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ABSTRACT
Detecting visits to semantically meaningful places is impor-
tant for many emerging mobile applications. We present
PlaceSense, a place discovery algorithm suitable for mo-
bile devices that exploits pervasive RF-beacons. By rely-
ing on separate mechanisms to detect entrance to and depar-
ture from a place and buffering overlapping data for subse-
quent visits, it is more robust than the state-of-the-art, es-
pecially in detecting short visits, places where people are
mobile, or where inconsistent beacons are prevalent due to
interference. We experimentally evaluate PlaceSense’s ef-
fectiveness in discovering semantically meaningful places,
and compare with other approaches that use coordinates or
RF-beacon fingerprints. Our results demonstrate that Place-
Sense correctly discovers 92% (compared to between 28%
and 65% for previous work) of the visited places and accu-
rately detects their entrance and departure times from both
real-life and scripted data sets.
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INTRODUCTION
Recent advances in location technology and mobile devices
have opened the door for many interesting mobile applica-
tions. An increasing number of mobile devices are now ca-
pable of locating themselves based on different technologies
including satellite, mobile telephony, and 802.11 (Wi-Fi).
These technologies offer different opportunities and limita-
tions; the Global Positioning System (GPS) provides world-
wide coverage except in buildings and underground, while
technologies based on Wi-Fi and cellular signals can poten-
tially provide relatively coarse location estimates anywhere
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wireless internet and voice services are available [11]. Sev-
eral commercial products [18, 17] have shown that a mixture
of GPS and RF-beacon-based location can allow a device to
compute its position ubiquitously and with high availabil-
ity. The raw coordinates provided by these location systems
enable location-aware applications such as navigation and
emergency response that require absolute locations for only
a short period of time.

Many emerging mobile applications, however, can benefit
from places, which are colloquially labeled representations
of locations such as “Home”, “My Office”, or “Joe’s plumb-
ing store”, instead of a series of raw coordinates. Places can
directly support applications ranging from simple location-
aware reminders to personalized mobile searches based on
place preference [13]. Automated place discovery can help
studies of human spatial and temporal behavior, which have
historically depended on laborious manual recording or di-
rect observation [4]. More generally, place information can
help device intelligent algorithms for applications that cap-
ture and share a user’s context [3]. Such applications collect
streams of location, image, acoustic, or text data to contin-
uously understand and record people’s activity and mobil-
ity patterns, report information about their environment (e.g.
traffic, pollution levels), or exchange whereabouts among
friends and family [15, 5, 16]. A place discovery technique
can help schedule data collection only when it matters and
can effectively summarize the collected data.

Place learning algorithms attempt to find a locale that is im-
portant to an individual user and carries a semantic meaning.
In this paper, an important locale is defined as a place where
the user spends a substantial amount of time and/or visits
frequently. Typically, the input to a place learning algorithm
is a sequence of time-series sensor data (e.g. GPS coordi-
nates, CDMA/GSM cell towers, Wi-Fi Access Point MAC
addresses, etc.) and its output is a sequence of tuples (date,
enter time, leave time, place name). A number of interest-
ing place learning algorithms have been proposed both based
on coordinates provided by location systems (GPS or Place
Lab [11]) or on raw RF-beacon (Wi-Fi Access Point or cell
tower) fingerprints.

In this paper, we present the PlaceSense algorithm which
is an evolutionary step in this line of research. PlaceSense
collects Wi-Fi or cell tower radio fingerprints by scanning
the environment, detects place entrance and departure using
multiple successive scans. It cannot, of course, automati-
cally assign semantically meaningful names to places, but



accurately identifies place entry and exit to enhance recog-
nizing when places are visited. It improves upon prior work
in two ways: (1) it is more robust since it uses separate mech-
anisms for entrance and departure, and (2) is more respon-
sive since it uses history information to rapidly detect subse-
quent visits. Newly-seen beacons trigger entrance determi-
nation, but the algorithm robustly avoids beacon instability
(caused by weak beacons in hallways, for example). On the
other hand, departure is determined by the disappearance of
representative beacons seen in a place, but this disappear-
ance is carefully made to avoid false positives.

In addition to describing PlaceSense, we discuss possible er-
rors in finding places, describe new place discovery eval-
uation metrics, and demonstrate PlaceSense’s effectiveness
with a comparative evaluation to two published place al-
gorithms based on coordinates and RF-beacon fingerprints.
To evaluate our algorithm, we gathered radio traces (GPS,
Wi-Fi, and GSM cellular) from three volunteers following
scripted visits (for accurate ground-truth) to multiple places
and as they went about their normal routines for four weeks.
Each volunteer collected radio traces and kept a written diary
of places they visited. Using these two sets of data, we com-
pare PlaceSense’s effectiveness in discovering visited places
and the accuracy of the detected entrance and departure time
with previous work, and demonstrate that it outperforms the
other methods in real-life applications. Intuitively, Place-
Sense performs better than algorithms that use geographic
coordinates since semantically meaningful places are often
indoors where current location systems suffer in continu-
ously providing accurate positions. Furthermore, it outper-
forms RF-beacon fingerprint based algorithms by being more
robust to inconsistent beacons, and more responsive in de-
tecting short visits.

RELATED WORK
Place learning algorithms can be divided into two classes
based on the characteristics of the source location data: ge-
ometry and fingerprint. We discuss each class and describe
in more detail the techniques we use to compare PlaceSense.

Geometry-based Place Learning
Geometric algorithms produce coordinates, circles, or poly-
gons to describe places the algorithm believes are significant
to the users. These algorithms take a history of locations
(e.g., from GPS devices) and find locations where the per-
son stays for significant periods of time. The algorithms vary
based on the type of sensor data and the specific clustering
algorithm they use. Coordinate-based systems include GPS
and RF-emission based coordinate inferring systems [11, 18,
17], which typically provide location as a pair of latitude and
longitude.

Identifying densely clustered regions from the geometric co-
ordinate trace is basically a clustering problem. However,
standard clustering algorithms can include transient or erro-
neous coordinates, making the clusters unnecessarily large
and imprecise [8]. More fundamentally, GPS-based place
learning systems cannot accurately identify indoor places.
Early efforts in place learning with GPS used loss of signal

to infer the location of important indoor places. Marmasse
et al. [14] identify a place as a region, bounded by a certain
fixed radius around a point, within which GPS disappears
and then reappears as when a user enters and leaves a build-
ing. This approach is sufficient to identify indoor places
that are smaller than a certain size (e.g. a home), but can-
not identify distinct places within larger indoor places (e.g.
multi-floor buildings), and is prone to generating false posi-
tives caused by the many possible outdoor GPS shadows (a
recent study [11] and our own experiments show that GPS
coverage is available only 5-30 % of the time on average
for a device carried by users during a typical day). A similar
but improved approach was proposed by Ashbrook et al. [2].
Sets of important coordinates are identified as those at which
the GPS signal reappears after an absence of 10 minutes or
longer. These sets are then clustered into “significant lo-
cations” using a variant of the k-means clustering algorithm.
Toyama et al. presented a variation of this work that employs
multiple radius parameters to detect meaningful locations at
different granularities [20]. These methods overcome some
of the place-size limitations and most of the false positives in
Marmasse’s approach, but the use of GPS signal loss to infer
places still leaves these techniques unable to infer important
outdoor places and multiple places within a single building.
Other recent GPS-based methods have been proposed, but
have similar problems with indoor places [22, 12].

Kang et al.
Kang et al. [8] proposed an approach based on distance and
time-related heuristics similar to the idea proposed by Har-
iharan et al. [6] that does not depend on GPS signal losses.
Their approach allows using continuous RF-emission based
coordinate systems as location sources. Both find a new
place when the distance of the new coordinates from the pre-
vious place is beyond a distance threshold and when the new
locations span a significant time threshold. However, un-
like Hariharan et al., who compute the distance between all
pairs of coordinates after every new location measurement,
Kang et al. incrementally compare the distance between
the mean of the current cluster and the new measurement
against the distance threshold. Unlike other clustering al-
gorithms that require offline clustering of complete location
traces, their time-based clustering algorithm incrementally
extracts stays without expensive computation. However, this
approach still does not resolve the inherent problems of GPS
or RF-emission based coordinate systems which requires the
intermediate step of acquiring geographical coordinates for
every beacon scan and discovering places closer than the lo-
calization error of the systems.

Fingerprint-based Place Learning
Fingerprint algorithms detect stable radio environments that
indicate a stay but provide no absolute location information
for a place. These algorithms define the fingerprint of a place
as a vector of currently visible cell towers or Wi-Fi access
points, and use it to recognize when the device returns to a
place. However, place learning is different from fingerprint-
based localization as it attempts to discover a collected rep-
resentation of locations. Algorithms can be categorized by
the constraints on the fingerprints they use: either currently



connected beacons or every neighboring beacon. Some of
the algorithms are constrained by vendor APIs that only re-
veal the cell tower to which a phone is connected. Elim-
inating this restriction can favor better performance, but it
is unclear when this restriction will be lifted on some plat-
forms.

Laasonen et al. proposed a place learning algorithm based on
currently connected cell towers [10]. Cliques are found by
clustering cell towers. These cliques become places if their
duration is longer than a threshold, but implementing the
clustering on the phone is computationally expensive [19].
Froehich et al. identify places by triggering human interven-
tion when a new cell-tower is connected [4]. Tangentially,
related to our work, Krumm et al. measured the variance
of the signal strength of the strongest Wi-Fi access point for
smoothing transitions between the inferred states of “still”
and “moving” [9]. Finally, Ahmad et al. proposed a fair
election algorithm that finds the best representative beacons
for various length of stays that a recognition method can use,
but they do not address the problem of discovering the en-
trance to and departure from a place [1].

BeaconPrint
Most closely related to our work is that of Hightower et al.
who discovered places by using multiple scan windows to
distinguish beacons seen infrequently while a device is in
the same place from new beacons seen as the device is phys-
ically departing [7]. entrance and departure are found when
new beacons are continuously not found (or found) for more
than cmax scan windows. A new beacon is one that was not
seen in the previous w time interval. However, as it relies on
new beacons and disregard familiar beacons, BeaconPrint
often fails to find places where users are continuously mo-
bile (e.g., marketplaces), or places where severely inconsis-
tent beacons are found due to interference. Using multiple
scan windows may also delay and hinder finding subsequent
brief visits especially when the travel time between places
is short. Finally, the BeaconPrint recognition phase simply
compares the fingerprint seen by the device to a list of place
fingerprints learned by the system. A histogram uses each
unique beacon as a bucket and counts the time it was de-
tected during the visit. A place fingerprint which shares a
set of beacons with the highest weight in the tested finger-
print’s histogram is selected as a match.

In our evaluation section, we evaluate PlaceSense against the
most prominent algorithm from each of the two categories of
place learning algorithms: Kang et al.’s geometric algorithm,
and BeaconPrint.

THE PLACESENSE ALGORITHM
The PlaceSense algorithm is designed to discover places by
continuously monitoring the radio beacons in the environ-
ment around a mobile device. It uses radio beacons from
Wi-Fi access points (APs) or cell towers as its signals, which
are pervasive and can be detected by most mobile devices.
These beacons contain unique identifiers (the AP’s MAC ad-
dress or the tower’s Cell-ID) for both communication set-
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Figure 1. RF-Beacons found by a single person following normal rou-
tines. Each dot in the scatter graph is a beacon found from a RF-scan.
The unique identifier of each beacon is on the vertical axis and the scan
number is on the horizontal axis. Sampling rate is 0.1Hz. Both traces
are from a single day.

up and hand-off. Mobile devices can periodically scan for
these nearby beacons without connecting to or communicat-
ing with them. The IDs of these beacons are visible even if
the network is private. A timestamped log of these beacon
scans is the input to PlaceSense’s discovery phase.

Discovering a place
Discovering a place involves two steps: detecting a stable
radio environment that indicates an entrance to a place, and
recognizing when it changes signaling a departure. A stable
radio environment can be detected when consecutive radio
scans contain familiar beacons or do not include new bea-
cons for a specified amount of time. A beacon is considered
new if none of the previous scans contained it; otherwise it is
considered familiar. Thus, a set of beacons that were found
in previous scans determines whether a beacon is considered
new or familiar.

The biggest challenge facing such an algorithm is dealing
with intermittent beacons. Such beacons may be seen briefly,
for example, when crossing a hallway, when interference
results in beacon losses, or when transiently traversing the



edge of the transmission range of an AP. Simple techniques,
such as discarding low response rate beacons, cannot, for
example, correctly deal with lossy beacons.

In PlaceSense, we overcome this challenge with robust bea-
con inference. Like other approaches, a scan window, as
opposed to a single scan, is used to tolerate noise and bea-
con losses. A window size, w, of a scan window defines the
smallest time unit in which the algorithm will determine an
entrance or departure of a place. For example, if one minute
is chosen as the window size, a group of non-overlapping
successive 1-minute scans are used by our algorithms (not
sliding windows). Our algorithms use this group of scans
to infer fingerprints, defined by a list of beacons and their
response rate.

Entrance to a place.
Continuously seen stable scan windows imply a potential en-
trance to a place. A scan window is stable if it does not
contain any new beacons. Stable depth, smax, specifies at
least how many stable scan windows must be seen to indi-
cate an entrance to a place. Stable depth combined with win-
dow size (smax × w) specify how long the person must stay
somewhere for it to be considered a place. To start an exami-
nation of a potential stay at a place, the current scan window
is saved and compared against the following scan window.
A stable value counter s is incremented when a scan win-
dow contains beacons that are a subset of the beacons found
in the preceding scan windows. However, any scan window
containing a new beacon terminates the examination and ini-
tiates another examination by setting s to 0 and clearing the
history. A place entry is declared when s reaches smax.

PlaceSense more conservatively detects entries than Beacon-
Print which decrements s when new beacons are found, and
aborts when s drops below 0. This approach is useful for
avoiding infrequent beacons unnecessarily dividing a single
place into multiple places. However, when discovering an
entrance to a place, it can include unnecessary beacons in
the fingerprint that is used to determine new beacons, so may
be less robust when identifying a previously visited place.
In contrast, PlaceSense’s early termination quickly discards
unnecessary beacons and only includes beacons that matter.

Departure from a place.
Detecting new beacons or missing familiar beacons indicate
that the radio environment is changing and implies the mo-
bile device is leaving the place. To suppress the influence
of infrequent beacons, only selected beacons are considered
when detecting changes. After entering a place, PlaceSense
selects a set of representative beacons based on their re-
sponse rate. A representative threshold rrep is defined and
every beacon with a response rate higher than the thresh-
old is included in the representative set. If none of the bea-
cons meets this condition, a beacon that has the highest re-
sponse rate is used as a single representative beacon. Depar-
ture from a place is detected when all of the representative
beacons disappear and new beacons are found in a scan win-
dow. Beacons are considered new if they are not seen during
the stay. By relying on representative beacons, PlaceSense

is more robust to infrequent beacons and discovering places
where a device is highly mobile.

The response rate is a function of multipath, signal fading,
MAC layer characteristics, and interference. LaMarca et
al. [11] showed that when a device is stationary, the percent
of scans which sees a particular beacon can be more effec-
tive in predicting the distance to that beacon than the signal
strength values reported by the wireless network interfaces
of both Wi-Fi cards and GSM phones. In PlaceSense, we
measure the response rate as the ratio of detection count and
total number of scans for each beacon:

Rk,x =
∑nk

i=1 bx,i

nk
, bx,i =

{
1 if beacon x found in ith scan

0 otherwise

where Rk,x is the response rate of beacon x at place k and
nk is total scan count since the place was entered. To update
the response rate of every detected beacon during a stay, the
detection count of each beacon is maintained by the finger-
print.

To avoid a single scan window determining a departure, a
tolerance value t is used which can range from 0 to tmax.
Tolerance depth, tmax, specifies at least how long scans must
be unstable to indicate a leave from a place. Choosing tmax

too high causes distinct places to be merged and long delays
on decisions, while choosing it too low results in erroneous
fragmentation. Tolerance value t decrements with every ad-
ditional scan window that satisfies the above condition while
incrementing when more than one representative beacon is
found. If t reaches 0, the fingerprint is recorded and a stay is
terminated.

Finally, PlaceSense uses a novel buffering strategy to rapidly
detect place entry after quick transitions. Without this strat-
egy, if the departure decision takes at least T minutes (de-
fined by tmax) but a new place is entered within that time,
entry determination will be delayed until the former place is
terminated. PlaceSense buffers overlapping data and starts
entry determination in parallel, as soon as the t value is be-
low tmax. As soon as the previous place terminates, the
buffered statistics are used to examine the next place.

Our two main innovations, a robust departure determina-
tion and a responsive short place transit determination, are
responsible for PlaceSense’s superior performance, as we
show in the next section.

Adjusting to beacons in use
We can adjust PlaceSense to work with different types of
RF-beacons. RF-beacons can be categorized by the con-
straints on the beacon fingerprints used: currently connected
beacons and every neighboring beacon. When a fingerprint
of every beacon is available, such as Wi-Fi scans depicted
in Fig. 1(a), PlaceSense, as described above, can be used
directly. However, when only currently connected beacons
are available (e.g. cell tower-ID), as shown in Fig. 1(b),
an adjustment can be made to the definition of represen-
tative beacons to improve performance. A threshold used
to select representative beacons is no longer effective but



the decision on which beacons are included in the set can
make a difference. We tested two options. The first option,
which we call PlaceSenseGSM, regards cell-IDs found dur-
ing the speculation phase as representative beacons. How-
ever, this can be inaccurate at times and divide a place in-
correctly if a handoff occurs during a long stay. The other
version we tested is designed to reduce unnecessary Wi-Fi
scans for discovering places. By additionally including new
beacons to the representative set when representative bea-
cons are found again before the value of t decreases below 0,
PlaceSenseGSMCoarse detects larger-scale places and may
trigger WiFi scans for finer resolution.

EXPERIMENTS
Evaluating the performance of a place discovery technique
is not an easy task. Unlike the localization problem where
the evaluation metric is often the distance between a real co-
ordinate and an estimated coordinate, a place is typically not
a single point nor has a universal spatial shape or size.

We use a novel evaluation methodology, and base our defi-
nition of a place on how semantically meaningful places are
referred to by people. Thus, rather than attempt to find a
geometric definition of a place, we used human participants
to log any place they visited and stayed for more than five
minutes. In our experiment participants were not provided
with a specific definition of a place. Despite this, we show
that there exists a definition of a stable radio environment
(different from that in [7]) that well approximates human-
labeled meaningful places in many cases. We now describe
this methodology.

Data Collection
We collected location trace logs using a Nokia N95 mobile
phone, equipped with integrated GPS and built-in Wi-Fi.
The phones were loaded with software configured to col-
lect GPS, Wi-Fi, and GSM traces every 10 seconds (sam-
pling at 0.1 Hz provided sufficient data resolution without
a detrimental impact on battery life). All the nearby Wi-Fi
beacons were logged, while only currently connected GSM
cell towers were recorded. Traces were uploaded to a server
for further analysis after data collection to reduce power re-
quirements. Phones lasted for 4 to 5 hours and required a
recharge twice a day during a day-long data collection. Ex-
ternal battery packs were provided for long travels.

For initial evaluation, we conducted a scripted tour of 30 dif-
ferent places in 12 buildings and 4 outdoor plazas. Each data
collector individually selected 10 places they go to often on
the UCLA campus which included various building rooms,
library floors, stores, gyms, patios, and food courts. Sev-
eral places were within a single building and some places
overlapped between participants. Three distinct visit dura-
tions (8, 10, and 15 minutes) were distributed to data col-
lectors (10 visits per each). Distance between places varied
from 1 to 10 minutes by a normal walk. Data collectors were
asked to stay at a place for a predefined amount of time and
entrance and departure times were recorded whenever they
entered or left the room. For outdoor places (e.g. outdoor
tables), time was recorded when the data collector started

Figure 2. A webpage illustrating the GPS coordinates on a map al-
lowing data collectors to correct any erroneous log entries. Each info
balloon represents a GPS coordinate. Users can click on the balloons
to get additional info: time, latitude, longitude, and the number of NaN
(Not A Number) value returned due to GPS failures. Red lines indicate
GPS failures in between data points.

or ended being stationary. For further validation, we col-
lected 4 week-long location trace logs from each of three
data collectors as they went about their normal lives. They
mostly stayed within the local city limits, while a couple of
traces were also collected in three different cities during a
trip. All results are presented together as no significant dif-
ference was observed.

To collect ground-truth, each data collector was asked to
keep a diary of the name and time they entered and left ev-
ery place they stayed more than 5 minutes during the exper-
iment. Home, office, lunch places near work, coffee shops,
bus stops, and class rooms were frequently visited, while
various restaurants, stores, markets, clinics, etc. were less
frequently visited. At the conclusion of each data collection,
a webpage illustrating the GPS coordinates on a map with
timestamps was provided to allow the data collectors to cor-
rect any erroneous log entries (Figure 2). These diaries and
maps provided the ground-truth information about the coor-
dinates of the actual places the data collector went as well
as the actual times they arrived and left those places. How-
ever, as GPS data was not available in most of the indoor
as well as many outdoor locations, there were limitations on
achieving accurate time information. While participants ini-
tially kept an accurate diary, the time accuracy deteriorated
within the first few days. Many time entries were inaccurate
and short visits were often not recorded. Each data collector
found interesting places when reviewing the results.



Figure 3. Remembered places (recorded by people) and discovered
places (found by place discovery techniques). More correct and inter-
esting places and fewer other erroneous places indicate better perfor-
mance.

Figure 4. Four types of erroneous place discovery. False: erroneous
third place is found, missed: place B is missing, merged: two distinct
place A and B are merged as a single place, divided: place A is divided
into two distinct places.

Evaluation Metrics
To quantify the effectiveness of a place discovery technique,
we define a set of meaningful and erroneous places follow-
ing Zhou’s work with two additional types: merged and di-
vided [21]. As shown in Figure 3, places recorded in a
user’s diary are called remembered places and places dis-
covered by a place discovery technique are called discov-
ered places. Remembered places that are not discovered are
called missed, while places that are both remembered and
discovered are further categorized as correct, merged, and
divided. As illustrated in Figure 4, if two different places re-
ported by the user are discovered as a single place, the places
are called merged. Likewise, if a single place reported by
the user is discovered as two or more places, it is labelled as
divided. Others that were both remembered and discovered
are classified as correct. Of the remaining discovered places,
places are categorized as interesting if the user claims it as
a legitimate stay while reviewing the results, otherwise it is
classified as false. More correct and interesting places indi-
cate better performance, while the distribution of erroneous
places allows us to understand the strength and weakness of
each technique. We further define precision and recall as
follows:

Precision =
# Correct + # Interesting

# Discovered
, Recall =

# Correct

# Remembered

The accuracy of a discovered place is further evaluated by
time offsets of the entrance or departure time of a place.
Offset is measured as the difference between the time deter-
mined by a place discovery technique and the time manually
recorded by data collectors. Accurate time information of
a visit to a place may not be critical to users, but accurate
segmentation of radio signals indeed improves the perfor-

mance of place learning and recognition techniques. How-
ever, remembering to log the exact time whenever visiting a
place is challenging for the data collectors during their daily
lives. Thus, we first conducted a scripted tour of 30 different
places on campus varying the stay from 8 to 15 minutes ac-
companied by accurate time records in order to evaluate the
timeliness of each technique.

Implementation
In addition to PlaceSense, two previously proposed algo-
rithms, BeaconPrint [7] and Kang et al. [8], were imple-
mented for comparison. Improvements to the basic Place-
Sense algorithm were implemented incrementally to evalu-
ate the effect of each change. For our implementation of
BeaconPrint, every beacon discovered during both the stay
and the time window w (used for checking stable scans at
the beginning) were included in the fingerprint. We used the
parameters for window size w = 2 minutes (120 seconds)
and confidence depth cmax = 3, as in BeaconPrint. Kang
et al. designed a time-based clustering algorithm to over-
come problems found by previous algorithms that depended
on GPS failures in indoor locations. This approach takes as
input a stream of timestamped geographic coordinates de-
rived from any location system. For our experiments, we
use their suggested parameters for time t = 300 seconds
and distance d = 300 meters. GPS coordinates were used
as input. GPS failures were regarded as a stay within the
distance threshold. For every version of PlaceSense, a one
minute window size was used which contained six samples
(i.e. sample rate = 10 seconds). Stable depth smax and tol-
erance depth tmax were both set as 3, similar to the certainty
value suggested by BeaconPrint. Time series of Wi-Fi or
GSM traces were used as input.

Results
To investigate the representative threshold rrep, we exam-
ine the performance of PlaceSense with different thresholds.
Then, we illustrate the enhancements achieved by our incre-
mental improvements: tolerance depth and buffering bea-
con scans for identifying the next potential place. Data sets
from a scripted tour are used as they provide more accurate
ground-truth over the data collected from collectors follow-
ing their normal lives. The performance of our final ver-
sion is compared against other algorithms including Kang et
al. [8], and BeaconPrint [7], and our own PlaceSenseGSM.
Finally, we evaluate how well our approach works on real-
life data by comparing PlaceSense against BeaconPrint and
Kang et al. using data collected from normal lives.

rrep Correct Merged Divided Missed False Recall

0.5 20 10 0 0 0 0.67
0.6 20 10 0 0 0 0.67
0.7 22 8 0 0 0 0.73
0.8 22 6 2 0 0 0.73
0.9 24 4 2 0 0 0.80
1.0 12 0 3 15 0 0.40

Table 1. Number of erroneous places discovered by basic PlaceSense.
Larger representative threshold value rrep results in fewer merged
places, but more divided places.



rrep Correct Merged Divided Missed False Recall

0.5 18 12 0 0 0 0.60
0.6 18 12 0 0 0 0.60
0.7 18 12 0 0 0 0.60
0.8 24 6 0 0 0 0.80
0.9 26 4 0 0 0 0.87
1.0 22 0 0 8 0 0.73

Table 2. Erroneous places discovered by PlaceSense using tolerance
depth (tmax). Introducing tmax parameter reduces erroneously di-
vided places while allowing larger rrep threshold value to reduce the
number of merged places.

As shown in Table 1, smaller rrep results in less divided
places and more merged places as it becomes conservative
in determining a departure. Larger rrep decreases the pop-
ulation of representative beacons and further increases the
chances of missing all of the representative ones. All of the
five merged places (when threshold is 0.5 − 0.7) are from
the case when the data collector traveled from one floor to
another in a single building. Smaller threshold values allow
more beacons with lower response rates (which are possible
on different floors) as representative beacons. Larger values
resolve some of these cases but also introduce erroneously
divided places by sensitively determining departures. An
extreme threshold value of 1.0, which requires discovering
the beacon in each scan window during the stay, severely
degrades performance by setting the bar for becoming a rep-
resentative beacon too high. Thus, larger threshold values
(except 1.0) are preferable for mitigating merging effects but
require a different approach to reduce erroneous departures.

The basic version determines a departure when no repre-
sentative beacons are discovered in a single window. Any
single window missing every representative beacon aggres-
sively determines that the device is leaving a place. Instead,
the tolerance parameter requires at least tmax windows to
not detect the representative beacons, reducing erroneously
divided places while allowing larger threshold values to re-
duce merged places. Tolerance depth tmax, the maximum
tolerance value, is set as three windows which we used to
determine a stable scan when entering a place. By avoiding
a single window, the number of erroneously divided places
is reduced. Table 2 shows that the tolerance parameter elim-
inates the two divided places when using threshold 0.8 and
0.9. Smaller threshold values, on the other hand, resulted in
more merged places as the tolerance value reduced the op-
portunities to terminate a stay.

Table 3 compares the performance of different place discov-
ery techniques on traces from a scripted tour. BeaconPrint
missed places where Wi-Fi signals are significantly inconsis-

Algorithm Correct Merged Divided Missed False Recall

PlaceSense 26 4 0 0 0 0.87
BeaconPrint 18 10 0 2 0 0.60
Kang et al. 9 14 0 7 0 0.30

PlaceSenseGSM 11 16 0 8 0 0.40

Table 3. Number of erroneous places discovered by Kang et al., Bea-
conPrint, PlaceSense (Wi-Fi), and PlaceSenseGSM from a 30-places-
scripted-tour data set.
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Figure 5. The time offset of departure time in Kang et al., BeaconPrint,
PlaceSenseGSM, and PlaceSense. For PlaceSense, larger rrep value
decrease the time it takes before terminating a stay.

tent. Short trips, such as moving from one floor to another
floor in the same building, often did not provide enough new
beacons to terminate a place and start a new one. In con-
trast, PlaceSense is robust against noisy beacons as long as
more than one beacon is consistently discovered during a
stay. PlaceSense was also more sensitive when changing
venues unless more than one beacon was found strongly in
both places. PlaceSenseGSM, which only uses the currently
connect cell tower, performed reasonably well, even better
than Kang et al. [8], but showed limitation in discriminat-
ing between closely located places. Some places had many
handovers during a short period of time, resulting in being
identified as a missed place. Most of the places missed by
Kang et al. were due to GPS failing to lock enough satellites
in time. All of the merged places resulted from failing to dis-
criminate between different floors. While using Wi-Fi-based
coordinate systems may reduce the number of missed places,
merged places are unlikely to be reduced dramatically as the
coordinates are too coarse to differentiate the floors.

We further evaluated the accuracy of each discovered place
by its entrance and departure times. To measure the bound-
ary accuracy of places found by place discovery algorithms,
we measured the time offset of entrance and departure times
of each place. We excluded missed places in this evalua-
tion and used only the beginning and end that matched with
the ground-truth in the cases where the place was divided or
merged. We discuss the departure time first as our results
exhibit effects of delayed leaving time on the subsequently
visited place’s entrance time. Many of the places we visited
during the scripted tour were within three minutes walking
distance and could effect each other’s time boundaries. As
shown in Figure 5, larger threshold values decreased the time
it takes before terminating a stay. Fewer beacons become
representative when larger threshold values were used and
increase the opportunity to lose all of them earlier. Setting
the threshold extremely large, such as 1.0, dramatically in-
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Figure 6. The time offset of entrance time in Kang et al., BeaconPrint,
PlaceSenseGSM, and PlaceSense. For PlaceSense, large hidden delays
in departure time when rrep is small prevails the decreasing effect of
lowering rrep. Buffering reduces the hidden delay effect.

creased the incidence of the early termination of a stay. We
did not observe a noticeable delay in departure time when the
tolerance value is used, since departure time was recorded
when the tolerance value starts dropping below tmax. Con-
sequently, the departure time illustrated in Figure 5 did not
illustrate the delay in making the decision. However, this
hidden delay may impair the accuracy of the entrance time
to the next place visited, when the travel time between the
two places are less than tmax × w.

Similar to departure time, entrance time, as shown in Figure
6, is delayed when larger values of rrep are used. How-
ever, in the case of using tolerance values, the hidden delay
postpones discovering the subsequent visit and delays the
entrance time. Large hidden delays in departure time, when
the threshold value is 0.5 − 0.6 (Figure 5), dominates the
decreasing effect of lower threshold (Figure 6). However as
a larger threshold value reduces the delay on departure time,
the threshold effect on the entrance time begins to dominate
and increases the delay. Consequently, we have introduced
a buffer that starts speculating about the next potential place
while terminating the current one. By overlapping the de-
parture and entrance period, effects of the hidden delay are
significantly reduced. But buffering did not change the num-
ber of correctly discovered places or the distribution of erro-
neously discovered places.

Average offsets of entrance and departure time of Beacon-
Print, Kang et al., and PlaceSenseGSM are depicted in Fig-
ure 6 and Figure 5. BeaconPrint, in general, is more sen-
sitive to changes than the other place discovery algorithms.
This leads to comparatively earlier departure time and de-
layed entrance time. On the other hand, GSM and GPS
based approaches are less sensitive to changes as GPS and
GSM provide lower location resolution. With a high enough
threshold value (except 1.0) accompanied with our incre-
mental improvements, PlaceSense outperforms other place
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Figure 7. Number of places found from real-life traces by PlaceSense,
BeaconPrint, and Kang et al. PlaceSense reduces the number of missed
places while also increasing the number of interesting and false places.

Aron Bryan Chris All

PS BP KA PS BP KA PS BP KA PS BP KA

Cor. 233 156 81 251 182 63 242 175 79 726 513 223
Int. 10 1 2 6 1 0 13 0 2 29 2 4

Mer. 6 14 138 23 15 185 16 15 138 45 44 461
Div. 2 21 1 2 30 3 6 12 2 10 63 6
Mis. 0 50 21 3 52 28 3 65 48 6 167 97
Fal. 6 2 10 14 2 20 14 4 21 34 8 51

Recall 0.97 0.65 0.34 0.90 0.65 0.23 0.91 0.66 0.30 0.92 0.65 0.28
Precision 0.95 0.81 0.36 0.87 0.80 0.23 0.88 0.85 0.33 0.89 0.82 0.30

Table 4. The distribution of discovered places by different users (PS:
PlaceSense, BP: BeaconPrint, KA: Kang et al.)

discovery techniques both in the number of place errors as
well as time boundary accuracy.

Following our initial evaluation, we further validated our al-
gorithm by running it on multi-day traces. Three data col-
lectors collected these traces for four weeks each, follow-
ing their normal lives. Our data collectors were assigned
the pseudonyms Aron, Bryan, and Chris. Traces contained
various routines from ordinary work and home routines to a
multi-day trip to other cities. The results of PlaceSense on
these real-life traces generated with a representative thresh-
old rrep = 0.9 and tolerance depth tmax = 3 (optimal con-
figuration obtained from our initial evaluation) are shown in
Figure 7 and is compared against BeaconPrint and Kang et
al. using their suggested parameters. However, we did not
evaluate the time boundary accuracy as the error range of
time records provided by the data collectors were often more
than five minutes.

By focusing on representative beacons and buffering data for
subsequent visits, PlaceSense reduces the number of missed
and divided places while also increasing the number of in-
teresting and false places compared to BeaconPrint (Fig 7).
Kang et al. based on GPS resulted in significantly more
merged places as many proximate places located in nearby
buildings are identified as a single place. No significant dif-
ference among the three data collectors are found (Table 4).
PlaceSense has the highest overall recall and precision of all
three data collectors. The recall numbers are also consistent
with our results from the scripted tour (Table 3). Aron drives
to work and visited various buildings during work hours. 63
different places are visited, and 36 places including various



5 -10 min 10 - 30 min 30 - 2 hrs 2 - ∞ hrs

PS BP KA PS BP KA PS BP KA PS BP KA

Cor. 158 45 47 180 138 61 213 187 54 175 143 61
Int. 26 2 1 3 0 3 0 0 0 0 0 0

Mer. 12 15 97 13 12 102 17 12 158 3 5 104
Div. 0 0 0 3 7 1 5 27 1 2 29 4
Mis. 4 114 30 1 40 33 1 10 23 0 3 11
Fal. 33 6 38 1 2 12 0 0 1 0 0 0

Recall 0.91 0.26 0.27 0.91 0.70 0.31 0.90 0.79 0.23 0.97 0.79 0.34
Precision 0.80 0.69 0.26 0.92 0.87 0.36 0.91 0.83 0.25 0.97 0.81 0.36

Table 5. The distribution of discovered places by their visit durations
(PS: PlaceSense, BP: BeaconPrint, KA: Kang et al.)

restaurants and shops are visited once. Regular places other
than work and home include a gym, grocery stores, gas sta-
tions, and lunch places near work. Bryan takes buses to work
and frequently visits several indoor rooms in a single build-
ing at work: offices, server rooms, and meeting rooms. An
outdoor patio for lunch, coffee shops, bus stops, and a cou-
ple of outdoor recreation places were often visited. Among
the 50 different places he visits, 26 places are only visited
once during data collection. Chris, an undergraduate stu-
dent, walks to school and visits 108 different places in four
weeks. In the first two and a half weeks, many classrooms,
friend’s residences, and lab rooms are regularly visited. For
the remaining days, Chris visits multiple cites during spring
break, which led to more single visits than the other data
collectors (81 places).

We further investigate the distribution of discovered places
by their visit duration in Table 5. PlaceSense shows strength
in discovering brief visits as well as other long-term places
where the radio environment is unstable with many infre-
quent beacons. Places that BeaconPrint missed, but Place-
Sense discovered, include short visits to a convenience store,
gas station, post office, and various indoor rooms as well as
a long stay in meeting rooms and seminar rooms with many
unstable beacons. Visits to various stores where people gen-
erally roam around within a larger restricted area were also
often missed. False places found by both algorithms include
unrecognizable short stays that are not recorded in the data
collector’s diary. PlaceSense additionally finds a slow walk
through the hallway or open area as a place when a strong
beacon is found continuously during the walk. A ride on a
Wi-Fi enabled cab is also discovered as a place. However,
many of these cases are repeated and can be recognized so
that they can be filtered out. Interesting places mostly are
unrecorded brief visits to various place such as bus stop, gas
station, copy room, parking lot, etc., that are recoverable dur-
ing diary and map reviews.

Finally, to investigate the overall improvement of PlaceSense
in recognizing revisited places by enhancing place discov-
ery, we compare against BeaconPrint using the same recog-
nition algorithm it uses. We focus on how well places that
were actually visited are recognized. The first visits to a
place discovered correctly by both algorithms are given to
the algorithms for learning. Any subsequent visits are used
to evaluate recognition accuracy. Our real-life data set in-
cluded 143 places that have a valid learning visit, but only 63
places are visited more than once. Additionally, there are 62
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Figure 8. Percent correctly discovered and recognized from real-life
traces by time spent at the place (PS: PlaceSense, BP: BeaconPrint).
PlaceSense significantly improves accuracy in recognizing short visits.
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Figure 9. Percent correctly discovered and recognized from real-life
traces by the number of visits to the place (PS: PlaceSense, BP: Bea-
conPrint). Frequently visited places are often briefly visited.

places (49 were visited once) that only PlaceSense has a cor-
rect learning visit, and 6 places (5 are visited once) that only
BeaconPrint has. 10 places have no valid learning visit for
both algorithms. Kang et al. is excluded as its performance
in correctly discovering places is significantly lower than the
others. Places with no learning data are excluded. The per-
centage an algorithm correctly identifies a place is the ratio
of the total number of places the algorithms correctly pre-
dicts to the total number of places the data collectors actually
visited. Each error by the algorithms is further broken down
to missed and wrong places. Figure 8 shows PlaceSense’s
notable strength in recognizing short visits. For both algo-
rithms, similar percentage of places were incorrectly recog-
nized as nearby places that shares similar beacons. Figure 9
implicates that frequently visited places are often visited for
less than 30 minutes.

CONCLUSION AND FUTURE WORK
Our results show that PlaceSense provides a significant im-
provement in the ability to discover and recognize places.
Precision and recall with PlaceSense are 89% and 92% ver-



sus the previous state-of-the-art BeaconPrint approach at 82%
and 65% precision and recall. Because it uses response rate
to select representative beacons and suppresses the influence
of infrequent beacons, PlaceSenses accuracy gains are par-
ticularly noticeable in challenging radio environments where
beacons are inconsistent and coarse. PlaceSense also de-
tects place entrance and departure times with over twice the
precision of previous approaches thanks to judicious use of
buffering and timing. It has the ability to overlap the de-
parture fingerprint of one place with the arrival fingerprint
of the subsequent place. Lastly, PlaceSense is accurate at
discovering places visited for short durations (less than 30
minutes) or places where the device remains mobile. Ac-
curacy in short-duration and transient places is a significant
contribution because these types of places are valuable to
emerging applications like life-logging and social location
sharing.

We believe PlaceSense has solved some of the major open
technical problems and corner cases with beacon-based place
detection. Although there is always value in incremental re-
search to refine and validate the place learning algorithms
themselves, we think most future research should focus in
two new areas. First, we promote a research agenda that
moves up the application stack. Just as coordinate-based
location applications have exploded recently with services
such as Google Maps Mobile and Apple iPhone map appli-
cations, we believe that place will be a critical feature in the
next wave of killer mobile applications. People are going to
want to-do lists, instant messaging, photo journals, and other
everyday applications to have awareness that goes beyond
simple numerical latitude and longitude coordinates. Place-
Sense can run on todays commodity mobile devices because
it uses existing Wi-Fi and GSM radios as its sensors and has
only modest computational requirements, which means re-
searchers now have both the devices and place detection ca-
pabilities to deploy, instrument, and evaluate everyday ap-
plications that use place data. The outcome of these field
studies will hopefully be a much more nuanced insight into
how people actually perceive places in specific application
contexts. The results could feed back into the place learn-
ing algorithms themselves to extend them with the ability to
be tuned for particular uses or situations. The second fu-
ture direction we see is research to combine place learning
with other sorts of contextual information. We believe the
two most important contexts to complement Where am I?
are Who am I with? and What am I doing? Combining lo-
cation with activity and social interaction offers the exciting
goal of rich, natural, personalized interactions with mobile
devices and instrumented environments. Integrating these
contexts involves many challenges in joint modeling, ma-
chine learning, sensing, and interaction but could pay off
with a whole new level of capability for high-value applica-
tions like health monitoring, gaming, and social communi-
cation.
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