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Abstract—The bidding decision making problem is studied
from a supplier’s viewpoint in a spot market environment. The
decision-making problem is formulated as a Markov Decision
Process - a discrete stochastic optimization method All other
suppliers are modeled by their bidding parameters with cor-
responding probabilities. A systematic method is developed
to calculate transition probabilities and rewards. A simplified
market clearing system is also included in the implementation.
A risk-neutral decision-maker is assumed, the optimal strategy
is calculated to maximize the expected reward over a planning
horizon. Simulation cases are used to illustrate the proposed
method.

Index Terms—Electricity Market, Bidding Strategies, Decision-
making, Markov Decision Process, Power System Economics.

I. INTRODUCTION

T HE power industry is evolving into an open-access, com-
petitive environment. In this environment, economics and

profitability are primary objectives of the market players. For
each generation or distribution company, decisions have to be
made on transactions, e.g., contract types and parameters. Elec-
tricity and services can be sold or purchased through bilateral
contracts or the spot market [1]. The spot market usually op-
erates as a pool, i.e., the market participants submit bids to a
market that determines the transactions based on rules agreed
upon by the participants.

To achieve effciency in generation and consumption of
electricity, an economic pricing scheme plays an important
role. Properties of the prices of optional forward contracts are
discussed in [2]. Alternative policies concerning access to and
pricing of transmission are studied in [3]. Game theory models
are used to estimate the possible effects of various policies
upon productive efficiency and the distribution of gains among
all market players.

In this paper, the problem of bidding decision-making is
studied from the viewpoint of a generation company. Strategic
bidding behavior has been studied in other fields such as
commodity markets but less so in the electricity market. In [4],
competitors are modeled by probability distributions of their
bids. A method for updating probability distributions when
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new data are observed is discussed. Some studies on bidding
strategies have been conducted for the electricity market. In
[5], a framework for an energy brokerage is proposed and a
sub-optimal bidding strategy is developed according to the
competitor’s bidding probability density function. In [6], game
theory is used to determine the suppliers’ pricing strategy
and it is assumed that suppliers bid with linear marginal price
functions without capacity limits. Game theory is also used in
[7] to simulate the decision making process for defining offered
prices in a deregulated environment. A genetic algorithm is
developed in [8] to select bidding strategies in the double
auction electricity marketplace. Technical issues related to an
auction and bidding market structure are analyzed in [9].

Besides bidding and pricing methods, other studies have
been conducted on the subject of electricity transactions. For
example, to handle the increasing number of electric energy
transactions, an algorithm is proposed for identification of
conflicting conditions between contracts [10].

In the literature, the optimal strategy is one that gives the
decision-maker the maximum expected return for one bidding
period. However, in the daily electricity market, the decision-
maker’s bid may influence the future market or the action may
affect his/her own market position in the future. For example, a
supplier’s bid can affect the spot price and the other suppliers’
bidding behavior may change according to the spot price. A sup-
plier is also subject to resource constraints. The production limit
is obvious for a hydro producer. A gas or coal producer may
have fuel contracts that define the production limit over a time
horizon. In this environment, the decision-maker should look
into the future when a bidding decision is to be made. The bid-
ding strategy that gives the best profit for one day may not be
optimal when the expected profit over the planning horizon is
desired.

The market has various uncertainties, e.g., price and load.
Hence, the market model proposed here is stochastic. The de-
cision-maker is assumed to be risk-neutral; the optimal strategy
that maximizes the expected profit is desirable for the deci-
sion-maker. To develop a tractable model, a Markov process is
assumed. The purpose of the proposed method is to optimize the
expected reward over a planning horizon. This paper reports new
results on the application of a Markov Decision Process (MDP)
to optimize the bidding decisions. The MDP here is of the dis-
crete-state and discrete-time type. MDP provides a systematic
way to solve multiple stage probabilistic decision-making prob-
lems. In an MDP, the stochastic process evolves in a sequence
of time stages. As shown in Fig. 1, at stage t, the market can
be in any of a number of states numbered from 1 toN. In each
state, the decision-maker can choose one decisiona from a set
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Fig. 1. States and state transition in MDP.

of feasible decision options. Corresponding to a decisiona, the
transition probability from a statei to another statej is given
by . The decisions from the first stage to the end
of the planning horizon form one strategy (policy). The deci-
sion-maker receives a reward from each transition. The
MDP model is mathematically well established and its applica-
tions can be found in many areas [11]–[12].

The significance of the proposed method lies in the fact that
the method calculates the optimal decisionover a planning
horizon. The supplier’s production limit is incorporated in the
proposed bidding decision-making method. The information
structure can incorporate detailed information about the market
accumulated over time. Hence, it is believed that the proposed
methodology is promising as a practical market decision
support tool.

II. PROBLEM FORMULATION

This study assumes a day-ahead auction system with no
demand-side bidding; however, the proposed method can be
adapted for other types of markets. It is assumed that the bids
are cleared for each hour. The suppliers submit bid with the
price and quantity at which they intend to sell during the next
day. The market clears the bids. The spot price is determined
according to the day-ahead load forecast and the bids from all
suppliers. A single spot price covers all purchases and sales
in each hour. Suppliers are paid according to this spot price
and possibly other market payment rules. The proposed market
model resembles the structures that have been established in
England / Wales and New Zealand.

In Fig. 2, the environment in which the proposed electric en-
ergy BIdding Decision Support tool, calledBIDS, is illustrated.
The decision-maker’s bidding options and the competitors’ bids
are specified depending on the state of the market. After the bids
are cleared and transactions are completed, the market changes
its state depending on the decision-maker’s decision and other
players’ bids. The reward from the bid is calculated based on
the spot price and the cost associated with the transaction.

The load profile within one day is divided into different load
periods, i.e., peak load and off-peak load. The average load for
each load period is judged to be sufficient to represent the overall
load profile. Thus, in the proposed method,the state is repre-
sented by the production limit, the average load and average

Fig. 2. Market and bidding decision making.

spot price over each load period for today’s market, and the
averageload over each load period for tomorrow’s forecast.
There are 7 variables in the state definition: I to represent the
production limit, 2 to represent the prices, 2 to represent today’s
load, and 2 more for tomorrow’s load forecast. If 10 grid-num-
bers were used to represent different data levels, the number
of states would be 107. It is clear that the MDP formulation
can suffer from the “curse of dimensionality” problem if the
number of states is large, which is likely for a complex decision
making problem. Aggregation can be used to reduce the number
of states. For example, the prices and demand can be represented
by ranges such as “high”, “medium”, or “low” to avoid a large
number of states using specific numbers. Suboptimal decisions
can be obtained for the reduced state space. Practical consider-
ations can be used to further reduce the number of states. For
example, unusually low demand in one load period and unusu-
ally high demand in another load period may not happen on the
same day, so these combinations can be eliminated. Using sim-
ilar techniques to further reduce the number of states, the state
spaces of the study cases in Sec. VI contain 210 and 21 states,
respectively.

A decision-maker has to set the bid parameters, i.e., the price
and quantity have to be specified for each hour period of the next
day. In this study, a staircase supply function is used to describe
the bid prices for different MW ranges over a day. One bid price
is used for each MW range. Also, the decision-maker specifies
one MW quantity for each load period.

An MDP moves from one stateto another state according
to a transition probability . A transition occurs as a result of
a change in price and / or load demand. A major difference be-
tween a Markov Process and an MDP is that the latter incorpo-
rates decision options for each state, which affect the transition
probabilities and rewards. These probabilities represent the un-
certainty of the market. In Sec. III, an algorithm is proposed for
calculation of transition probabilities and rewards based on load
forecast, decisions for each state, and bidding characteristics of
other suppliers. The reward from a transition is the total revenue
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minus the cost. It is assumed that the decision-maker knows its
own cost.

III. CALCULATION OF TRANSITION PROBABILITIES AND

REWARDS

It should be kept in mind that the proposed decision support
tool, BIDS, is developed from the viewpoint of a supplier, i.e.,
the decision-maker using the MDP model. The decision-maker
observes and predicts the trend of the load demand, predicts the
other suppliers’ bidding parameters, and optimizes his or her
own profits accordingly.

To simplify the notation, the calculation is described in such
a way that there is only one unit for each supplier and one bid
price is set for each unit. Also, the time variable is not explic-
itly shown. However, the proposed method does allow suppliers
to have multiple units and more than one bid price can be set
for any unit. The algorithm is identical when multiple units and
multiple prices are used. For time-varying data, the transition
probabilities and rewards are calculated accordingly, and a non-
stationary MDP is needed. The terminology is described in the
following.

: # of suppliers (supplier is the decision-
maker)

: # of bidding options for supplier in state
: # of load periods ( in this study,

peak/off-peak load period)
: # of hours in load period
: Bid price of supplier , given bidding option

: Bid quantity of supplier for load period ,
given

: Probability that supplier chooses
option in state

: Decision-maker’s production limit in state
: Spot price at load periodin state
: Load demand at load periodin state
: Load forecast at load periodin state

: Probability that the load forecast for the day
after tomorrow is for load period

, given the present state
: Transition probability from stateto if the

decision-maker makes decision
: Probability of scenario

: Spot price at load periodfor scenario
: Subset of scenarios that results in the spot

price, cleared quantity, and production limit
of state from those of state

: Cost of the decision-maker to produce
MWh

: Reward for scenario
: Reward corresponding to the transition from

state to state , given decision
: The decision-maker’s quantity that is called

into operation in load periodfor scenario
: The decision-maker’s updated production

limit if scenario takes place, starting from
state

The objective is to calculate the transition probability that
the system transfers from stateto a state in the next day, say
state . Since the spot price for the next day should match the
supply with tomorrow’s load forecast, as the system moves to
state , the production limit is denoted by , the spot price
is , the cleared load demand will be the tomorrow’s
load forecast that is available in state. The load forecast for the
day after tomorrow is . It is assumed that different sup-
pliers’ bid options are independent. Therefore, the probability
that supplier chooses option and supplier chooses op-
tion will be . These probabili-
ties should be determined by market data observations.

For the suppliers and load periods, a scenariois a com-
bination of the price and quantity from each supplier’s bidding
parameters, i.e.,

The probability of this scenario, , is:

Pr Pr (1)

Supplier has options and supplier has
options. All suppliers’ options are independent.

Combining all the suppliers’ options, the possible scenarios
can be enumerated and the total number of scenarios is

(2)

To calculate the spot price for each scenario, a market
clearing system has to be modeled. Unit Commitment based
[13] or Optimal Power Flow based [14] market clearing
systems have been proposed. Without considering the security
constraints and other market characteristics, a simplified market
clearing system is adopted in this study. The suppliers’ bids
are ranked from the cheapest to the most expensive for each
load period. Suppliers’ bids are chosen from the cheapest until
the load in that period is met. For all units that are called into
operation, the most expensive bid price defines the spot price
in that load period. It should be pointed out that the average
load does not necessarily lead to the average spot price, due
to the nonlinear relation between the load demand and the
resulting spot price. For tractability, this study uses the spot
price corresponding to the average load as an approximate
average price for each load period.

The spot price for a scenario, , is calculated by
matching the suppliers’ bids with the load forecast at state,

. The spot price and the decision-maker’s bid decision
determine the amount to be produced by the decision-maker.
The decision-maker’s production for scenariois calculated by
summing up the production in all load periods. The decision-
maker’s production limit for the next stage is updated by

(3)

For each scenario in , the system moves from state
to state if the load forecast for the day after tomorrow is
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and scenario takes place. Since all the scenarios are
exclusive, the probability that results in spot price ,

, and production limit is the sum of the proba-
bilities of all the scenarios in . In our notation, this means

,
and for scenario . For all scenarios in

, the probability can be evaluated by

Pr

Pr (4)

The above probability represents all scenarios that match the
spot price, the production limit, and tomorrow’s load forecast
with the definition of state . State transition is also caused
by the change of load forecast between tomorrow’s load and
the day after tomorrow’s load. The probability that the system
moves from state to state for the decision-maker’s decision
option a can now be calculated by

Pr Pr

Pr

Pr Pr (5)

The above equations lead to transition probabilities that de-
pend only on decision-maker’s decision and the two states
and . As mentioned previously, if transition probabilities are
time-dependent, the MDP is a nonstationary stochastic process.

The reward is the difference between the revenue and the cost
of the decision-maker as a supplier. The cost function of the
decision-maker is assumed to be deterministic and known to
the decision-maker. Each generating unit has a cost function,
which is assumed to be a piece-wise linear function of MW.
As the market clears, the amount to be produced by each unit
is allocated. Therefore, the cost of each unit can be calculated
accordingly. The revenue at the load periodt is the product of
the spot price and the quantity that is called into operation. For
each scenario, the reward for the decision-maker is calculated
as

(6)

The reward has to be calculated for all scenarios associated
with the transition from to . Also, the reward for each transi-
tion from to has to be weighted by the conditional probability
that the system moves from stateto state . Finally, the reward
for the transition from stateto state and decision option is
the sum of the rewards for individual scenarios weighted by the
conditional probabilities of these scenarios.

Pr Pr(i,s) (7)

IV. V ALUE ITERATION

After the transition probabilities and rewards are calculated,
the value iteration method is applied for this MDP model [11].
Value iteration is similar to backward dynamic programming.
Let be the total expected reward in remaining
stages starting from stateif an optimal policy is followed. At
the last stage, . Value iteration searches for the decision
that results in the maximum total expected reward in the re-
maining stages, i.e.,

Pr (8)

Equation (8) is the recursive relation that is used to calculate
the optimal decision from the last stage ( ) to the first stage.
These rewards from a transition toare weighted by the proba-
bility of the transition, , to obtain the total expected
earnings.

V. MODEL VALIDATION

For validation purpose, it is necessary to accumulate the ac-
tual data and observations from the market over a reasonable pe-
riod of time, say, year. The market data set provides the actual
scenarios. For each scenario, according to theBIDS represen-
tation, the decision-maker’s reward is for a transition
from state to state and decision option. Theactualreward
is known from the market data. This actual reward is denoted
by . The relationship between the estimated and the
actual rewards can be analyzed by linear regression. If a linear
relationship is assumed between the estimated and the actual re-
wards, then

(9)

The coeffcients and are found by minimizing the average
absolute error over the market data set,

(10)

where is the total number of observations for a transition
from state to state . Ideally, should be close to and
should be close to. A significant deviation from these values
implies the necessity to tune the reward calculation method.

VI. I MPLEMENTATION AND CASE STUDIES

A 3-supplier-5-generator system is used for illustration of
the BIDS method. The suppliers areGenCoA, GenCoB, and
GenCoC. GenCoAis the decision-maker using our MDP tech-
nique. The decision-maker owns one generating unit.GenCoB
owns two units andGenCoCowns two other units. All three
suppliers bid in the spot market. The planning horizon is 7 days,
i.e., the bid decision for the next day considers the entire week
ahead. In each state,GenCoAmakes its decision from a set of
pre-specified decision options. In each state,GenCoAdoes not
know exactly howGenCoBandGenCoCare going to bid. How-
ever, their individual bidding behavior is modeled by bid prices,
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TABLE I
SUPPLIERCAPACITIES AND POSSIBLELOAD LEVELS

TABLE II
GENCOA’S COST, PRODUCTION LIMIT AND DECISION OPTIONS

TABLE III
PARAMETERS OFSTATE 1

quantities and the associated probabilities based onGenCoA’s
knowledge and information. The transition probabilities and re-
wards are calculated according to the algorithm described in
Sec. III. TheBIDSvalue iteration algorithm is implemented in
Matlab.

Example 1: The decision-maker has a production limit over
the planning horizon. In this simulation, the number of states is

and there are grid numbers betweenand the production
limit. The production limit for one week is set at the level such
that if the unit runs at its capacity, the production limit will be
reached in days.

Due to space limitation, only selected data is shown in
Tables I–III.

The user specifies the state parameters. The parameters for
one of the states, state, are listed in Table III for illustration.

The other suppliers’ bid parameters and probabilities are
specified depending on the state (from stateto state ). For
example, one of the bid options ofGenCoB’sin state 1 is

Unit1: bid price 15$/MWh for the first 20MW block,
16$/MWh for the next 30MW, maximum output 50MW for
both peak & off-peak load period;
Unit2: bid price 17$/MWh for the whole capacity (50MW),
maximum output 50MW for both peak & off-peak load pe-
riod
The probability of this bidding option: 0.25

Using the data above, the transition probabilities and rewards
are caloulated by the proposed algorithm. For example, for the
decision-maker’s 6th decision option: selling nothing, the tran-
sition probability from state to state ,
which corresponds to a reward .

The value iteration algorithm is used to calculate the optimal
decision for each state and each stage. The decisions at some of
the states on the first day, day 1, are illustrated in Table IV. One

TABLE IV
SELECTED RESULTS FROMEXAMPLE 1

rational strategy,Peak-Load Strategy, is chosen for comparison
with theBIDS results. By taking Peak-Load Strategy, the deci-
sion-maker bids at the cost, divides the production limit evenly
over the week, and sells only at the peak load period on each day.
According to the production limit in this case study,GenCoA
can sell MW each day for the peak-load period. The result
shows that the expected rewards from theBIDSbidding strategy
are consistently higher than that of the Peak-Load Strategy.

The resulting optimal strategy istime dependent. For ex-
ample,the optimal strategy for state 190 is no. 3 for day 1 to
day 4 and it is no. 4 for day 5 to day 7. The optimal decision for
day to day is to sell less (option) and save the capacity for
day to day . The production limit is MWh in state .
If the system happens to be in state on day , the production
limit will not be violated even if the unit runs at its capacity for
the remaining 3 days. The optimal decision (option) is to sell
more electricity, i.e., the blocks in option at increasing prices.

From day to day , the optimal decision changes according
to the production limit even if the price and demand are iden-
tical. In some of the states, the resulting optimal decision is not
to sell (option ); the resources are saved for more profitable
days.

Example 2: The decision-maker has market power and no
production limit. The decision-maker can manipulate the bid to
influence the spot price. Other suppliers will bid according to the
spot price and load demand information. The decision-maker
makes the bidding decision to maximize the expected reward
over the planning horizon.

Without production limit, there are states in the MDP
model. The feasible decision set is taken to be different from
that in Example 1. For this example, the Daily Maximum
Strategy is chosen for comparison with theBIDS results. The
Daily Maximum Strategy maximizes the daily reward without
considering how the bid affects the market trend. The results
are shown in Table V.

The expected reward is the accumulated reward from dayto
day . It depends on the strategy from dayto day . In Table V,
only the optimal decisions on dayare illustrated. Note that the
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TABLE V
SELECTED RESULTS FROMEXAMPLE 2

TABLE VI
TRANSITION PROBABILITIES FOR DECISIONNO. 2 AND NO. 4 IN STATE 1

Daily Maximum Strategy istime independent; the deci-
sion-maker chooses the same decision option as long as the
system is at the same state. TheBIDS results show the same
decisions on day of the planning horizon. This is expected
since the decision is also to maximize the expected profit for
that day only. The results fromBIDS are time dependent. The
optimal decisions on day are different from those of the pre-
vious days. For example, in state(same as statein example
1 but without production limit), decision option is to bid at
low prices and decision optionis to bid high prices. Since the
decision-maker has market power, bidding at high prices gives
the decision-maker a high immediate reward and the system
transfers to high price states with higher probabilities. Simi-
larly, bidding at low prices gives the decision-maker relatively
low immediate reward and the system transfers to low price
states with higher probabilities. The transition probabilities of
decisionno. 2andno. 4 in state1 are illustrated in Table VI.
By making decisionno. 2, the system possibly moves to states

to 3 and states to (with nonzero transition probabilities).
By making decisionno. 4, however, the system possibly moves
only to states to . The spot prices in statesto are high,
the spot prices in statesto are lower. The peak spot price
for the former is $/MWh and $/MWh for the latter. The
optimal decision for state is no. 4on day based on theBIDS
method. The decision-maker actually earns more when the spot
price remains to be relatively low.

On the last day, the optimal decision is the decision that gives
the best daily return; on other days the decisions are chosen to
maximize thetotal expected profits over the planning horizon.
This demonstrates the importance of the planning horizon in

theBIDSalgorithm. The decision-maker should not rely on the
daily profit in making decisions. This optimal profit can not be
achieved when the bidding strategy is derived from only one
day’s information.

VII. CONCLUSION

The spot market bidding decision-making problem is studied
in this paper. An algorithm is developed to calculate the transi-
tion probabilities and rewards for the MDP model. Simulation
cases have been studied to validate the method. Compared to
other analysis methods, MDP is able to optimize the decision
over a planning horizon. Even though the modeling is fairly de-
tailed for the market, the power system operational constraints
are ignored for tractability of the model. These issues should be
considered in the future.

A risk-neutral decision-maker is assumed in this paper. If
the decision-maker is risk-averse, the variance of his/her profit
should be incorporated in the bidding decisions. The optimal de-
cisions will then be determined by maximizing the total benefit.
There is no provision for incorporating risk attitude in an ordi-
nary MDP. A slightly different formulation, risk-sensitive MDP
[15], can be used to solve this problem.

Probabilistic bidding information of competitors is required
to calculate the state transition probabilities and rewards. For
some of the markets, the market participants’ bidding data is
public information, e.g., the United Kingdom Market. If the
competitors’ bidding data is not available, the historical market
prices and load demand information can be used to identify state
transition probabilities by statistical data analysis. The number
of players and the number of generators affect the computa-
tional effort in calculating the state transition probabilities and
rewards. However, it does not influence the size of the state
space.

Since the competitor’s strategy may change, it may be inter-
esting to calculate the sensitivity of the policy / reward with
respect to the competitor’s bids. To analyze the sensitivities,
one can vary the price, amount and the probability of this com-
petitor’s bids and re-calculate the transition probabilities, op-
timal policies, etc. using the proposed MDP algorithm.
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