. De- 
tailed implementations such as how a robot's motion 
is controlled by a resultant force, how a local control 

force is combined with a global one, how frequent 
sensing and force calculations should be performed, 
and bow some damping factors are added to stabilize 
the system, should depend on specific applications. 

3. Examples of design of potential force laws 

3.1. Our hierarchical methodology for designing 
potential force laws 

In general, the problem of determining a set of po- 
tential force laws to achieve a given behavior appears 
to be a very difficult open problem, and most likely 
undecidable. As mentioned in the introduction, Reif 
and Tate [26] have shown that the complexity of de- 
termining the dynamics of an n-body potential system 
(e.g., the movement of n electrons with electrostatic 
potentials) is polynomial space hard, so the problem 
can not be decided efficiently by any known method. 
Therefore, the problem of synthesizing potential laws 
may have no effective solution. 

However, we propose a practical approach to this 
problem. We have developed a hierarchical methodo- 
logy for designing potential force laws to achieve 
given behaviors. 

In our methodology, we proceed as follows: 
• We first require a specification of the required be- 

havior. In particular, we need to specify the various 
groups of robots and their interactions. In our ex- 
amples, all components (e.g., robots, obstacles and 
other objects) are represented by point robots. An 
object with a complex shape can be approximated 
by putting many point landmark robots along the 
boundary of the object. For example, wall-like ob- 
stacles are approximated by a group of landmark 
robots in this way in Section 3.3. 

• Then, we design the potential laws in stages. Ap- 
plying our hierarchical methodology for designing 
potential force laws, 
- w e  first define intra-group social force laws 

among individuals of each given robot group, 
and then 

- define inter-group social force laws between in- 
dividuals of distinct groups. 

• Furthermore, in a number of examples, we define a 
dynamic series of potential laws, that change over 
time at discrete intervals. 



J.H. Reif, H. Wang~Robotics and Autonomous Systems 27 (1999) 171-194 179 

f (r)  =: -20.O/r s'° + 15.0/r °'s 
8 I I I ] I I I I 

f 

6 

4 

2 

0 

- 2  

- 4  

- 6  I I I I I I I I I 

2 4 6 8 i0 12 14 16 18 20 
r 

Fig. 1. The magnitude of a force law as a function of distance. 

We give some exarnples (including computer simu- 
lations) of applying our proposed method in creating 
interesting and useful behaviors among robots, for ex- 
ample clustering, guarding, escorting, and demining 
(detection of mines by a group of autonomous robots). 

An equation for potential laws. In the following 
examples, the magnitude of the force laws usually has 
the same form as below 

Cl c2 
f ( r )  = - - - -  + 

rCYl r a 2  , 

Cl, C2/> 0, Or 1 > ere > 0, (1) 

but with different parameters cl, c2, crl, and a2. The 
curve of the magnitude of the force law with a set of 
specified parameters is shown in Fig. 1. 

These laws have two components: 
• Attraction, indicated by the term c2/r a2. This will 

dominate when two robots sufficiently separate. 
• Repulsion, indicated by the term - c l / r  at . Since 

al  > or2 > 0, the repulsion will dominate when two 
robots get close to each other. Collision avoidance 
is guaranteed since the force goes to infinity as two 
robots get closer mid closer. 
A force law whose magnitude can be expressed as in 

Eq. (1) with Cl, c2 > 0, i.e., with both non-zero attrac- 
tion and repulsion, is called a clustering force law. A 
group of robots with an identical clustering force law 
defined among them are likely to display a clustering 
behavior. The attraction component of the clustering 

force law keeps the robots together, while the repulsion 
component prevents the robots from colliding with 
each other. Also the combination of attraction and re- 
pulsion determines how tightly the cluster forms. 

Tuning the clustering. The equilibrium distance is 
defined as d = (Cl/C2) 1/(°t-~2). If the force law de- 
fines bilateral effect between two robots, then they 
reach equilibrium state if they are distance d apart. If  
the force law defines mutual effect among a group of 
robots, the group can either densely congregate if d is 
small or sparsely distribute if d is large. Even though 
in this case, the inter-robot distance must differ from d, 
d is still a good indicator as to how tightly the cluster 
will form. A big al implies that the repulsion will be 
strong at short range but decays rapidly with distance. 
A small tr2, on the other hand, means that the attrac- 
tion will have long range effect. Again, our method is 
called social potential fields method, because the force 
laws reflect and enforce social relationships. 

Our computer simulations. For simplicity, we use 
a very straightforward method to compute the forces, 
which takes ®(n 2) time if we have n robots in the 
system. We are experimenting with about hundreds 
of robots and the efficiency is bearable. But keep in 
mind, there have been efficient algorithms for comput- 
ing forces (developed for molecular simulations) with 
high precisions (see, for example, the pioneer work 
by Greengard [13]). Those efficient algorithms enable 
us to experiment with tens of thousands of robots in 
large systems. 

In our computer simulations, in each iteration, a 
robot moves a fixed length to the direction pointed by 
the resultant force. 

In Figs. 2-5, the pictures are dumped window im- 
ages. The windows give visual presentation of how 
the systems evolve. In the windows, the robots are 
represented by arrows pointing to their directions of 
motions. 

In the following description of examples, we name 
separate groups and their members. The name of a 
group and the name of its members are the same except 
that the name of the group starts with a capital letter. 

3.2. A single cluster of many robots 

Required behavior. Our goal is a single evenly dis- 
tributed cluster of robots. 
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Fig. 2. An evenly distributed cluster of robots formed with an identical force law. The first picture shows the distribution after 3 
iterations. In the second picture, the robots are shown to have converged to a disc after 225 iterations. 

Motivation. A more or less evenly distributed cluster 
of robots is a useful pattern for jobs like cleaning, pa- 
trolling, or exploring an unknown area. Inter-robot dis- 
tance is useful not only for robot collision avoidance, 
but also for getting work partitioned and distributed. 
For example, in the future we may send hundreds or 
thousands of robots to explore Mars before we send 
any human beings on it. To explore the planet effi- 
ciently, we want the robots to cover the surface of the 
planet evenly instead of crowding together. A central- 
ized control mechanism is not applicable especially 
because of the communication complexity involved. 

Design of an intra-group potential law. All the 
robots are identical ordinary robots, and there is an 
identical intra-group force law defined among them. 
The force law is a clustering force law, whose mag- 
nitude can be expressed by Eq. (1), with Cl, c2 > 0. 

Computer simulation. For this simulation, we used 
Eq. (1) with the parameters set to the following: Cl = 
60.0, c2 = 1.0, Orl ~--- 2.0 and ~r2 = 1.0. The equilib- 
rium distance is d = 60.0. (The distances are mea- 
sured in pixels.) The number of the robots is chosen 
to be 200, and initially, the 200 robots are randomly 
distributed within a square area of size 400 x 400. At 
the beginning, for a robot at the periphery, since there 

are many robots distant away (farther than 60.0), the 
robot feels an attraction toward the center of  the clus- 
ter and the cluster starts to shrink. After a number of  
iterations, the cluster forms a disc with radius of  about 
280.0. At this time, each robot shows a periodic move- 
ment, while the density function of  the cluster has sta- 
bilized. At this stage, the robots show a more or less 
even distribution within the disc. The initial and the 
equilibrium distributions are shown in Fig. 2. 

Variations of single clusters. Note that the even dis- 
tribution can be changed once some places of  inter- 
est are identified by some robots. These robots can be 
turned into landmark robots by the global controller 
and impose a stronger attraction force on other robots. 
In this way, interesting areas will be more densely oc- 
cupied by robots and can be explored more efficiently. 

In the above computer simulations, the cluster usu- 
ally forms discs. We can let the cluster display an 
arbitrary shape by using landmark robots as follows. 
For a given shape, we can use landmark robots to 
approximate the boundary of the shape. The land- 
mark robots impose repulsion forces on the cluster 
of  ordinary robots, so that the ordinary robots are 
confined within the boundary marked out by the land- 
mark robots. By setting appropriate force laws, e.g., 
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by choosing a large enough equilibrium distance for 
the ordinary robots so that they expand close to the 
boundary but are not "pushed" hard enough to go 
beyond the boundary, we can let the robots distribute 
more or less evenly within an area of the given shape. 
Note that in this case, the landmark robots may be 
virtual robots who do not exist physically but whose 
positions are remembered by the ordinary robots. 

Inter-group potential laws. 
• There is a force law from the Goal to the Transporter 

containing only an attractive force (i.e. cl = 0 in 
Eq. (1)). We set tr2 to be small so that this attraction 
has a long-range effect. 

• We let the Wall impose a repulsive-only force over 
the Transporter (i.e. c2 = 0) and set trl to be large 
so that the repulsion is strong in short range. 

3.3. A moving robot cluster with collision avoidance 

Required behavior. As pointed out in Section 1.3, 
potential fields have been applied in collision-free mo- 
tion planning for a single robot in previous studies. In 
our example which we will call bypassing the walls, a 
group of robots are supposed to move together through 
an area filled with wall-like obstacles to reach a goal 
region. In this case, 'we not only want the robots to 
reach the goal with collision avoidance, but also want 
the robots to move more or less in a group without 
colliding with each other. An industrial application 
of this behavior might be, for example, using robots 
to do transportation tJarough an area filled with static 
as well as dynamic obstacles (including other robot 
vehicles). 

There are three groups of robots: 
• The group Goal consists of only one landmark robot 

marking out the goal region. 
• The group Transporter consists of ordinary robots 

who are supposed to move to the goal region. 
• The group Wall consists of a group of landmark 

robots who are static robots (see Section 2.5) used 
to mark out the significant obstacles. In this case, 
the obstacles are wall-like, which can be abstracted 
as line segments. 

Design of potential laws. Applying our hierar- 
chical methodology for designing potential force 
laws, we define an intra-group force laws among the 
transporters themselves as well as inter-group social 
force laws from both the Wall and the Goal to the 
Transporter. 

An intra-group potential law. There is a clustering 
force law combining attraction and repulsion defined 
among the transporters so that they tend to stay to- 
gether as they move around without colliding with 
each other. 

3.4. Guarding and escorting behaviors 

Required behavior. In our computer simula- 
tion called guarding a castle, we wish to simulate how 
a group of robots form guarding patterns and how they 
react to invaders. There are three groups of robots. The 
group Guard consists of a number of  identical ordinary 
robots, while the group Invader consists of only one 
ordinary robot. The castle is simulated by the group 
Castle which consists of only one landmark robot. 

Design of potential laws. Applying our hierarchical 
methodology for designing potential force laws, we 
first define an intra-group social force law among the 
guards themselves, and then give inter-group social 
force laws from the Castle to the Guard, from the 
Castle to the Invader, and also between the Guard and 
the Invader. 

An intra-group potential law. There is a clustering 
force law combining attraction and repulsion defined 
among the guards. The intention of this force law is 
to let the guards form a guarding cluster surrounding 
the castle. 

Inter-group potential laws. 
• The force defined from the Castle to the Invader 

consists of only an attraction. 
• The force defined from the Castle to the Guard com- 

bines both attraction and repulsion. 
- The combination of the attraction and the re- 

pulsion makes the guards tend to stay around 
the castle (not too close and not too far away). 

- The attraction component of the force law also 
keeps the guards from going too far away while 
chasing off the invader. 

• The Invader imposes both attraction and repulsion 
upon the Guard so the guards tend to move to 
where the invader is but to avoid contact with the 
invader. 
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Fig. 3. A dynamic guarding behavior. Part 1: Initial distribution 
of guards around the castle, which is represented by a rectangle. 

• The Guard imposes only a repulsion force upon 
the Invader. 

Computer simulation. There are three stages in this 
simulation. 
1. In the first stage, the invader robot does not appear. 

Initially the guards are scattered in a square area 
around the castle. Under the force law imposed 
by the castle and the force law defined among the 
guards, the guards converge gradually to form a 
ring surrounding the castle. 

2. At the beginning of  the second stage, the invader 
appears at a place far away from the castle. Un- 
der the attraction force from the castle, the invader 
approaches the castle. The guards will approach 
where the invader is. They move from the castle to 
the invader but stop chasing when the invader is a 
certain distance away from the castle. The invader, 
which is both attracted to the castle and repulsed 
by the guards at the same time, instead of  going 
away from the castle, reacts by moving toward the 
weaker point of  the guarding where there are fewer 
guards. 

3. Finally the system converges to a dynamic behavior 
where the guards are chasing the invader and the 
invader is moving around the castle to find weaker 
points in guarding. See Figs. 3, 4, and 5 for the 
results. 

Fig. 4. A dynamic guarding behavior. Part 2: The guards have 
converged to a ring surrounding the castle. 

From the above simulation, we can see the advan- 
tages of  the social potential fields method. We avoided 
defining complicated rules as to where a particular 
robot guard should stay, which guards should chase 
the invader when the invader is at a certain position, 
and how far the guards should chase the invader. By 
simply defining force laws, the above questions are 
answered. 

Variations of  the guarding behavior. More com- 
plex and interesting behaviors can be simulated by 
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Fig. 5. A dynamic guarding behavior. Part 3: A dynamic be- 
havior where the invader is trying to find weak points in the 
ring while the guards are chasing the invader. 
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Fig. 6. Reorganizing after bivouacking. 

modifying the above system. The castle can have an 
arbitrary shape instead of just being a point. Its shape 
can be marked out by a group of landmark robots and 
the shape will impact the guarding pattern. There can 
be more than one invaders, in which case the guards 
should partition to groups to handle each invader. If 
the static castle is replaced by some dynamic object, 
which can be simulated by some leading robots whose 
motions are pre-programmed, an escorting behavior 
can be simulated. 

In practice, we might want robots to guard places 
like important military bases, high priority labs, fac- 
tories and so on. We might also want to use robots to 
escort other robots. We can also transport a large num- 
ber of robots from place to place by simply defining a 
leading robot to go to the designated place and letting 
the other robots follow it as if they are escorting the 
leader. 

3.5. Dynamic force h~ws to achieve hierarchical 
spatial organization of robots 

Required behavior. Here we give an example of 
adapting force laws by the global controller to achieve 
hierarchical spatial organization of robots. The ex- 
ample is called reorganizing after bivouacking and 
imitates the following military behavior. Normally 
during maneuvers, an army will be spatially orga- 
nized in a highly hierarchical manner. An army is 
usually divided into units which are further divided 
into sub-units and so on, with different units occu- 
pying different areas. While in camp, to efficiently 
utilize resources such as army canteens, the army may 
become disorganized, with different units clustering 

together in the same area. However, going back to ma- 
neuvers, the entire army must automatically organize 
itself spatially as before. Fig. 6 depicts a simplified 
version of the example where there are only two units 
(one represented by the empty circles and the other 
the shaded circles). The organized army (shown in 
the leftmost picture) bivouacs (shown in the middle 
picture) and then reorganizes (shown in the rightmost 
picture). 

Design of potential laws. In order to accomplish this 
reorganizing after bivouacking behavior, the global 
controller has to change the force laws dynamically. 
In the following, we show the design of force laws 
at different stages, taking the two-unit army as an 
example. 

Dynamic potential laws. 
• The disorganizing stage. At this stage, there should 

be an identical attractive force to the goal (camping 
area) imposed on robot soldiers of both units. Also 
there should be an identical force law combining 
attraction and repulsion between individuals in both 
units to achieve a clustering behavior. 

• The bivouacking stage. After both of the units reach 
the camping area, the attractive force to the camping 
area can be inactivated by the global controller. 

• The reorganizing stage. To reorganize, each unit 
should be attracted to its own area respectively. 
There should be (possibly different) clustering force 
laws defined among robots for each unit. Also there 
should be a repulsive force defined between two 
robots of different units. This force is to prevent two 
robots from different units from colliding with each 
other (this force should have the property that it di- 
minishes fast as the distance gets larger, so that it 
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Fig. 7. Initial distribution of deminers. 

does not have a big effect on the goal-approaching 
behaviors and the clustering behaviors of the two 
units). 

• The organized stage. After each of the two units 
reaches their respective destinations, the attractive 
force laws to goals and the repulsive force between 
two robots of different units can be deactivated. 
Therefore, at this stage, there is no force law be- 
tween the two units. The distribution of each unit is 
formed by (possibly different) clustering force laws 
among robots within each unit. 
The spatial organization of robots occurs in indus- 

trial applications too. For example, at work in a factory, 
different groups of robots are dispatched to different 
areas. Within each group, the robots are further 
divided into subgroups for different tasks such as 
cleaning, transporting or assembling. At work, we 
want the groups of robots to be spatially distributed 
and there should be no interactions among them. At 
other times (say cleaning the factory), we want all the 
groups to crowd together. 

3.6. Detaining using robot clusters 

Required behavior. We next discuss the application 
called demining, which shows detection and deacti- 

vation of mines by a group of autonomous robots. A 
cluster of demining robots (deminers) is searching for 
bombs in a mine-field. A deminer can detect a bomb 
only when it is within a certain range from it. When 
a deminer detects a bomb, it will move closer to it 
and then deactivate it when the distance to the bomb 
is less than the so-called deactivating distance. It will 
take a certain period of time for a bomb to be deacti- 
vated. In this period, the region close to the bomb is 
considered to be dangerous and thus deminers should 
avoid getting too close to the bomb. 

Design of potential laws. Applying our hierarchical 
methodology for designing potential force laws, we 
first define an intra-group social force law among the 
deminers themselves and then inter-group social force 
laws from a bomb to a deminer. 

An intra-group potential law. The force law among 
the detainers is a clustering force law which keeps the 
detainers on the mine field and also distributes them 
evenly. 

Inter-group potential laws. 
• When a deminer detects a bomb, it feels an attrac- 

tion to the bomb until it gets into the deactivating 
range with the bomb (i.e., its distance to the bomb 
is less than the deactivating distance). 
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Fig. 8. Discovery of mines and their initial deactivation by detainers. 

• When a bomb is being deactivated, it imposes a 
repulsion on the rest of the deminers to guide them 
move away from itself. 

Computer simulation. The results of a computer 
simulation are shown in Figs. 7, 8 and 9. (An online 
demo of this simulation due to Zheng Sun is available 
at "http://www.cs.duke.edu/,,~sunz/java/demine/ 
Animation.html"). In the figures, dark squares rep- 
resent deminers; gray circles represent undiscovered 
bombs; dark circles represent bombs being deacti- 
vated; and gray circles with a cross represent deacti- 
vated (safe) bombs. 

4. An heuristic for synthesizing force laws for 
VLSR systems 

In Section 3, we described some computer simula- 
tions of interesting behaviors of robotic systems. In 
those simulations, the force laws were derived from 
our hierarchical methodology for designing potential 
force laws to achieve given behaviors. Two interesting 
problems are: 
• to predict the equilibrium behavior (i.e., a behavior 

to which the system converges) of a system from 
predefined force laws, or 

• vise versa, to define force laws such that a desired 
equilibrium behavior can be achieved. 
These problems are hard in general for dynamic 

systems with iterative processes. Here we propose a 
heuristic iterative method to solve the above two prob- 
lems for a very restricted case. In this case, the robots 
are identical robots with a single force law defined 
among them. (In a variation of this, there may be a 
few other robots and different force laws.) The equi- 
librium behavior is static and can be described by a 
density function. Also, in the equilibrium behavior, the 
robots are at their equilibrium states, i.e., the overall 
force on any ordinary robot in the system should be 
zero. 

The problem of computing equilibrium den- 
sity functions for given force laws is discussed in 
Section 4.1, and the problem of finding force laws 
to achieve given density functions is discussed in 
Section 4.2. 

4.1. Computing the density function for given force 
laws 

4.1.1. The general idea 
The density function is computed in an iterative 

manner. The iterative equation is derived based on 
that in an equilibrium state (i.e., a static equilibrium 
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Fig. 9. Completed deactivation of mines by detainers. 

behavior), the overall force on any ordinary robot in 
the system should equal to zero. For a robot at posi- 
tion x within domain of interest, let Fnearby(X) denote 
the total force from nearby robots. Robots are nearby 
robots if they are within a distance/z, where/z is a 
parameter. Let Ffaraway(X) denote the total force from 
faraway robots. Thus in an equilibrium state, we have 

Fnearby(X) + Ffaraway(X) --~ O. 

Recall that the force functions usually have the prop- 
erty that they have large magnitudes and derivatives 
over short distances and small magnitudes and deriva- 
fives over long distances. Therefore we have decided 
to calculate Fnearby(X) by summing up the forces 
from nearby robots discretely, since an integration 
may cause large errors, and to calculate Ffaraway(X) 
by integrating the forces from faraway robots, since 
an integration is a good enough approximation and it 
reduces the time to compute Ffaraway(X) from propor- 
tional to the number of robots in the system to that of 
doing an integration which depends on the domain of 
interest and the precision required. 

To compute Fnearby(X), we need to compute the 
force from each of the nearby robots. To do this, we 
need to know the relative positions of the nearby robots 

with respect to the robot at position x. The density 
function does not give us enough information here, 
and we need to assume that the robots also form cer- 
tain structures, namely, they form hexagons in 2D and 
hexahedrons in 3D. We believe that this assumption is 
reasonable because these structures provide the high- 
est packing capacities among all structures. Ffaraway (x) 
can be computed as an integration 

f F(x,  x')D(x'),  

I[x'-xll/> Iz,D(x')>O 

where F(x, x') is the force law from a robot at position 
x'  to the robot at position x,/z is a threshold of distance 
to distinguish nearby robots from faraway robots, and 
0 is a threshold of density. Note that we have to fix a 
single force law to do the integration and that is why 
our method only works for the case where there is only 
a single force law defined among a group of identical 
robots. 

Let/71 (x) denote the force from one of the nearest 
neighbors and Fnearby-1 (x) the force from the rest of 
the nearby robots. It holds that 

F 1 (x) = --(Fnearby_ 1 (X) q- Ffaraway(X)). (2) 
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The density function appears on both sides of the 
above equation. In this way, we can get an iterative 
equation for the density function. Section 4.2 shows 
an example of deriving an iterative equation of a den- 
sity function for a specific form of force laws. 

We have sketched our the general idea to compute 
the density functions by an iterative process. For this 
iterative process to work, we have to assume that the 
forms of the density functions are fixed and known, 
and only the parameters of the density functions are 
to be determined. We generally assume that a density 
function can be expressed as a polynomial of certain 
degrees, and only the coefficients of the polynomial 
are to be determined. 

(Note: Convergence of this iterative method is not 
likely to be quickly determined in the general case, 
since Reif and Tate 1126] have shown that the com- 
plexity of determining the dynamics of an n-body po- 
tential system (e.g., the movement of n electrons with 
electrostatic potentials) is polynomial space hard.) 

4.1.2. An example of a single cluster of working 
robots 

In this example the robots are point particles mov- 
ing on a 2D plane. The position of a robot is given 
by z = (x, y). Assume that the density function is a 
polynomial of variables x and y, and is of degree k, 
as follows, 

i + j : k  

D(Z) = O(x, y) = ~E cijx'yY" 
i + j : 0  

To compute the density function is to determine the 
coefficients  coo, ClO, COl, c20, Cll ,  c02, . . . .  COk, where 
cij is the coefficient of the te rm x i y  j .  Let C de- 
note the vector (coo, Cl0, c01, c20, Cll, c02 . . . . .  COk). 
The number of coefficients to be determined is l = 
(k + 2)(k + 1)/2. 

We assume that the single force law defined among 
the robots has the same form as in Eq. (1) with al = 
3.0, a2 = 2.0, Cl = a l  and c2 = a2. 

For a robot at position z = (x, y), since we have 
assumed that the robots form hexagonal structures, 
then one of its closest neighbors is at position (x + 
1/D(x, y), y), where D(x, y) gives the density at po- 
sition (x, y). Let F1 in Eq. (2) denote the force from 
robot at (x + 1/D(x, y), y) to robot at (x, y). Let F x 
denote the projection of force F along x-axis. There- 
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fore F~(z) = -al / (1/D(z))  3 + a2/(1/D(z)) 2 and 
Eq. (2) is transformed to 

- - a l  a2 + 
(1/D(z)) 3 (1/D(z)) 2 

X X 
--  --(Fnearby_ 1 (Z) "-}- F~araway(Z)). 

FXearby_l(Z) is computed by approximating the posi- 
tions of the nearby robots using the density function 
and the hexagonal structure. F?araway(Z ) is approxi- 
mated by computing an integration, also using the den- 
sity function. Let the right hand side value be denoted 
by 8(z). Rearrange the equation, we get the follow- 
ing 

- a i D ( z )  + a2 = 8(z)/D(z) 2, 
(~(z) /(-al). 

O(z) = \ O--~2 - a2) 

We consider the left hand side D(z) as Dt+l(z) and 
the D(z) in right hand side Dr(z), where t is the num- 
ber of iterations. Therefore we get an iterative equa- 
tion: 

D t + l ( z )  = ( ~(Z) / ( - a l ) .  
(Dt(z))2 a2) 

Suppose we have computed D t ( z ) .  To compute 
D t+l (z) is to compute the coefficient vector C from 
the above equation, and it can be done in the follow- 
ing way. Take m sample positions zl, z2 . . . . .  Zm. For 
each position zi, we can compute 

bi = ( ~(Zi)  
(Dt(z i ) )2-a2)  / ( - a l )  

numerically. Let B = (bl, b2 . . . . .  bm) be a vector of 
m so computed values. Then we have the following 
linear system 

M C = B ,  

where M is a matrix of m x l, with the ith row of M 
being a vector 

(1,x]y°,x°y I x?yg, 1 l xOy2,  . .  x O y k ) ,  t t ' t l Xi Yi ' i i " ' 

where  (x i ,  Yi) -~ z i .  C can be  so lved  us ing the Leas t  
Square approximation. Thus we can compute D t+l (z) 
from D t (z). Iterating this procedure, we can find the 
density function. 
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4.1.3. A single cluster of  working robots with several 
control robots 

In this scenario, the system consists of two groups 
of robots, the group Worker and the group Controller. 
A robot in the Worker group is an ordinary robot, 
while a robot in Controller is a landmark robot. The 
controllers are static and their positions are fixed by the 
global controller in order to control the distributions 
of the workers. While there is an identical force law 
among the workers, there is also a force law from the 
group Controller to the group Worker. In this case, 
the total force on a worker robot at position x can be 
approximated as 

Fnearby (X) "q- Ffaraway (x) "+- Fcontrol (x), 

where as before Fnearby(X) is the total force from 
worker robots close by and can be computed dis- 
cretely, and Ffaraway(X) is the total force from worker 
robots faraway and can be approximated by an integra- 
tion. Fcontrol (x) is the total force from all the controller 
robots, and can be computed discretely by summing 
up the forces from all controllers, since usually the 
number of controllers should be small. 

By rearranging, we get the following equation 

F1 (x) = --(Fnearby_ 1 (X) -k Ffaraway(X) -k- Fcontrol(X)), 

which is quite similar to Eq. (2). From here on, given 
specific force laws, we can derive in a way similar 
to that described in Section 4.1 and get an iterative 
equation in terms of the density function. 

Again note that in approximating the density func- 
tion, we do not need to make any assumption about 
the shape of the cluster distribution. The shape should 
be implied by the density function. However, we do 
need to assume that the structure of the distribution 
is hexagonal in 2D, even with control robots. This is 
a reasonable assumption when the number of work- 
ing robots is huge. The structure of the distribution 
far away from the control robots may well be hexag- 
onal, while the structure close to a control robot may 
be deformed. 

4.2. Defining force laws for given density functions 

Let D*(x) be the given density function, where x 
is a position in a d-dimensional Euclidean space. Let 
DE(X) be the density function resulted from a set F 

of force laws; DF(X) can be approximated using the 
method discussed in Section 4.1. The problem of find- 
ing force laws to achieve the given density function is 
to find the set F such that 

minF f (DF(X) -- D*(x))2 

is achieved. 
We make the assumption that the forms of  the force 

laws are fixed and known, and only the parameters 
(coefficients and exponents) are to be determined. For 
example, we can assume that all the force laws have 
the same form as in Eq. (1), and only Cl, c2, al ,  and 
a2 are to be determined. Let A denote the vector of 
the parameters and Da(x)  the density function re- 
suited from the force laws with parameters described 
by A. Let H = f ( D a  ( x ) -  D* (x)) 2. Minimizing H is 
equivalent to solving the equation OH/OA = 0. Since 
H is not an explicit function of A, we can use Quasi 
Newton Method to solve it as follows. 

Given D*(x), we start with A °, an initial guess of 
the parameters, and iterate to find better guesses using 
the following equation: 

(OH/OA)(A n) A n+l = A n _ 
(02H/OA2)(An)" 

Note that since H is not an explicit function of A, we 
can approximate (OH/OA)(A n) by 

H(A.), -- HA. 
(Any - A n ' 

where (An) ' has a small enough displacement from 
A n. For n > 1, (An) ' can be A n-1. (02H/aA2)(An) 

can be approximated in a similar way. 
At each step, we need to compute HA n . This comes 

down to computing DAn(X), whose calculation has 
been described in Section 4.2. 

5. An extension to social potential fields: Spring 
laws 

5.1. Motivation: Forming exact structures 

In this section, we extend the social potential fields 
method to use spring laws as force laws. Besides the 
different forms of the force laws, there are two signifi- 
cant differences between the inverse-power law model 
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and the spring law model. In the spring law model, the 
force law defined frora robot i to robot j is the same 
as that from robot j to robot i, while the force laws 
are not necessarily symmetric in the inverse-power law 
model. In the spring law model, a force law defined 
between two robots is only one and not a summation of 
several spring laws as a force law may be a summation 
of several inverse-power laws in the inverse-power law 
model. Because of the above two differences, force 
law relations among robots in the spring law model 
can be abstracted to an undirected graph, where each 
vertex represents a robot and each undirected edge a 
spring (thus a spring law) between two robots. If this 
graph has certain properties, we can control the robots 
to automatically form and maintain predefined struc- 
tures. Note that the inverse-power law model can only 
let the robots form certain distributions (which may 
be dynamic), but does not have the power to guide 
the robots to form exact structures. This is why we 
are interested in choosing spring laws as another type 
of control laws. We will see that by designing proper 
spring law relations among the robots, we not only can 
let the robots form predefined structures, but also can 
let the robots change J~om one structure to another dy- 
namically by controlling explicitly only a few robots. 

There are situations where we want a group of 
robots to form a predefined structure, to maintain the 
structure while moving around, and to change from 
one structure to another dynamically. For example, 
in military maneuvers or warfare, we often see that 
troops, battle flights or submarines, when attacking, 
withdrawing or moving, keep certain formations in or- 
der to protect or to attack more efficiently. These de- 
fensive or offensive phalanxes change from one form 
to another under different circumstances. When we 
want the robots to do some industrial jobs such as har- 
vesting, cleaning, and fishing, we want the robots to 
keep certain assemblies. For example, we may want 
the robots to form a harvesting line which sweeps from 
one end of a field t¢, the other end. In this case, the 
robots should be equally spaced along the line so the 
work load is balanced. When a robot is confronted 
with an obstacle, it should be allowed the flexibility to 
move out of its way to get around the obstacle. After 
that, it should go back to its proper place. 

In the following, we first introduce the concept of 
rigidity in Section 5.2. We will see that rigidity is the 
desired property of the graphs representing the spring 

law relations among robots. Then in Section 5.3, we 
discuss the relation between graph connectivity and 
rigidity. The relationship provides us a way to design 
rigid graphs. Finally Section 5.4 is about applying 
spring law model to robotic control. 

5.2. Rigidity of  spring graphs 

Let G be a finite undirected graph with a set of ver- 
tices 1 . . . . .  n and with a non empty set E of undi- 
rected edges. Each element in E is designated as an 
ideal spring. Let L = {(lij  , k i j ) }  defines springs be- 
tween vertex i and vertex j for all (i, j )  e E, where 
l i j  is the length without compression or extension, and 
ki j  > 0 is the force constant, of the spring between i 
and j .  A graph G with a spring relation L is called a 
spring graph, and is denoted by GL. If two vertices i 
and j connected by a spring ( l i j ,  kij) are at distance 
rij a p a r t ,  according to Hooke's Law, the magnitude of 
the force between the two vertices is: 

f i j  = kij Irij - lijl, 

where the potential energy stored is given by 

Pij = l kij (rij - lij) 2. 

An embedding of G is an assignment of the vertices 
into a d-dimensional Euclidean space R d. Let p = 
(Pl . . . . .  Pn) be an embedding of G, where pi is the 
position of vertex i in R d. The potential energy of a 
particular embedding p of GL is 

1 
EL(p)  = ~ ~"~ kij(llpi - Pill - [ij) 2. 

ij 

The minimum of EL(p) is achieved when VE = 0. 
This happens when all the vertices are at their equi- 
librium states, i.e. when 

Fi-~ E fiJ 
(i,j)EE 

= y ~  kij(rij - l i j )  pi - pj = O, (3) 
(i,j)EE rij 

for all vertices, where rij = [IPi - pj [[. 
Imagine that the vertices of a spring graph are 

robots, and the edges represent spring force laws 
defined among them. As in the inverse-power law 
model, we let the robots calculate the resultant forces 
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from all other robots and move in a way to reduce 
the resultant forces. The robots, with some damp- 
ing factors, will thus converge to a minimum-energy 
embedding. If we can design the spring graph such 
that the minimum-energy embedding is the same as a 
predefined structure, then we have found a method in 
controlling the robots to form a predefined structure 
automatically and distributedly. 

However, if the spring graph has more than one 
minimum-energy embeddings, then we do not know 
to which embedding the system will converge. Thus it 
is desirable to design spring graphs that have unique 
minimum-energy embeddings. A spring graph GL, i.e. 
a graph G with a spring relation defined by L, is rigid 
in a d-dimensional Euclidean space if there is a unique 
embedding (up to translation and rotation) of G into 
the space which carries the minimum potential energy. 
Note that with rigid spring graphs, we do not have to 
worry about local-minima problem. 

The relation between rigidity and graph connectiv- 
ity discussed in Section 5.3 provides us a way to de- 
sign rigid spring graphs. 

5.3. Graph connectivity and rigidity 

that the C-minimum-energy embeddings depend not 
only on the spring graphs but also on the choices and 
embeddings of C. By changing the embeddings of the 
subset C, we can get different unique C-minimum- 
energy embeddings. 

As a special case, if a graph G is 3-connected (4- 
connected respectively), then almost all of its spring 
graphs are rigid in 2D (3D respectively). If we choose 
a subset C of 3 (4 respectively) vertices and fix an em- 
bedding of C, then we have uniquely determined a C- 
minimum-energy embedding in 2D (3D respectively). 

Notice that in a C-minimum-energy embedding, 
Eq. (3) holds for all vertices not in C. Let G be a 
(d + 1) -connected graph and let one of its rigid spring 
graph GL represent the spring laws defined among 
robots (vertices of the graph). We can choose a subset 
C of d + 1 robots as leading robots and let the rest 
be ordinary robots. The leading robots are controlled 
by the global controller to a certain embedding. The 
rest of the robots, whose motions are controlled by the 
spring laws, will converge to the unique C-minimum- 
energy embedding. This sketches the approach of us- 
ing spring law control to form predefined structures, 
and the details can be found in Section 5.4. 

A graph G is k-connected if there is no subset of k 
vertices, which if deleted, disconnects G. [19] studies 
the relation between graph connectivity and rigidity. 
One result points out that if a graph G is (d + 1)- 
connected, then for almost any spring relation L (that 
is all except for certain singular spring relations), the 
spring graph GL is rigid, i.e. it has a unique minimum- 
energy embedding. (Note that the minimum-energy 
embeddings may differ and depend on specific spring 
relations for the same graph.) Therefore graph con- 
nectivity provides a highly accurate and simple way 
in designing rigid spring graphs. 

Fix an arbitrary subset C C V of d + 1 vertices and 
fix an arbitrary embedding of the vertices of C in R a. 
A C-embedding of G is an embedding in R a consistent 
with the already fixed embedding of C. Let G be a 
(d + 1)-connected graph and GL a rigid spring graph. 
Let C be an arbitrary subset of d + 1 vertices and let 
C be embedded. It is further pointed out in [19] that 
the C-embedding that carries the minimum potential 
energy among all C-embeddings of G is also unique. 
We call this C-embedding with the minimum energy 
the C-minimum-energy embedding. It is easy to see 

5.4. Applying spring laws to distributed control 

Given a predefined structure in a d-dimensional 
Euclidean space, applying spring law control to let 
the robots form and maintain the structure goes as 
follows. First, we need to design a (d + 1)-connected 
graph with a proper spring relation, to choose a sub- 
set C of d + 1 vertices, and to embed C into the 
d-dimensional Euclidean space, such that the C- 
minimum-energy embedding is the same as the given 
structure. 

The vertices represent robots, with vertices in C as 
leading robots and the rest of the vertices as ordinary 
robots. A leading robot is controlled explicitly by the 
global controller, while an ordinary robot's motion is 
controlled by the spring forces from other robots. An 
ordinary robot i stores a table of (lij, kij), for  (i, j )  E 
E. The robot calculates a force using the following 
expression: 

Fi = y ~  Fij -~- Y ~  kij(rij - lij) Pi - P  j ,  
(i,j)~E (i,j)~E rij 
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where pi and p j  are the positions of robots i and 
j respectively, and rij = I[Pi - Pj  II- Then as in the 
inverse-power law model, robot i moves in a way to 
reduce Fi. (Note that there are no physical springs 
between robots so the; motions of the robots are not 
restricted in any way by springs.) With all ordinary 
robots operate simultaneously in this way and with the 
leading robots at the appropriate positions, the system, 
with some damping factors, is expected to converge 
to the given structure, which is the same as the C- 
minimum-energy embedding. 

Once a structure is formed, to control the robots to 
move around while maintaining the structure can be 
done as follows. Let the global controller control the 
leading robots to move while maintaining their relative 
positions. When the ]reading robots move, the struc- 
ture is deformed and no longer carries the minimum 
potential energy. The ordinary robots are no longer at 
their equilibrium state, s and they will move in order to 
restore the minimum-energy embedding, which is the 
predefined structure. When the minimum-energy em- 
bedding is restored again, it looks as if the whole robot 
system moves while raaintaining the predefined struc- 
ture. Note that how fast the system moves can also 
be controlled by controlling the speed of the leading 
robots. The structure can also be changed by chang- 
ing the relative positions of the leading robots. A sim- 
ple case is to scale the structure by scaling the rela- 
tive distances between the leading robots. An ordinary 
robot is allowed the llexibility to overcome local ob- 
stacles and to perform tasks. After a deformation, a 
robot will tend to go back to its correct position in the 
structure. 

In the description given so far, an important step is 
left out, which is to design the spring graph and to 
embed a subset of vertices to realize the predefined 
structure. Here we provide a simple method (not the 
only or the best way) of doing this. All the springs 
will have the same :force constant, say a real num- 
ber k > O. Suppose that the distance between robot 
i and robot j in the given structure is ri j ,  then we 
can add an edge between i and j designating a spring 
whose length withou~t compression or extension is ri j .  
We keep on adding edges in this manner until the 
graph is (d + D-connected. Note that for a graph 
to be (d + 1)-connected, each vertex of the graph 
has to have at least d + 2 edges. We can choose ar- 
bitrarily d + 1 vertices as the subset, and let their 

relative positions be the same as in the predefined 
structure. It is easy to see that the minimum-energy 
embedding is the same as the predefined structure, 
and in fact the potential energy in this embedding is 
zero. 

Usually the regularity of a structure provides some 
guidelines in how to add edges. For example, if the 
structure is a lattice in 2D with more than 3 rows and 
more than 3 columns, we add edges between a robot 
and its four closest neighbors in the lattice. It can be 
shown that the resulted graph is 3-connected, and the 
spring graph is rigid. 

If an application does not desire an entirely 
rigid structure, but flexible ensembles of rigid sub- 
components, this can be accomplished by combining 
spring law control and inverse-power law control. 
Each rigid sub-component can be accomplished by 
spring law control, where the coordinations of the 
sub-components can be accomplished by inverse- 
power law control applied to the leading robots of the 
sub-components. 

An advantage of this spring law approach is that 
we have an efficiently computable simulation method 
to guide the design, since a minimum-energy embed- 
ding can be computed in polynomial time by solving 
a linear system of size n by n, where n is the number 
of vertices in the graph. We can use computer simula- 
tions to guide in designing the springs between pairs 
of robots to let them display desired structures, lest to 
change the structures by changing the positions of a 
few leading robots. 

6. Conclusions 

In this paper, we have proposed a distributed method 
for autonomous multi-robot control, namely, the so- 
cial potential fields method. It is a very simple and 
generic method. The force laws have simple forms, yet 
our simulations have shown that by designing proper 
force laws, we can let a system of robots display in- 
teresting and useful behaviors which may soon have 
practical applications in industry, military and other 
areas. 

This paper presents the first study, and also a pre- 
liminary one, in applying potential fields to distributed 
robotic control. In drawing conclusions, we raise the 
following problems for future studies. 
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6.1. Convergence and local-minima problem 

The convergence problem is to determine, for a 
given initial state and a set of force laws, whether a 
system of robots will converge and to what behavior 
it will converge. This is a hard problem in general for 
dynamic systems with iterative processes. The system 
may not converge or it may converge to one of many 
local minima. 

We did the computer simulation guarding the cas- 
tle twice, with exactly the same force laws but with 
different initial distributions. In one simulation, the 
robots were initially distributed around the castle. The 
system converged to a ring around the castle which 
is the desired behavior. In the second simulation, the 
robots were initially distributed in a square area far 
away from the castle. The robots converged to a disc 
on their way approaching the castle, but not surround- 
ing the castle. 

All known potential field methods can introduce 
many local minima. The local-minima problem has 
not been solved even in cases much simpler than ours 
(see [30]). A partial and practical solution to the local- 
minima problem resorts to the global controller. Once 
the global controller detects a local minimum situa- 
tion, it can change force laws to help the system es- 
cape from the local minimum. 

For a given problem, it will be interesting to do 
a systematic study and to categorize the conditions 
for convergence, by varying the initial state and the 
parameters of the force laws. 

6.2. Robustness and efficiency 

We believe that the social potential fields method is 
robust in that the method can tolerate errors in sensors 
and actuators. As a future work, we can test this claim 
by computer simulations. We can simulate the errors 
in sensing by adding random perturbations to the po- 
sitional numbers used in force calculations. The errors 
in actuators can be simulated by perturbing randomly 
in the length and direction in which a robot moves. 
Then we can compare the results of a simulation with 
errors and one without to study the robustness of this 
method. 

The effect of communication latency on equilibrium 
behaviors can also be studied by computer simulations. 
For example, previous instead of current positions of 

robots can be used in calculating the forces; in this 
case, each robot has to keep not only one but a series 
of positions. 

We have yet to find appropriate criteria to use in 
judging the efficiency of our social potential fields 
method. 

6.3. Loss of information 

In the distributed control paradigm, each individual 
applies local rules to the current state of the system. 
The description of the state can be very complicated 
(e.g. Reynolds' simulation of birds) and thus the local 
rules can be very complicated. In our VLSR system, 
the state of the system is simplified to only the dis- 
tances. Thus information about the system is lost. Due 
to this, some behaviors can not be accomplished by 
social potential methods. 

The force laws should be kept simple so they can 
be manipulated but they should be complex enough to 
generate behaviors we need. 

6.4. Lack of powerful tools for defining force laws 

As we have mentioned at the beginning of Section 4, 
our method for defining force laws is quite restrictive. 
For example, the method can not compute the density 
function given a cluster of robots with different force 
laws defined among them. 

Furthermore, our iterative method only deal with 
static equilibrium situations. This is because the it- 
erative equation is derived from the fact that the 
resultant force on a single robot is equal to zero in 
the equilibrium state. But for practical purpose, many 
equilibrium states are dynamic. For example, in the 
simulation guarding a castle, the invader and the 
guards form a dynamic chase-and-run behavior. How 
to define dynamic equilibrium behaviors and how to 
define force laws to achieve them need further study. 
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