nesC

Prof. Chenyang Lu

CSE 5218

How should network msg be handled?

Socket/TCP/IP?

Too much memory for buffering and threads
Data buffered in network stack until application threads read it
Application threads blocked until data is available

Transmit too many bits (sequence #, ack, re-transmission)
Tied with multi-threaded architecture

TinyOS solution: active messages

CSE 521S

Active Message

Every message contains the name of an event handler
Sender: split-phase operation
Phase I
Declaring buffer storage in a frame
Naming a handler
Requesting Transmission; exit
Phase IT
Done completion signal
Receiver
Event handler is called when message is received

No blocked or waiting threads on sender or receiver
Behaves like any other events

Reduce buffering

CSE 5218 3

Send Message

char TOS_COMMAND(INT_TO_RFM_OUTPUT)(int val){
int_to_led_msg* message = ‘(int_to_led_msg*j‘VAR(msg).data;‘
‘if (1VAR(pending)) {‘
‘message—>val = val#

if)(TOS_COMMAND(INT_TO_RFM_SUB_SEND_MSG TOS_MSG_BCAST,
[AM_MSG(TNT_READING), &VAR(msg))) {

‘VAR(pending) =. 1;(

return 1; :
} access appln msg buffer
} ’ cast to defined format
return 0; \ appI‘ication specific ready check
¥ build msg

request transmission
destination identifier

get handler identifier
msg buffer

CSE 521S mark busy 4

Bytes

Space Breakdown...

Code size for ad hoc networking
application

3500

B Interrupts

3000 O Message Dispatch

O Initilizat_ion
2500 :Eg‘f}‘:gg‘gor Scheduler: 144 Bytes code
O Clock Totals: 3430 Bytes code
1 W Scheduler 226 Bytes data

O Led Control

W Messaging Layer

O Packet Layer

O Radio Interface

B Routing Application
B Radio Byte Encoder

1500

1000

500 4

D. Culler et. Al., TinyOS boot camp presentation, Feb 2001

CSE 5218 5

Power Breakdown...

Active Idle Sleep
CPU 5 mA 2 mA 5 pA
Radio 7mA (TX) |45 mA(RX) |5pA
EE-Prom 3mA 0 0 Panasonic
LED's 4 mA 0 0 CR2354
Photo Diode | 200 pA 0 0 560 mAh
Temperature | 200 pA 0 0

Lithium Battery runs for 35 hours at peak load and years
at minimum load!

That's three orders of magnitude differencel!

A one byte transmission uses the same energy as approx
11000 cycles of computation.

CSE 521S 6

Time Breakdown...

Packet reception
Components work breakdown (CPU Utilization |Energy (nj/Bit)

AM 0.05% 0.20% 0.33
Packet 1.12% 0.51% 7.58
Ratio handler 26.87% 12.16% 182.38

Radio decode thread 48% 2.48%
RFM 30.08%
Radio Reception - = 1350
Idle - @ -
Total 100.00% 100.00% 2028.66

50 cycle thread overhead (6 byte copies)

10 cycle event overhead (1.25 byte copies)

CSE 5218

Advantages
Small memory footprint
Only needed OS components are complied/loaded
Non-preemptable FIFO task scheduling
Power efficient
Sleep whenever task queue is empty
Efficient modularity

Function call (event, command) interface between
components

Concurrency-intensive operations

Event/command + tasks

Efficient interrupt/event handling (function calls,
no user/kernel boundary)

CSE 521S

Lack of Real-Time Support

FIFO, non-preemptive task scheduling
Urgent task may wait for non-urgent ones

CSE 5218 9

Solution of Impala/ZebraNet

Timetable for periodic operations
Prioritize events

CSE 521S 10

Impala: Scheduling

@O O®
| @ | __®

A ~

Metworking Phase GPS Sensing Phase Slesp Phase

G} CPU swake up/Radio, FLASH power on @ GFS power on

@ Kadio transmillingfreceiving starl @ GIPS sensing tune
@ Metwark communication fime @ GPS power off FLLASH power on
@) Radio power offiFLASH power off CPLU aleepFLASH power off

Figure 5: Timeline schedule of Impala regular oper-
ations.

CSE 5218

11

Impala: Events

Event Handler Event Filter Event Signaler
|'| High Priority

Metwork Packel Event Quene

Metwork Send-Done Event Queue =

Application Timer Event Guene l—.

GPS Data Event Queue -
{} Low Priority

Figure G6: Impala event handling model.

CSE 521S

12

What's missing?

Support for
different workload
varying workload
predictability

Leverage on real-time scheduling techniques
Static scheduling + schedulability analysis
Dynamic scheduling + overload protection

Topic for an interesting project!

CSE 5218 13

nesC

Programming Networked Embedded Systems

CSE 521S 14

Principles

Support TinyOS components and
event/command interfaces
Static language
no malloc, no function pointers
Call graph and variable access are known at
compile time
Whole-program analysis at compile time
Detect race conditions

Cross-component optimization: function inlining,
eliminate unreachable code...

CSE 5218 15

nesC Application

Implementation Interfaces
module: C behavior provides interface
configuration: select requires interface
and wire
' T"& module TimerM |
StdControl | Timer provides {
interface EtdControl;
TimerM interface Timer;

I
HWClock nzes interface Clock as CTlk;

CSE 521S 16

Interface

interface Clock {

command result_t setRate(char interval, char scale);
event result_t fire();

}

interface Send {
command result_t send(TOS_Msg *msg, uint16_t length);
event result_t sendDone(TOS_Msg *msg, result_t success);

}

interface ADC {
command result_t getData();

event result_t dataReady(uint16_t data);
}

Bidirectional interface supports split-phase operation

CSE 5218 17

module SurgeM {
MOdUle provides interface StdControl;
uses interface ADC;
uses interface Timer;
uses interface Send;

}

implementation {
uint16_t sensorReading;
command result_t StdControl.init()
{
return call Timer.start(TIMER_REPEAT, 1000);

event result_t Timer.fired()

call ADC.getData();
return SUCCESS;

}

event result_t ADC.dataReady(uint16_t data) {
sensorReading = data;
... send message with data in it ...
return SUCCESS;

}

StdControt | Timer configuraticn Timerl {

el
ENF

f'l f":ﬁ’ privmei J Etdlo, 1

° ° nterfacs £t ntrol;

Conflgurqt'on Snc:Son'.rnll Timer 1 interface Timer;
TimerM }

. . . imgplementation
conflgur‘aﬁon Tlmel"C{ componentsa T:Lr{rerh'l, HAClock;
provides {

interface StdControl;

interface Timer;

StdControl = TimerM.EStdControl;
Timer = TimerM.Timer;

TimerM.Clk -» HWClock.Clock;

HWClock

} TimerC

Figure 5: Tiny0S’s timer service: the Timerc configuration.
implementation {
components TimerM, HWClock;
StdControl = TimerM.StdControl;
Timer = TimerM.Timer;
TimerM.Clock -> HWClock.Clock;

CSE 5218 19

Surge

SurgeC

EidC.orimm

Main | Surgedd

Sendkisg

BodConin | ADC | | Std Coninal =) EvConiTo |3.='|:|'-.'=5|| o]

Photo | | TimerC Multihop | [LedsC

CSE 521S 20

Race Conditions

CSE 5218 21

Example: Race Conditions

module SurgeM{ ...}
implementation {

bool busy;

uint16_t sensorReading;

event result_t Timer.fired() {
if (Ibusy)

busy = TRUE;

call ADC.getData(); Asynchronous Code

}
return SUCCESS;

CSE 521S 22

Example: Race Conditions

In a command handler:
/* Contains a race: */
if (state == IDLE) {
state = SENDING;
count++;
// send a packet
}

CSE 5218 23

Concurrency in TinyOS

Asynchronous code (AC): code that is
reachable from at least one interrupt handler
Synchronous code (SC): code that is only
reachable from tasks

Key properties

Any update to shared state (variable) from AC is a
potential race condition

Any update to shared state from SC that is also
updated from AC is a potential race condition

CSE 521S 24

TinyOS Two-level Scheduling
Two priorities
Event/command
Tasks
Event/command can preempt task
Tasks cannot preempt another task or

event/command
Preempt Tasks
M\?P:

commands

events

I commands

I Interrupts

Time
Hardware

CSE 5218 25

Concurrency in TinyOS

Asynchronous code (AC): code that is

reachable from at least one interrupt handler
Event/command

Synchronous code (SC): code that is only

reachable from tasks

Key properties

Any update to shared state (variable) from AC is a
potential race condition

Any update to shared state from SC that is also
updated from AC is a potential race condition

CSE 521S 26

Solution

Race-Free Invariant: Any update to shared state is
either not a potential race condition (SC only), or
occurs within an atomic section.

Compiler check: identifies all shared states and
return errors if the above invariant is violated

Fix code

Make the access to all shared states with potential race
conditions atomic

Move access to SC

CSE 5218 27

Atomic Sections

atomic {
<Statement list>
}

Disable interrupt when atomic code is being executed

Alternative: semaphores based on test-set operations

But cannot disable interrupt for long! > restrictions
No loops
No commands/events
Calls OK, but callee must meet restrictions too

CSE 521S 28

module SurgeM { ... }
implementation {

bool busy:

norace uint16_t sensorReading;

event result_t Timer.fired() {
disable bool localBusy:
interrupt atomic {

localBusy = busy:
busy = TRUE: test-and-set

enable }
AR if (localBusy)

call ADC.getData();
return SUCCESS:;

}

task void sendData() { // send sensorReading
adcPacket.data = sensorReading:
call Send.send(&adcPacket, sizeof adcPacket.data);
return SUCCESS;

event result_t ADC.dataReady(uint16_t data) {
sensorReading = data:
post sendData():
return SUCCESS;

}

29

Example 2

/* Contains a race: */

if (state == IDLE){
state = SENDING;
count++;
// send a packet

}

/* Fixed version: */
uint8_t oldState;
atomic {
oldState = state;
if (state == IDLE) {
state = SENDING;

}
}
if (oldState == IDLE) {
count++;
// send a packet
}
CSE 521S 30

Results

CSE 5218 31

Results

Tested on full TinyOS tree, plus applications
186 modules (121 modules, 65 configurations)
20-69 modules/app, 35 average

17 tasks, 75 events on average (per app)
Lots of concurrency!

Found 156 races: 103 real (!)
About 6 per 1000 lines of code
53 false positives
Fixing races:
Add atomic sections
Post tasks (move code to task context)

CSE 521S 32

Optimization: inlining

App Code size Code Data size CPU
mlined woninlined | reduction reduction
Surge 14794 16084 % 1188 13%
Mata 25040 27458 9% 1710 4%
TinyDE | 64910 T1724 s 2804 0%

Inlining reduces code size AND improves

performance!

CSE 5218

33

Issues: Programming Model

No dynamic memory allocation

How to size buffer when amount of data varies?

Bound memory footprint
Prevent run-time corruption
Allow offline footprint analysis (nhot done)

Restriction: no “long-running” code in
command/event handlers
atomic sections
Push errors to applications
Burden application programmers
Allow application-specific optimization
Ex., which message needs retransmission?
No kernel/user protection
Application can corrupt an entire system

CSE 521S

34

Reminder

Project

You should (at least) have a team now!
If not, email cs537s@cse ASAP

Discuss your ideas with me
Critiques

No critique is due on Tuesday

This is a critique (on MAC) due on Sunday
Presentations

Go over your slides with me one week before your
presentation

CSE 5218 35

Proposal Outline

Team
Motivate the problem
Define the problem
Assumptions, requirements, goals and non-goals
Related work
What have been done before?
How does your solution compare to them?
Approach (optional)
Intuition and rationale: Why is it a good idea?
Sketch of your approach and design.
Experimental plan

What hardware (e.g., sensor boards) or simulation tools are you
going to use?
What experiments are you going fo run?

What criteria and metrics are you going to use to evaluate your
solutions?

Milestones (with dates)
References
CSE 521S 36

Proposal Requirements

4-5 pages, 10 point, double column, single space.
Email me your proposal by midnight, 9/27 (Monday).

See project Web page (updated today) for outline
and requirements.

CSE 5218 37

