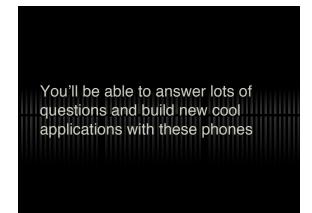



Wireless sensor networks have driven many great innovations over the last decade - represents a very active area of on-going research



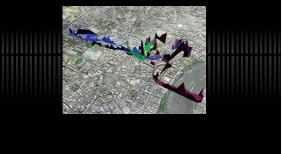


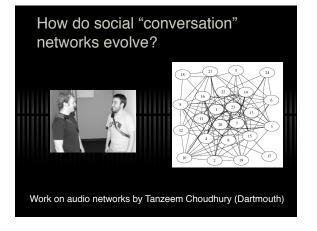
Importantly, sensor networks don't impact our everyday lives. Why?

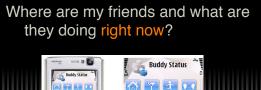



 That's all just changed because of this ...

 Image: Strain Strai





| The cool greer | n "emotional" phone                                                                                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Embedded sensors:<br>• 3-axis accelerometer<br>• Proximity sensor<br>• Digital compass<br>• Pollution/air quality sensor<br>• GSR "emotion sensor"<br>• RFID/NFC<br>• Microphone<br>• Camera<br>• GPS<br>• Bluetooth |

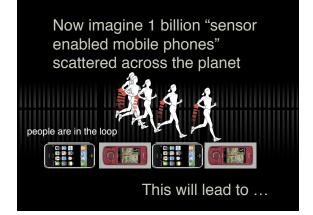





How stressed is the city this morning?














Big challenges: trust, privacy, security are critical issues (David Kotz, Dartmouth)















### My position for this talk

The mobile phone (and not the mote) will serve as the main platform for sensing innovation over the next 5 years.

Your mobile phone will sense your surroundings, learn your behavior (what you do, where you go and how you interact with people and your environment), and help you navigate your day.

Collectively, mobile phones will form societal scale sensor networks in support of community, urban, and global sensing applications and problem solving.









# We started in 2005 to study people-centric sensing

### Characteristics of existing mote networks

- Small-scale, short-lived, mostly-static
- Application-specific
- Multi-hop wireless
- Very energy-constrained
- Mobility not an issue or driving factor
- People out of the loop

### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-specific
- Multi-hop wireless
- Very energy-constrained •
- Mobility not an issue or driving factor •
- People out of the loop

### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-agnost Multi-hop wireless
- Very energy-constrained
- Mobility not an issue or driving factor
- People out of the loop •

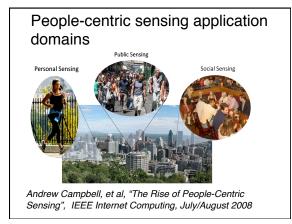
### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-agnostic
- No multi-nop wireless Very energy-constrained ٠
- Mobility not an issue or driving factor
- People out of the loop

### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-agnostic
- No multi-hop wireles Periodic recharging
- Mobility not an issue or driving factor
- People out of the loop

### Characteristics of **People-Centric Sensing**

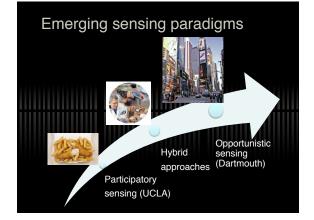

- Large-scale, long-lived, mostly-mobile
- Periodic recharging
- Mobility is a driving factor
- People out of the loop

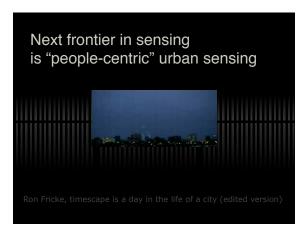
### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-agnostic
- No multi-hop wireles Periodic recharging
- Mobility is a driving factor
- People in the loop

### Characteristics of **People-Centric Sensing**

- Large-scale, long-lived, mostly-mobile
- Application-agriostic
- Periodic recharging
- Mobility is a driving factor
- People in the loop
- Security and privacy of data critical




Static sensor networks don't scale to large areas, sensing coverage is costly, performance doesn't scale either, and events are unpredictable in time and space. Public sensing gains scalability and sensing coverage by using people opportunistically as mobile sensors

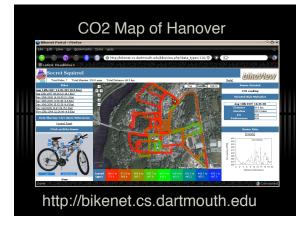
The beauty is that the infrastructure already exists (i.e., people and the global cellular network) People-centric sensing is based on an "opportunistic sensing paradigm" and an "interaction model" that captures interaction between people, and, between people and their surroundings

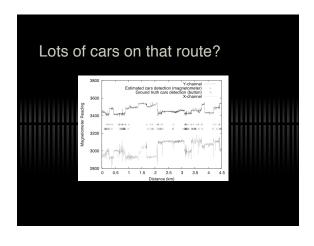







### Remainder of my talk

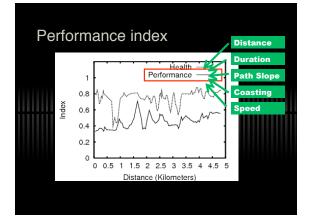

- Three people-centric sensing applications we developed
  - BikeNet (personal/public sensing)
  - CenceMe (social sensing app)
- SoundSense (personal sensing app)
  Need for open sensing/comms software for mobile phones
- Wrap up

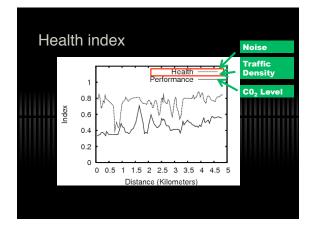





# We can answer many questions from sensor data

- How fit are you?
- Many cars along the route?
- What was the air quality and noise like?
- Lots of trivia: slopes, coasting, braking, working hard
- Overall health and performance along the route
- How did you compare to your buddies, community?



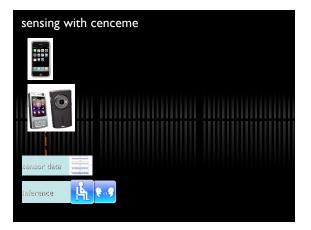


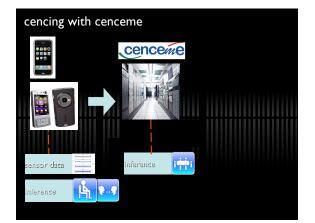


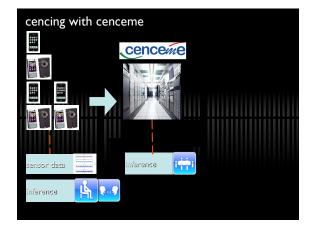


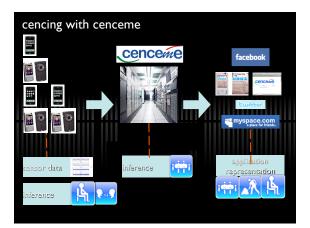


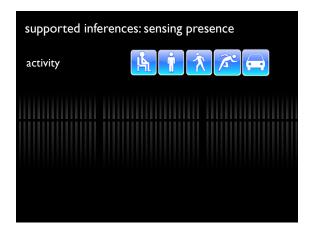




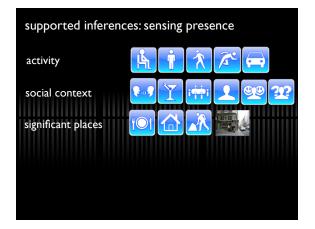



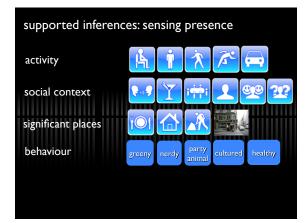



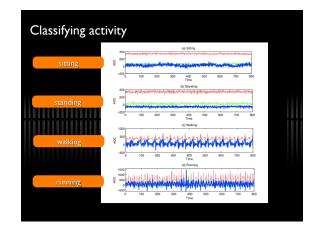


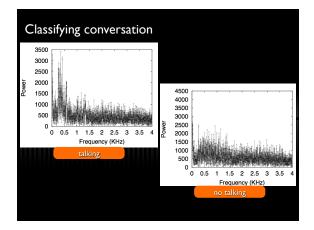



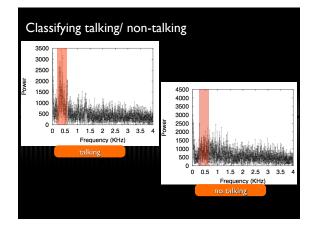


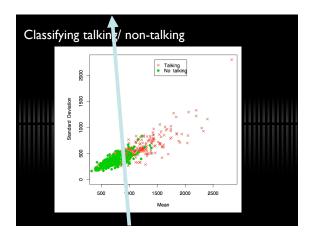


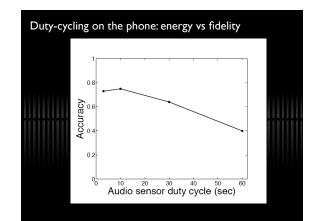


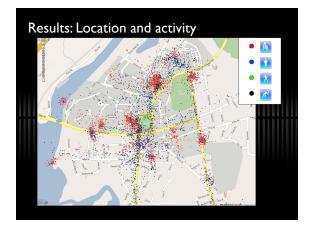



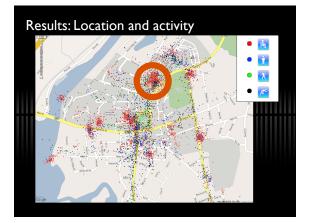



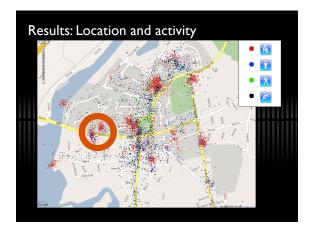


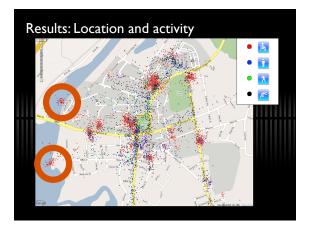


| A                                                                                                  | ctivity cl                  | assifie | r confu  | sion ma    | atrix      |  |
|----------------------------------------------------------------------------------------------------|-----------------------------|---------|----------|------------|------------|--|
|                                                                                                    |                             | Sitting | Standing | Walking    | Running    |  |
|                                                                                                    | Sitting                     | 0.6818  | 0.2818   | 0.0364     | 0.0000     |  |
|                                                                                                    | Standing                    | 0.2096  | 0.7844   | 0.0060     | 0.0000     |  |
|                                                                                                    | Walking                     | 0.0025  | 0.0455   | 0.9444     | 0.0076     |  |
|                                                                                                    | Running                     | 0.0084  | 0.0700   | 0.1765     | 0.7451     |  |
|                                                                                                    | Supervised<br>Differentiate | Ŭ       |          | and standi | ng is hard |  |
| Custom sensing hardware (e.g., Intel's MSP) can do better but these results are from the Nokia N95 |                             |         |          |            |            |  |

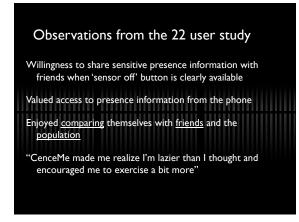


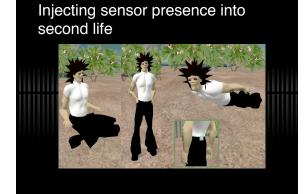



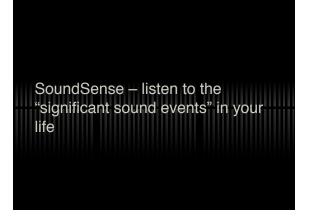


| Co                                                                                                                                                                                                                 | Conservation classifier confusion matrix |              |                  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|------------------|--|--|
|                                                                                                                                                                                                                    |                                          | Conversation | Non-Conversation |  |  |
|                                                                                                                                                                                                                    | Conversation                             | 0.83.82      | 0.1618           |  |  |
| 111111                                                                                                                                                                                                             | Non-Conversation                         | 0.3678       | 0.6322           |  |  |
| Design decision of 2/5 talk primitives to get into<br>conversation and 4/5 to get out – more conservative<br>Poor performance for non conservation results because<br>people aren't talking but others nearby are. |                                          |              |                  |  |  |



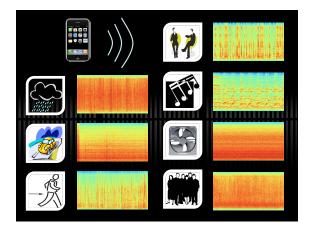





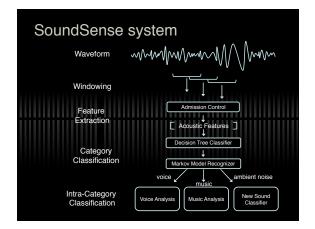



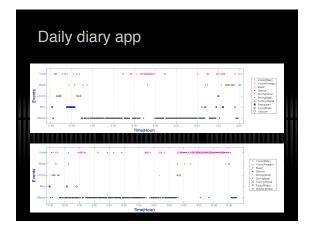










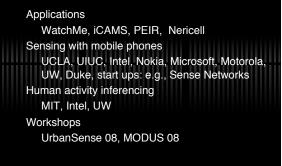


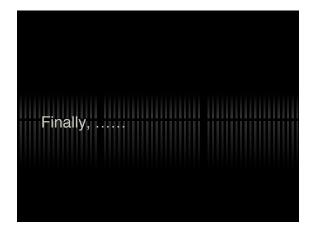

| Classification confusion matrix                |               |        |        |  |
|------------------------------------------------|---------------|--------|--------|--|
|                                                | Ambient Noise | Music  | Speech |  |
| Ambient Noise                                  | 0.9159        | 0.0634 | 0.0207 |  |
| Music                                          | 0.1359        | 0.8116 | 0.0525 |  |
| Speech                                         | 0.0671        | 0.1444 | 0.7885 |  |
| Accuracy of the decision tree classifier       |               |        |        |  |
|                                                | Ambient Noise | Music  | Speech |  |
| Ambient noise                                  | 0.9494        | 0.0402 | 0.0104 |  |
| Music                                          | 0.0379        | 0.9178 | 0.0444 |  |
| Speech                                         | 0.0310        | 0.0657 | 0.9033 |  |
| Accuracy of the markov model recognizer output |               |        |        |  |








Yes – not an OS, but some libraries or dare I say, sensor phone middleware.


## Toward Sensor PhoneWare

Supporting continuous sensing significant challenge Many open challenges



# Growing interest in sensing on mobile phones





My title is a little loaded, isn't it?

The title implies that the phone is the "new mote", multihop is dead, and that the sensor network community should now direct its intellectual energy toward programming phones not motes.

# Why do this?

Today you can ship your cool new sensor app to thousands, perhaps millions of phones. Today you can build a global "sensor network" of thousands, perhaps millions of "nodes" if you have a really good idea.

Interesting problems will emerge. Your ideas can have significant impact.

Tomorrow? You'll be able to reach billions of phones instantly forming societal scale sensor networks.







http://metrosense.cs.dartmouth.edu/

