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Abstract. People-centric sensor-based applications targeting mobile de-
vice users offer enormous potential. However, learning inference models
in this setting is hampered by the lack of labeled training data and
appropriate feature inputs. Data features that lead to better classifica-
tion models are not available at all devices due to device heterogeneity.
Even for devices that provide superior data features, models require suffi-
cient training data, perhaps manually labeled by users, before they work
well. We propose opportunistic feature vector merging, and the social-
network-driven sharing of training data and models between users. Model
and training data sharing within social circles combine to reduce the user
effort and time involved in collecting training data to attain the max-
imum classification accuracy possible for a given model, while feature
vector merging can enable a higher maximum classification accuracy by
enabling better performing models even for more resource-constrained
devices. We evaluate our proposed techniques with a significant places
classifier that infers and tags locations of importance to a user based on
data gathered from cell phones.

1 Introduction

Commercial off-the-shelf mobile devices with embedded sensors (e.g., iPhone,
Nokia5500, Motorola PSI) are increasingly common in today’s market, and have
become a focus of people-centric application development due to their growing
ubiquity. In this role, devices are owned by individuals rather than residing in a
common administrative domain, and data sourced by sensors on the devices may
only be available locally (i.e., no centralized repository with common access). Of-
ten, the individually tailored models supporting these new applications are based
not only on the raw sensor inputs (e.g., camera, microphone, accelerometer), but
also on higher level inferences (e.g., location, activity, mood) drawn from par-
ticular sensed data features. Identifying the appropriate data features and best
performing models continues to be a subject of intense interest in support of
these new applications [18] [16] [17] [15].

Against this backdrop, two main challenges facing the construction of ac-
curate inference models are the lack of appropriate data inputs and the time



and effort that must be spent in training a model of sufficient accuracy. The
consumer-device-based sensing substrate upon which people-centric applications
are built is characterized by heterogeneity in terms of sensing and other resources
(e.g., memory, battery capacity). Therefore, the data inputs most useful in gen-
erating high accuracy models are not likely to be available on all devices. As
an example using a snapshot of current technology, classifiers distinguishing in-
door vs. outdoor locations are built using data features from GPS and WiFi
sensors [16]. However, GPS and Wifi are integrated into only a relatively small
percentage of cell phones on the market today. This heterogeneity often requires
users of less capable devices to settle for less accurate models based on other
available data features. Figure 1(a) illustrates the result of this situation, show-
ing the experimental performance of a significant places classifier (see Section
4 for implementation and performance details) for four device capability classes
(CC): CC1 is Bluetooth only, CC2 is Bluetooth and WiFi, CC3 is Bluetooth
and GPS, and CC4 is Bluetooth, WiFi and GPS. Perhaps unsurprisingly, the
accuracy of location recognition increases as the sensor inputs from more capa-
ble cell phones are used to generate better models. These observations motivate
and inspire our proposed opportunistic feature vector merging approach with
which we seek to push the model performance possible with lower tier devices
(e.g., CC1) towards that possible with higher tier devices (e.g., CC4). With fea-
ture vector merging, data features from more capable devices are borrowed and
merged with data features natively available from a less capable device in the
model building stage, allowing the less capable device to generate a higher accu-
racy model. This borrowing is facilitated by opportunistic interaction (though
not necessarily communication), both direct and indirect, between a less capable
device and a more capable device in situ. As an example of direct interaction, as
two cell phone users follow their daily routines, the cell phone without GPS can
borrow GPS data features from the cell phone with GPS as an input to its in-
door/outdoor model. An indoor/outdoor model based on GPS feature instances
borrowed over a period of time may also be built. In the indirect interaction
case, both devices collect data samples according to their respective capabilities.
Subsequently, centralized matching between commonly collected features (i.e.,
not GPS) may provide for a binding between the feature vector collected by the
phone without GPS and the GPS features collected by the GPS-equipped phone.
The GPS features can then essentially be borrowed via this binding.

Even when devices provide an appropriate set of data features to build accu-
rate models, users may be required to gather a large set of training data (perhaps
manually labeling it) before applications using the model outputs work at their
peak level. The inconvenience in both the labeling of training data and the time
required for model training to complete may act as disincentives to the broad-
scale adoption of new people-centric applications [16]. One approach to reduce
model training time and effort is to support the sharing of labeled training data
among users. Sharing training data has the effect of reducing the per-user train-
ing time and labeling effort when building the necessary collection of training
data, but is also likely to reduce the accuracy of the resulting models. This is es-
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Fig. 1: Classifier performance relative to varying device capabilities and the size of the
training data used. In (a), accuracy is plotted for various capability classes (CC): CC1
is Bluetooth only, CC2 is Bluetooth and WiFi, CC3 is Bluetooth and GPS, and CC4
is Bluetooth, WiFi and GPS. In (b), accuracy is plotted against the training set size.

pecially true in people-centric sensing systems based on common mobile devices
like cell phones. In this context, sensor data features are often limited by the
non-ideal set of sensors embedded or interfaced to the cell phones, and also the
quality of the training process is difficult to control. Therefore, models in this
domain are often more tightly bound to the individual in order to achieve higher
accuracy. Consider Figure 1(b), which shows the classification accuracy versus
training set size for our significant places classifier. The dashed line curve re-
flects the accuracy of a model built by merging experimental training data from
all participants (see Section 4 for details). The solid line curve in Figure 1(b)
shows the average accuracy of a collection of models, built on a per-user basis
using only data sourced from each respective participant. For a given value A
on the x-axis, for the per-user models, each of the N users provides A instances,
while for the global model each user contributes roughly A/N instances. The
quantity of per-user training data required in building the global model is low
since model training cost is amortized over all the users in the system. However,
the accuracy is also consistently low due to the aforementioned problems with
global training data sharing in people-centric sensing systems. With our proposed
social-network-driven sharing, we provide a hybrid approach that builds models
based on training data shared within social circles, within which we conjecture
group vocabularies and other commonalities lead to more consistently labeled
training data and a higher model accuracy, while still reducing the quantity of
per user training data required.

The contributions of the paper are: (i) we are the first to propose opportunis-
tic merging of feature vectors between devices to improve model accuracy on
lower capability devices; (ii) we propose the sharing of training data and models
between devices by leveraging the social relationships between their users; and
(iii) we implement and test these two complementary techniques in the context of
“significant places” [21] [2] [9], a people-centric service targeting sensor-equipped
mobile devices.



2 Related Work

The problem of acquiring suitably labeled training data to build classification
models is well recognized, and is addressed in the literature in a number of ways.
To the best of our knowledge, there is no existing research targeting feature
sharing through opportunistic interaction. This may be due to the fact that
feature sharing may add uncertainty to the system and is thus a counter-intuitive
approach to improving model accuracy. Opportunistic sharing of data features
and models can be viewed as a special case of opportunistic data exchange more
generally. As such, sensor fusion [14] in ephemeral proximity-based networks
is related, though neither communication within socially connected groups nor
the constraints and advantages of sharing to enhance classification accuracy
are treated in the general case. Sharing training sets from one user’s model to
improve the performance of another can be thought of as co-training [22].

The Tapestry system [7] uses a collaborative approach to perform document
filtering (e.g., email) based on the reactions/responses of others. The authors
of [10] propose what they term collaborative machine learning, which unifies
collaborative filtering and content-based filtering. The approach considers both
the user’s data content, as well as attributes and descriptors, to gain a better
idea of the similarities among users, providing better accuracy for document
retrieval and recommendation applications. A similar sharing concept is explored
in [19], where the authors propose a method for recommendation sharing based
on statistical correlations in users’ data sets (e.g., music artist playlist). While
these approaches enable sharing of what can be considered model training data or
classification models, the sharing ignores social group connections. We conjecture
our social-network-driven sharing proposal can be integrated into these systems
to improve performance (e.g., in Tapestry, only considering annotations created
by members of the same social group). Using social connections to guide sharing
can be thought of as semi-supervised learning [22].

There are a number of research papers contributing to various aspects of
“significant places” applications, including significance learning [13], location
clustering [21], and location prediction [2]. We use significant places, represen-
tative of emerging applications using sensor-enhanced inferences and targeting
mobile devices, to demonstrate the usefulness of our techniques of opportunistic
feature vector merging and social-network-driven training data sharing.

3 Proposed Techniques

At a high level, a standard approach to building models involves first sens-
ing available data, extracting and labeling sensed data features that accurately
describe states, and then finding a classification technique that provides high
accuracy and high confidence classification. In terms of model usage, first the
available data is sensed, the necessary features are extracted and fed into the
model without labeling, and then the model outputs the inferred label. In Figure
3, we represent these two processes pictorially, and include the stages in each
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Fig. 2: Typical model learning and usage processes, and how opportunistic feature
vector merging and social-network-driving sharing hook into these. In the diagrams,
the circumscribed “plus” symbols represent a merging of information (e.g., labeled
features). Actions are enclosed ellipses, while objects are enclosed in rectangles.

process where our proposed techniques hook in (encircled with dashed/dotted
lines). As indicated in the diagram, feature merging and social-based training
data and model sharing are complementary techniques that can be composed
in both the model learning and usage processes to improve performance. In the
following, we discuss in more detail a number of design and implementation chal-
lenges, providing a roadmap for future work needed to realize the full potential
of our approches. We begin to address these challenges in this work.

3.1 Opportunistic Feature Vector Merging

With opportunistic feature vector merging, we aim to leverage opportunistic in-
teractions (both direct and indirect) between devices with different capabilities
to improve the model accuracy achievable on less capable devices. Less capable
devices borrow from more capable devices features that allow for the generation
and subsequent use of more accurate models than those possible to generate
from only natively available data features. Here, the capability of the device can
be thought of in terms of sensor configuration, available memory, and CPU/DSP
characteristics. Thus, as in the example given in Section 1, opportunistic feature
merging can provide desirable vector elements (e.g., those derived from GPS
and WiFi data) that are not available natively due to the sensor configuration.
Secondly, merging can provide additional data features of native types that may
be needed, for example, when the device is not capable of storing a time series



of the required size. Finally, opportunistic feature merging can be used to share
features extracted from external data that are also available natively, but can
not be calculated on the device due to device limitations (e.g., a computation-
ally intensive FFT of microphone data cannot run on a CPU-limited device even
though the device has the microphone). A number of questions arise when con-
sidering a system design that uses opportunistic feature vector merging, which
we explore in the following subsections.

Determining what features are sharable. Given the mobile devices avail-
able on the market today, the following hardware sensors are available in at least
a subset of devices: camera, microphone, accelerometer, 802.11 radio, Bluetooth
radio, GPS receiver, cellular radio. The raw sensor data from each of these
sources can be processed in many ways, alone and in combination, to extract
features useful for model building. However, not all of the features are equally
sharable for opportunistic feature merging. For example, two co-located devices,
one with a GPS receiver and with an 802.11 radio can likely exchange features
from these sensors for mutual benefit. On the other hand, data mined from a
user’s calendar on one device may not be of much use on another user’s de-
vice, and may even result in a worse model for the borrowing device. Similarly,
raw samples from light sensors separated by even a very small distance by have
very different values due shadow patterns, and may not be amenable to sharing.
However, it may be useful to share temperature samples even at longer distances
since temperature gradients tend to be shallower. While determining which par-
ticular features are beneficial to share or not likely depends on the classifier (e.g.,
how susceptible is the output to inaccuracy in the input), a reasonable guideline
is to only share features that are not highly person, device, or location specific.
Even if these contribute to a better classifier on their native device, they are
unlikely to do so on another user’s device.

What are the feature sharing mechanisms. In Section 1, we introduce two
types of opportunistic feature merging, depending on whether the interaction is
direct or indirect. The feature sharing mechanism for each variant is slightly dif-
ferent. For direct interaction, devices periodically broadcast their available data
sources (e.g., hardware sensors) via an available short range radio interface. Ad-
vertising only the data sources is preferable to advertising the entire feature set in
terms of efficiency, since there are likely many possible features per data source.
Additionally, only those data sources that are likely to be sharable (as discussed
previously) should be advertised to reduce unproductive feature sharing. Devices
that are interested in borrowing reply with a request for all the features available
for a given (set of) data source(s). Requesting only the features, rather than all
the raw data, saves on communication energy spent by both the lender and the
borrower. With direct interaction, models can be used in a distributed way on
each mobile device. Over time, it is also possible for a device to collect enough
shared feature instances to build models based on shared features, potentially
allowing for infrastructureless bootstrapping of the system.



In contrast, feature merging via indirect interaction uses a centralized ap-
proach, requiring no direct device peer interaction. All devices collect samples,
extract features, and generate models to the best of their respective abilities in
situ. Subsequently, when each device transfers its training data/features to a
dedicated server, the merging process looks for evidence in the features provided
by all users that two or more devices were sensing the same location or event.
If so, then these devices are able to share features to generate better models.
Indirect sharing is helpful if two devices are co-located but can not communicate
locally due, for example, to radio incompatibility. Indirect sharing also allows
devices that sense the same event/phenomenon but are never co-located to share
data, if the sensed event/phenomenon is relatively constant in the time between
the respective devices’ visits. Finally, indirect sharing potentially saves on com-
munications costs over direct sharing since no local data exchange is necessary.
For example, consider two devices that each have a GPS receiver, but only one
has a CO2 sensor. In this case, the merging process can identify through match-
ing GPS readings that the devices were in roughly the same place at the same
time. Then the device without the CO2 sensor can borrow the CO2 readings and
incorporate them into its training data to generate improved models.

What to do when shared features are not available. One drawback to
building models requiring borrowed features is that there is no guarantee a device
will be on hand to share the required features when the model is to be used.
We address this with two approaches. First, each device generates a collection of
models, each relying on different sets of available features. The device uses the
model that has the best expected performance (i.e., w.r.t its confusion matrix)
given the features available at the time of classification. In the worst case, this
will be the model learned only from device-native sources. Second, we build
models using algorithms that are more resilient to missing or noisy elements of
the feature vector. For example, the KNN imputation method performs better
relative to the comparison technique of the LNN classifier [1].

Privacy concerns in sharing. Opportunistic feature sharing potentially leaks
personally sensitive information (e.g., location trace). One option is to provide
the user with the ability to configure the type of data that is sharable, and with
whom. Another option is to share features without including any identifiers in
the packet payload. However, for direct sharing the MAC address of the short
range radio used to share can be logged. Use of disposable MAC addresses is
possible [8], but this may limit functionality for certain PHY/MAC technologies.
Providing truly anonymous data exchange for ad hoc mobile devices is a focus
of ongoing research in the community [5], but is outside the scope of this paper.

3.2 Social-network-driven model and training data sharing

With social-network-driven training data sharing and model sharing, we aim to
leverage social connections between device users to reduce the amount of time



and effort an average user must expend to train her models while maintain-
ing reasonable model accuracy. These social connections may be short-lived or
persistent, and include connections based on proximity, professional groupings,
family, friends, people sharing common interests (e.g., tango class), and many
others. A number of techniques for mining social graphs from various informa-
tion sources exist, but a review of this literature is out of scope. In the following,
we discuss training data sharing, deferring treatment of model sharing to a later
section. As discussed in Section 1, sharing training data generally has the effect
of reducing the time and effort of training, but has the undesirable side effect
of reducing the accuracy of models generated with this mixed data. Features
that have good discriminative power within particular population subgroups,
lose effectiveness within larger groups. We propose to allow sharing only within
social circles to moderate this reduction in accuracy, while still reducing training
time and effort. In the following, we describe a number of challenges to social-
network-driven sharing, and discuss the motivation of model sharing between
members of the same social group.

Exploiting social connections. Previous work [4] [6] suggests ways to mine
sensor-based and other data to infer social graphs where the vertices are people
or groups and the edges are relationships. Assuming known social graphs, we
construct models with training data sourced on the basis of the strength of
social connections (edges in the social graph) between the intended target of
the model (e.g., the device user) and others. A lower bound on the strength
of connection between two users may apply such that sharing does not occur
below this threshold. We expect people who are members of the same social
groups (such as combinations of cultural, workplace, social, or family groups)
will have similar background or other context that translates into similarity in
label definitions (i.e., what classes are important and what are the appropriate
labels). By exploiting awareness of the social connections between people we
build a training set sourced by a variety of people that still produces a model
for a particular individual (or group) that approximates the performance of a
model built solely from training data sourced from this individual (or group) in
terms of both classification accuracy and the understandability of labels.

A number of interwoven social graphs are likely to apply to a given set
of individuals. The nature of the inference problem (i.e., the application, or
learning technique) may determine which social graph to use when considering
which training data to import from other users. In the context of our running
example of significant place classification, if a user may provide free-form labels
(e.g., colloquial labels for locations), it may be appropriate to incorporate labeled
instances from other nodes in her social network with whom she is frequently
physically located, under the supposition that a location-specific vocabulary is
likely in use (e.g., workplace vernacular, regional dialect). On the other hand,
individuals to whom one is extremely close socially (e.g., a girlfriend), may be of
less use in sharing location-specific vocabulary if they are frequently physically



distant. Similarly, labeling of certain activities or social settings may be more
culturally and demographically driven.

Quality and consistency issues. A number of challenges arise related to the
quality and consistency of shared data instances.

First, the quality of the training instances may vary from user to user due to
the care taken when the training data was gathered, the training methods used,
and the training environment (e.g., data collected under non-typical circum-
stances can lead to a model that does not perform well in general). Challenges
in repairing ill-labeled data aside, it is difficult even to determine which instances
are lower quality. This is especially difficult when the pool of available labels is
small and statistical techniques such as anomaly detection are not applicable.
Because of this, importing lower quality training data can pollute one’s natively
collected data, leading to poorer model performance.

When free-form labeling is used, opinions may vary among users on the
proper size of label set, the feature support of each label, and the label itself.
A related complication is that lexicographically identical labels may mean dif-
ferent things to different people and different labels may mean the same thing
to different people. One way to address these issues is to apply structure to the
labeling stage such that a fixed set of valid labels, each with a provided defini-
tion, is imposed on all users. However, this approach restricts the classifications
problems that can be solved, and may result in a model that, though accurate,
gives labels that are not well understood by a given user.

Designing models robust to mixed source data. Given the lack of flexibil-
ity of structured labeling, we support free-form labeling. While sharing within
social circles mitigates labeling consistency issues to some extent, the process
of learning models must still be robust to them. Incorporating contradictory
instances, where the same class of features is given two or more different la-
bels (by multiple users), leads to a situation where the same class of feature
vectors will be mistakenly fragmented into multiple labels. (The impact of this
fragmentation is somewhat problem-specific, since a classifier that seeks only to
differentiate between logical classes of might perform well even with fragmented
features.) We use an unsupervised clustering approach to detecting and cor-
recting this fragmentation in our significant places implementation discussed in
Section 4. Instances can then be appropriately grouped regardless of their label,
with the introduction of some error due to imperfect grouping. After clustering,
a normative label may be applied for consistency.

Social-group-based Model sharing. In addition to sharing training data,
the models themselves are also candidates for sharing. The trigger for borrowing
models would be noticing that the performance (e.g., recall, precision) was better
in the model of a fellow social group member than in yours for the same feature
vector. In this case, either the user’s device can check neighboring devices in



situ to if they have an appropriate model with better performance (e.g., via
an advertise-request-response protocol), or the model sharing can be done in
a centralized way on a dedicated server. The rationale for model borrowing
between members of a social group in particular is that even though the models
may have been learned based on training data labeled by your buddy, your
buddy’s labels are likely to make sense to you because of your shared membership
in the social group. Elements of shared models that may be particularly helpful
in improving a user’s locally generated model can be permanently incorporated
by importing the appropriate training data and relearning the local model. This
is beneficial in the online case since performance can be maintained even when
the neighbor with the better model is not nearby, and in the offline case it reduces
unnecessary processing.

4 Evaluation

To evaluate the impact of opportunistic feature vector merging and social-
network-driven data and model sharing on a real people-centric application,
we implement a version of the “significant places” classifier (e.g., [11] [6]). We
use this as a vehicle to demonstrate the application of our techniques. In the
following, we describe the implementation and focus of our variant of significant
places, and the experimental data collection methodology, followed by selected
performance results.

4.1 Significant Places

A frequently examined classification problem in the literature is that of taking
location traces of a user and distilling them into a sequence of visits to places that
are significant to her (e.g., home, work, gym). This is used by applications that
present historical summaries of the user’s daily life [2], or even to determine
when a person has taken a wrong turn heading toward home [18]. A generic
significant places classifier may be thought of in terms of three main phases. In
the first phase, various data features (e.g., visitation frequency and dwell time)
of a user location trace are extracted from the raw data and analyzed to identify
locations and infer whether they are significant to the user. In the second stage,
the significant places are labeled, either by mapping the location feature vector
to a set of system-provided labels or by manual prompting of the user to allow for
personalized labels. In the third phase, the classifier is run to see how accurately
the system can recognize that a user has entered a significant place. A number
of proposals (e.g., [21] [11]) exist addressing the first phase of learning models to
infer significance. As significance inferencing is orthogonal to our techniques, in
our implementation we simplify the first two phases and have the user manually
label instances of location feature vectors as significant or not (c.f. the collection
methodology in Section 4.2). Based on these labeled instances, we then evaluate
the impact of our merging and sharing techniques on the accuracy and label
understandability of models built to recognize the labeled significant places.



4.2 Data Collection Methodology

As the sensing, processing and display capabilities of cell phones increase, cell
phones provide a unique chance for researchers to understand the real mobile
user behaviour and to provide true in situ mobile services. To gather user-labeled
significant place instances we use Nokia N80 and N95 smart phones. Both models
feature Bluetooth and an 802.11g WiFi interface. The N95 also comes with
an integrated GPS receiver. To facilitate user labeling of significant places, we
implement and install a PyS60 (Python for Symbian S60) client on each cell
phone. The client provides two fundamental services: user labeling and daily
trace recording, and sensor sampling. For each significant place, the user enters
a new label (or selects a previously entered one). With a button click, the user
indicates when she enters and leaves the selected significant place. The client
records the label, and the enter and leave times for each significant location
visit. From these entries, the client generates a significant location trace for each
user. The user is able to review and edit the daily trace to verify its correctness.
The sensing daemon runs in the background to sample from the Bluetooth, WiFi
and GPS, if available. We use an inter-sampling interval of approximately three
minutes, which gives an average battery life of more than 6 hours. The sampling
duration is lasts between 30 and 60 seconds, depending on how long the function
call to scan the Bluetooth neighborhood takes to return. The following data are
captured: GPS - latitude, longitude, altitude, accuracy, time, speed, number of
satellites; WiFi - beacon interval, security mode, SSID, BSSID, signal strength;
Bluetooth - address, device name, service type.

4.3 Data Analysis Methodology

The inputs to the models we construct are based on a feature vector formed from
three types of elements; location, time and social context. Clock, GPS, WiFi and
Bluetooth data give rise to the following features, which are also further pro-
cessed to generate averages and variances. From the clock, we extract day/night,
3-hour block, the duration of visitation, weekday/weekend and, business/after
hours. From WiFi, we extract the absence or presence of access points (APs)
identified by their MAC addresses, the relative RSSI order among the visible
APs, the individual and aggregate RSSI, and other AP statistics that have been
previously used to distinguish geographic locations [9] [12]. From social context,
we seek to capture the social characteristics of the location. We extract the
number of Bluetooth-toting people in the area (assuming one device per per-
son). This is used in concert with a list of the people with whom the individual
has social connections (e.g., from Facebook or other social networking sites).
Use of Bluetooth and WiFi features allows us to distinguish between adjacent
locations that may have very similar GPS features. We use the Weka machine
learning workbench [20] for our analysis, specifically the default configuration of
the bagging algorithm applied to the decision tree module, REPTree. All models
are trained on a randomly selected 50% of the data set available for it. In the
following, we describe initial performance results achieved with models based on
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Fig. 3: Performance Plots

a proof-of-concept implementation of our sharing and merging ideas. We leave
a deeper investigation of the design space for later work.

4.4 Performance Results

In an experiment run over 12 days, data we collect from 13 phone users (four
Nokia N95 and nine N80 cell phones) using the collection methodology outlined
above comprises 14375 labeled instances of 62 uniquely labeled locations. We
run post-collection validation via manual checking and participant interviews
to verify the integrity of the data set. All phone users are members of, or are
socially connected to the Computer Science Department at Dartmouth College.
Participant ages range from 24 to 49; one user of the 13 is female. We also
gather results from a survey (described subsequently) that includes the 13 phone
users and an additional 8 survey-only participants. These latter fall in the same
aforementioned age range and have the same departmental connection; one of
the additional 8 is female. We present results demonstrating the potential impact
of the opportunistic feature vector merging and social-network-driven sharing.

Feature Vector Merging Performance. We generate models, “merge” and
“no merge”, from experimental data, and examine the impact of performing
direct sharing of features based on different device capabilities. Sharing of fea-
tures is done on the basis of Bluetooth connectivity. Whenever two devices in
the experiment detect each other in their Bluetooth neighborhood then feature
sharing is enabled. An exchange of feature vector elements occurs when possible,
giving participant nodes a richer feature vector they would otherwise have based
on native sensors. Although all Nokia N80 and N95 phones have WiFi and all
N95 phones have GPS, to emulate four distinct capability classes of devices for
some devices in the experiment the WiFi on the N80 phones and the GPS on
the N95 phones is ignored as needed to support allowing four different classes
to be emulated. We build the models as follows: a single model is generated
for each user during the evaluation. This model is trained using all the feature
vectors available, even those that are intermittently available via sharing. This



results in numerous feature vector instances with missing elements, since sharing
is not continuously available. We do not explicitly handle missing data within
execution of our model (e.g., using a model swapping technique), but instead
use a machine learning technique (bagging) innately robust to the missing data.
Models are built on a per-user basis using training data specific to the user and
user’s device, and based on his or her own opportunities for merging.

Figure 3(a) shows a comparison of these two models. It reports the average
classification accuracy for each of the per-user models generated. Accuracy is
plotted against the phone capability class. In each of these classes the perfor-
mance is reported for all phones being limited to this operating level or lower.
The plot shows that with feature sharing, we can always gain an advantage in
model accuracy, except for capability class CC4 devices since those already have
all the sensors natively. In our campus environment and predominantly indoor
significant places, WiFi is the most powerful feature to share to improve accu-
racy, as indicated in the large increase between CC1 (Bluetooth only) and CC2
(Bluetooth and WiFi). In environments where WiFi features are less available,
we expect shared GPS-based feature elements to be the most helpful.

Social-network-driven Sharing Performance. We generate four mod-
els from experimental data, including two that incorporate sharing to support
model generation, “instance sharing” and “model sharing”, and two that do not,
“global” and “user”. With these models, we investigate the impact of sharing
on classification accuracy with respect to the amount of training data provided
by each user. In all cases, models are trained using a randomly selected 50% of
the data, with the balance used for performance testing. The device population
comprises the following mix of capability classes: 5 Bluetooth only; 4 Bluetooth
and WiFi; and 4 Bluetooth, WiFi and GPS.

As discussed in the Introduction, the “global” model is generated by pooling
training data from all participants, with each user contributing roughly the same
amount to the pool. The “user” model is generated on a per-user basis using
only training data sourced from the user herself.

The “model sharing” approach generates per-user models as in the “user”
approach, but then multiple models are tested before settling on a label output
for a particular instance. The decision to apply another model or settle on the
current result is based on estimated accuracy for the generated label. The choice
of whose per-user models to choose for a given classification task is driven by
social connections between users, prioritizing social connections that are logically
related to the classification task. In so doing, models are applied according to a
hierarchy of social groupings. Users’ models within a group are ranked arbitrarily
in our implementation, but the strength of personal social ties within a group can
also be considered when deciding the order of model application. The application
of models terminates either when a confidence threshold is reached (to improve
classification accuracy), or if a certain maximum number of models is applied
(to limit overhead). Lastly, with “model sharing”, we always test the “global”



model (global sharing) as well, and the result with the highest confidence among
all the tested models becomes the final output label.

With “instance sharing”, per-user models are built, but for a given user the
training data is sourced from the user and from people within the user’s social
networks. As with “model sharing”, a social group hierarchically is constructed
considering the purpose of the classifier and the groups’ potential impact in this
regard, and intra-group ranking is also handled in the same way. In “instance
sharing”, training data instances are accumulated iteratively, considering one
user per step, until the overall required number of training instances L is assem-
bled. At each step i, the user is tapped to provide up to L/i instances. The goal,
if K steps are taken to accumulate L instances, is to have each user provide L/K
instances. At any point, if a user can not contribute the desired L/i instances,
randomly chosen instances from the global pool are chosen, but are removed
from the overall required L if they are no longer needed as filler.

The social groups present in our experimental user population and used
for the sharing-based models are: “students”, enrolled students at any college;
“Dartmouth”, enrolled students at Dartmouth College; “batch”, grouped ac-
cording to the year arriving at Dartmouth; “founders”, founding members of
SensorLab that have worked together since the inception of our research group;
“SensorLab”, all members of the SensorLab research group; “CMC”, all members
of the CMC Lab research group; “Chinese”, have a strong social tie including a
daily lunch group; “Facebook”, social connections as defined within Facebook;
“basketball”, participants in a local summer basketball club; “town”, those with
a common town of residence; “European”, those with a European origin; “non-
U.S.”, those with any non-U.S. origin. We order these groups according to the
degree to which we expect them to improve our significant places classifier. Par-
ticipants in the study are members of multiple different social groups.

The rationales for a few of the ranking decisions are as follows. We rank
“Facebook” above “Dartmouth” since we expect Facebook friends to use com-
mon names for specific locations more so than does the general pool of Dart-
mouth students. The same logic leads us to rank the “members” ahead of “stu-
dents”. Group rankings may fluctuate seasonally. For example, the “basketball”
group meets regularly, but only during the summer - familiarity (e.g., common
experience, shared stories, shared vocabulary) decays over the rest of the year.
Conversely, the “Chinese” group meets every day at noon for lunch, so the social
ties remain strong throughout the year.

Figure 3(b) shows the classification accuracy versus training set size for each
type of model. For a given value A on the x-axis, for the per-user models, each
of the N users provided A instances, while for the global model each user con-
tributes roughly A/N instances. For the sharing-based models, we assign equal
weights to all social groups; the group hierarchy is flat. Each of the M users
involved (i.e., through common social group membership) contributes A/M in-
stances. The figure demonstrates the advantage of sharing only within social
groups rather than globally as the model accuracy curves for both instance
sharing and model sharing are always above that of the global model. Addition-



ally, we see the advantage in terms of model learning time (i.e., required training
data set size) that both instance and model sharing provide. We find that social-
based model sharing achieves a higher maximum accuracy than training instance
sharing for our data set. As expected, the per-user model outperforms instance
sharing as the amount of available training data becomes large enough.

Classifier Performance Details Figure 3 shows the sensitivity of the model
accuracy to both the richness of the feature vector and the availability of training
data, accuracy alone does not provide the full picture of the model performance.
In Table 1, we present additional performance details (true positives rate (TPR),
false positives rate (FPR), precision and recall) for each of the classifiers we use
(i.e., the average performance across all classes). For the results shown here, the
training set size is fixed at 719 instances.

User Feature Model Instance
Model (avg) Global Merging Sharing Sharing

TPR 0.598 0.383 0.617 0.721 0.389
FPR 0.563 0.349 0.565 0.652 0.304

Precision 0.691 0.496 0.712 0.807 0.544
Recall 0.598 0.383 0.617 0.721 0.389

Table 1: Classifier statistics.

4.5 Survey Results

To understand the impact of social-network-driven model and instance sharing
on the understandability and appropriateness of the model output labels, we
survey 20 participants concerning the outputs of the sharing-based models used
in the experiments described in Section 4.4. In this survey, we focus on determin-
ing the participants’ depth of understanding of shared labels, and their feeling
of the appropriateness of these labels when shared socially.

In Table 2, we report statistics on the level of comprehension people from
different social groups have of labels produced by members of their own versus
other social groups. Survey participants are asked questions to determine their
level of understanding regarding 8 different labels. For each label, users are asked
to identify to where they think a label refers when given the label provider’s name
and the label itself. The understanding is categorized as “strong”, “weak”, or
“none” depending on how accurately the label is positioned on a map; “strong”
if the exact location is indicated, “weak” if a location in the vicinity is indicated,
and “none” otherwise. Label providers are not asked about their own labels.

Comprehension levels are shown in Table 2 for the dominant social groups
(“SensorLab” and “CMC”) that produced the most labels in our experiments.
Members of the same social group share a better comprehension of each other’s
labels on average, compared both with members of the other group and the
average population. For example, on average members of “SensorLab” stated



Strong Weak None

“SensorLab” “CMC” “SensorLab” “CMC” “SensorLab” “CMC”
Group Labels Labels Labels Labels Labels Labels

“SensorLab” 0.75 0.32 0.09 0.15 0.16 0.53
“CMC” 0.40 0.55 0.05 0.03 0.55 0.43

All 0.48 0.34 0.14 0.31 0.38 0.49

Table 2: The level of comprehension people from different social groups have of labels
produced by members of their own or other social groups. Members of the same social
group share a better comprehension of each other’s labels on average.

they had a “strong” comprehension of 75% of labels generated by members of
their own group, but no comprehension of 53% of the labels generated by “CMC”
members. These results indicate that a model based on global sharing is likely
to perform poorly in terms of understandability, in addition to accuracy (Figure
3(b)), underscoring the importance of social-based sharing.

To determine the statistical significance of the results in Table 2, we run a
χ2 test with a threshold of 0.05, and calculate χ2

α
= 5.9915. First, we test the

null hypothesis that comprehension of the labels provided by the “SensorLab”
group is independent of group membership. The null hypothesis rejected with
Q = 14.401. In the analogous test for the comprehension of labels provided by
“CMC” members, we calculate Q = 6.3068, again rejecting the null hypothesis,
concluding that the “CMC” members’ better understanding (relative to that
of “SensorLab” members) of labels provided by fellow members is statistically
significant. These results give statistical credence to the notion of social-group-
based sharing.

Table 3 presents results from the same survey on the appropriateness of labels
provided by selected individuals for particular places. Given a place, survey
participants rate four possible labels (each taken from labels generated by the
13 phone experiment participants) to describe the place on a scale from 0 to 4 (0
means “not appropriate”). Table 3 shows selected results for three (place,label)
combinations. Generally, the table shows that the perceived appropriateness of
a given label can be strongly impacted by social connections, as reflected in the
higher values along the diagonal. For example, at least one member of each of
the two laboratory groups (“SensorLab” and “CMC”) included in the user set
use the label ‘Lab’ to refer to their respective lab. Members of each lab think this
label applies most appropriately to their own lab (i.e., average rating of 2.10 and
1.75 for their own versus 1.25 and 1.00 for the other lab). “Chinese” comprises
those that often go together for lunch at the Orient restaurant. The table shows
that “Chinese” members are more likely than “SensorLab” members (though
not more so than “CMC” members) to find the diminutive ‘Ori’ acceptable. The
lack of distinction between between “SensorLab” and “Chinese” for this label
may be due to the existing overlap in group membership. These results support
the use of socially shared labels in the significant places test application.



Place:Label

SensorLab lab:‘Lab’ CMC lab:‘Lab’ Orient Restaurant:‘Ori’
Groups (“SensorLab”) (“CMC”) (“Chinese”)

“SensorLab” 2.10 1.00 0.83
“CMC” 1.25 1.75 1.25

“Chinese” 0.80 1.20 1.20

Table 3: The level of appropriateness of selected labels as viewed by different social
groups. Social connections can strongly impact the perceived appropriateness of a label,
an important motivation for social-based instance/model sharing.

5 Conclusion

As the sensing and computation capabilities of commercial devices such as cell
phones increase, the development of people-centric applications augmented with
sensor inputs will also accelerate. To facilitate the wide-scale adoption of these
applications, we have proposed two techniques aimed at both increasing the ac-
curacy of feature classification used by these applications, reducing the burden on
the user in terms of providing labeled training data. We have demonstrated the
efficacy of both opportunistic feature vector merging and social-network-driven
sharing in the context of “significant places”, a useful classification process for
people-centric sensor-enabled applications. Our results underscore the oppor-
tunity and importance of leveraging the inevitable device heterogeneity that
results from the evolution of technology, and the importance of taking social
relationships into consideration when sharing in support of model building.
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