
CSE 521S 1

nesC

Prof. Chenyang Lu

CSE 521S 2

How should network msg be handled?

• Socket/TCP/IP?
• Too much memory for buffering and threads

• Data buffered in network stack until application threads read it
• Application threads blocked until data is available

• Transmit too many bits (sequence #, ack, re-transmission)
• Tied with multi-threaded architecture

• TinyOS solution: active messages

CSE 521S 3

Active Message
• Every message contains the name of an event handler
• Sender: split-phase operation

• Phase I
• Declaring buffer storage in a frame
• Naming a handler
• Requesting Transmission; exit

• Phase II
• Done completion signal

• Receiver
• Event handler is called when message is received

No blocked or waiting threads on sender or receiver
Behaves like any other events
Reduce buffering

CSE 521S 4

Send Message
char TOS_COMMAND(INT_TO_RFM_OUTPUT)(int val){

int_to_led_msg* message = (int_to_led_msg*)VAR(msg).data;

if (!VAR(pending)) {

message->val = val;

if (TOS_COMMAND(INT_TO_RFM_SUB_SEND_MSG)(TOS_MSG_BCAST,
AM_MSG(INT_READING), &VAR(msg))) {

VAR(pending) = 1;

return 1;

}

}

return 0;

}

msg buffer

access appln msg buffer

cast to defined format

mark busy

application specific ready check

build msg
request transmission

destination identifier

get handler identifier

CSE 521S 5

Space Breakdown…
Code size for ad hoc networking

application

0

500

1000

1500

2000

2500

3000

3500

B
yt

es

Interrupts
Message Dispatch
Initilization
C-Runtime
Light Sensor
Clock
Scheduler
Led Control
Messaging Layer
Packet Layer
Radio Interface
Routing Application
Radio Byte Encoder

Scheduler: 144 Bytes code
Totals: 3430 Bytes code

226 Bytes data

D. Culler et. Al., TinyOS boot camp presentation, Feb 2001

CSE 521S 6

Power Breakdown…

• Lithium Battery runs for 35 hours at peak load and years
at minimum load!

• That’s three orders of magnitude difference!
• A one byte transmission uses the same energy as approx

11000 cycles of computation.

003 mAEE-Prom

0
0
0

4.5 mA (RX)
2 mA

Idle

0200 µATemperature
0200 µAPhoto Diode
04 mALED’s

5 µA7 mA (TX)Radio
5 µA5 mACPU

SleepActive

Panasonic
CR2354
560 mAh

CSE 521S 7

Time Breakdown…

• 50 cycle thread overhead (6 byte copies)
• 10 cycle event overhead (1.25 byte copies)

Components
Packet reception
work breakdown CPU Utilization Energy (nj/Bit)

AM 0.05% 0.20% 0.33
Packet 1.12% 0.51% 7.58
Ratio handler 26.87% 12.16% 182.38
Radio decode thread 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66

CSE 521S 8

Advantages
• Small memory footprint

• Only needed OS components are complied/loaded
• Non-preemptable FIFO task scheduling

• Power efficient
• Sleep whenever task queue is empty

• Efficient modularity
• Function call (event, command) interface between

components
• Concurrency-intensive operations

• Event/command + tasks
• Efficient interrupt/event handling (function calls,

no user/kernel boundary)

CSE 521S 9

Lack of Real-Time Support
• FIFO, non-preemptive task scheduling

• Urgent task may wait for non-urgent ones

CSE 521S 10

Solution of Impala/ZebraNet
• Timetable for periodic operations
• Prioritize events

CSE 521S 11

Impala: Scheduling

CSE 521S 12

Impala: Events

CSE 521S 13

What’s missing?
• Support for

• different workload
• varying workload
• predictability

• Leverage on real-time scheduling techniques
• Static scheduling + schedulability analysis
• Dynamic scheduling + overload protection

• Topic for an interesting project!

CSE 521S 14

nesC
Programming Networked Embedded Systems

CSE 521S 15

Principles
• Support TinyOS components and

event/command interfaces
• Static language

• no malloc, no function pointers
• Call graph and variable access are known at

compile time
• Whole-program analysis at compile time

• Detect race conditions
• Cross-component optimization: function inlining,

eliminate unreachable code…

CSE 521S 16

nesC Application
• Implementation

• module: C behavior
- configuration: select

and wire

• Interfaces
- provides interface
- requires interface

CSE 521S 17

Interface
interface Clock {

command result_t setRate(char interval, char scale);
event result_t fire();

}

interface Send {
command result_t send(TOS_Msg *msg, uint16_t length);
event result_t sendDone(TOS_Msg *msg, result_t success);

}

interface ADC {
command result_t getData();
event result_t dataReady(uint16_t data);

}

Bidirectional interface supports split-phase operation

CSE 521S 18

module SurgeM {
provides interface StdControl;
uses interface ADC;
uses interface Timer;
uses interface Send;

}

implementation {
uint16_t sensorReading;
command result_t StdControl.init()
{

return call Timer.start(TIMER_REPEAT, 1000);
}
event result_t Timer.fired()
{

call ADC.getData();
return SUCCESS;

}
event result_t ADC.dataReady(uint16_t data) {

sensorReading = data;
... send message with data in it ...
return SUCCESS;

}
...

}

Module

CSE 521S 19

Configuration
configuration TimerC {

provides {
interface StdControl;
interface Timer;

}
}

implementation {
components TimerM, HWClock;
StdControl = TimerM.StdControl;
Timer = TimerM.Timer;
TimerM.Clock -> HWClock.Clock;

}

CSE 521S 20

Surge

CSE 521S 21

Race Conditions

CSE 521S 22

Example: Race Conditions

Asynchronous Code

module SurgeM { ... }
implementation {
bool busy;
uint16_t sensorReading;

event result_t Timer.fired() {
if (!busy)

busy = TRUE;
call ADC.getData();

}
return SUCCESS;

}

CSE 521S 23

Example: Race Conditions
In a command handler:
/* Contains a race: */
if (state == IDLE) {

state = SENDING;
count++;
// send a packet

}

CSE 521S 24

Concurrency in TinyOS
• Asynchronous code (AC): code that is

reachable from at least one interrupt handler
• Synchronous code (SC): code that is only

reachable from tasks
• Key properties

• Any update to shared state (variable) from AC is a
potential race condition

• Any update to shared state from SC that is also
updated from AC is a potential race condition

CSE 521S 25

TinyOS Two-level Scheduling
• Two priorities

• Event/command
• Tasks

• Event/command can preempt task
• Tasks cannot preempt another task or

event/command

Hardware

Interrupts

ev
en

ts

commands

FIFO
Tasks

POST
Preempt

Time

commands

CSE 521S 26

Concurrency in TinyOS
• Asynchronous code (AC): code that is

reachable from at least one interrupt handler
• Event/command

• Synchronous code (SC): code that is only
reachable from tasks

• Key properties
• Any update to shared state (variable) from AC is a

potential race condition
• Any update to shared state from SC that is also

updated from AC is a potential race condition

CSE 521S 27

Solution
• Race-Free Invariant: Any update to shared state is

either not a potential race condition (SC only), or
occurs within an atomic section.

• Compiler check: identifies all shared states and
return errors if the above invariant is violated

• Fix code
• Make the access to all shared states with potential race

conditions atomic
• Move access to SC

CSE 521S 28

Atomic Sections
atomic {

<Statement list>
}

• Disable interrupt when atomic code is being executed
• Alternative: semaphores based on test-set operations

• But cannot disable interrupt for long! restrictions
• No loops
• No commands/events
• Calls OK, but callee must meet restrictions too

CSE 521S 29

module SurgeM { ... }
implementation {

bool busy;
norace uint16_t sensorReading;

event result_t Timer.fired() {
bool localBusy;
atomic {
localBusy = busy;
busy = TRUE;

}
if (!localBusy)
call ADC.getData();

return SUCCESS;
}

task void sendData() { // send sensorReading
adcPacket.data = sensorReading;
call Send.send(&adcPacket, sizeof adcPacket.data);
return SUCCESS;

}
event result_t ADC.dataReady(uint16_t data) {

sensorReading = data;
post sendData();
return SUCCESS;

}

test-and-set

disable
interrupt

enable
interrupt

CSE 521S 30

Example 2
/* Contains a race: */
if (state == IDLE) {

state = SENDING;
count++;
// send a packet

}

/* Fixed version: */
uint8_t oldState;
atomic {

oldState = state;
if (state == IDLE) {

state = SENDING;
}

}
if (oldState == IDLE) {

count++;
// send a packet

}

CSE 521S 31

Results

CSE 521S 32

Results
• Tested on full TinyOS tree, plus applications

• 186 modules (121 modules, 65 configurations)
• 20-69 modules/app, 35 average
• 17 tasks, 75 events on average (per app)

• Lots of concurrency!

• Found 156 races: 103 real (!)
• About 6 per 1000 lines of code
• 53 false positives

• Fixing races:
• Add atomic sections
• Post tasks (move code to task context)

CSE 521S 33

Optimization: inlining

• Inlining reduces code size AND improves
performance!

CSE 521S 34

Issues: Programming Model
• No dynamic memory allocation

• How to size buffer when amount of data varies?
• Bound memory footprint

• Prevent run-time corruption
• Allow offline footprint analysis (not done)

• Restriction: no “long-running” code in
• command/event handlers
• atomic sections

• Push errors to applications
• Burden application programmers
• Allow application-specific optimization

• Ex., which message needs retransmission?
• No kernel/user protection

• Application can corrupt an entire system

CSE 521S 35

Reminder
• Project

• You should (at least) have a team now!
• If not, email cs537s@cse ASAP

• Discuss your ideas with me
• Critiques

• No critique is due on Tuesday
• This is a critique (on MAC) due on Sunday

• Presentations
• Go over your slides with me one week before your

presentation

CSE 521S 36

Proposal Outline
1. Team
2. Motivate the problem
3. Define the problem

• Assumptions, requirements, goals and non-goals
4. Related work

• What have been done before?
• How does your solution compare to them?

5. Approach (optional)
• Intuition and rationale: Why is it a good idea?
• Sketch of your approach and design.

6. Experimental plan
• What hardware (e.g., sensor boards) or simulation tools are you

going to use?
• What experiments are you going to run?
• What criteria and metrics are you going to use to evaluate your

solutions?
7. Milestones (with dates)
8. References

CSE 521S 37

Proposal Requirements
• 4-5 pages, 10 point, double column, single space.
• Email me your proposal by midnight, 9/27 (Monday).

• See project Web page (updated today) for outline
and requirements.

