
YAES simulator: a tutorial

Lotzi Bölöni

April 2, 2008 - version 0.2

Contents

1 The big picture 1

2 How to run a simulation? 2
2.1 Running a simulation interactively 2
2.2 Running a simulation without interactive control 3

3 The components of a simulation 3
3.1 The simulation input . 3
3.2 The simulation output . 4
3.3 The simulation code . 5
3.4 The update function . 5
3.5 The context . 6

4 How to create a video? 6

5 Generating graphs and presenting results 7
5.1 Parameter sweeps . 7

5.1.1 Saving your data . 8
5.2 Generating graphs . 8

1 The big picture

YAES is a time-step simulator, that is, the simulator performs something at
every timestep.

The input to the simulators are:

- the input parameters (SimulationInput).

- the simulation code (this is a class implementing the
yaes.framework.simulation.SimulationCode interface).

- what to do before simulation starts (in the setup function), at every
timestep (in the update function) and after the simulation finishes.

1

During running the simulation, the current data of the simulation is carried
in the context, a class implementing the yaes.framework.simulation.context
interface. It is important that you keep all the information in this class, rather
than in other classes you write - this allows many cool things like re-running
only parts of a series of simulation, processing the results of the simulation later,
distributing a simulation over many machines, and so on.

Finally, the output of the simulation is captured in the
yaes.framework.simulation.SimulationOutput class. You don’t need
to overwrite this class, it is fine as it is. For your convenience, the
SimulationOutput class will carry all the input parameters, measurements you
might have made, and the final version the of context.

SimulationOutput is serializable, and if you kept the context serializable as
well, then you can just write and load it to a file and you have the results of the
simulation stored for future inspection.

2 How to run a simulation?

We will assume that you have the input parameters, the context class
MyContext, and the simulation code class MyCode.

In the first approximation, there are two ways to run a simulation. In the
interactive mode, you step through the simulation step by step. This makes
sense during debugging or demoing. Nevertheless, you might want to have some
sort of visualization as at least informative text output happening in this case.

Alternatively, you just want to run a simulation as fast as possible and
you are only interested on the output. This is important in many scientific
studies where you need to run the same simulation many times and get the
average values, or, alternatively, you need to run the simulation many times
while varying them or more parameters.

2.1 Running a simulation interactively

This is what you will put somewhere in your code:

SimulationInput si = new SimulationInput();
si.setStepTime(100); //run for 100 cycles
si.setParameter("Temperature", 70);

In practice, almost always you will define a constant for the string “Temper-
ature”. Now for the run itself:

MyContext context = new MyContext();
simulationOutput = SimulationControlGui.simulation(si, MyCode.class, context);

And this is it. Note that the simulation code is passed as a class, rather
than an external instantiation.

If you run this code, it brings up the window in Figure 1.

2

Figure 1: screen shot for controlling the simulation

You first need to push Setup, then you can choose Step or Run. If you are
in the middle of a run, you can stop it at the next timestep by pushing Stop
(you can’t stop in the middle of a timestep).

The table under the buttons show the variables of the simulation output.
Note that all the parameters of the SimulationOutput were already copied to
the output.

2.2 Running a simulation without interactive control

To run a simulation without interactive control you call:

out = Simulation.simulate(si, MyCode.class, Context);

The GUI will not appear, and the simulation will run automatically from
beginning to end (which is usually the maximum number of cycles specified in
the simulation input). In the following we discuss in more detail the components
of the simulation.

3 The components of a simulation

3.1 The simulation input

The simulation input class is a simple repository of parameters addressed by
name. It can store integers, doubles, strings and enums. Only that when you
read them, you need to know the type:

SimulationInput si = new SimulationInput();
si.setParameter("Temperature", 70);
double temp = si.getParameterDouble("Temperature");

3

The simulation input can be created with an optional parameter taking
another simulation input object. The effect is to copy all the parameters over
to the new input. This comes in handy if you need to generate inputs where
only one parameter differs (parameter sweep).

3.2 The simulation output

The simulation output is also a repository of values addressed by name. How-
ever, its main focus is the processing and manipulating of the statistic properties
of the values. Let us see an example. Create a simulation output and update
its variable "X":

SimulationOutput so = new SimulationOutput();
so.update("X", 1.0);
so.update("X", 5.0);
so.update("X", 4.0);

Now we can inspect this variable. We can, of course, retrieve its last value:

double x = so.getValue("X", RondomVariable.Probe.LASTVALUE);

which will be, of course, 4. But we can retrieve the maximum, minimum
and average:

xmax = so.getValue("X", RandomVariable.Probe.MAX);
xmin = so.getValue("X", RandomVariable.Probe.MIN);
xaverage = so.getValue("X", RandomVariable.Probe.AVERAGE);

We can retrieve the sum:

xsum = so.getValue("X", RandomVariable.Probe.SUM);

the number of times the variable was updated:

xcount = so.getValue("X", RandomVariable.Probe.COUNT);

or the variance:

xvariance = so.getValue("X", RandomVariable.Probe.VARIANCE);

We can also retrieve the lower and higher range of the 95% confidence inter-
val.

All these come in handy in the post simulation analysis, the generation of
the graphs and so on.

4

3.3 The simulation code

The simulation code class needs to implement the actual simulation. It appears
that this will be a very complex class but in practice it is usually very simple.

One thing to remember: you should keep the SimulationCode class store-
less, that is, do not create any variables here. All the state of the simulation
should go into the context.

Here is what you would have in the setup:

public void setup(SimulationInput sip, SimulationOutput sop,
IContext theContext) {
final DirectedDiffusionContext context =

(DirectedDiffusionContext) theContext;
context.initialize(sip, sop);

}

So basically you initiate the context. The context, having state is worth
initializing. The code, not having any variables, does not have anything with
initializing.

The postprocess() function gives you an opportunity to do some calcula-
tions after the simulation had been finished. One example would be to calculate
values which can not be calculated during simulation. In the first approxima-
tion, leave this function empty, and add code on the need-by-need basis.

3.4 The update function

This is where the real work of the simulation happens. At every timestep, this
function needs to perform all the activities which advance the simulation such
as:

- move the vehicles

- perform the message

- agents make decision

- energy gets consumed

- and so on

However, this functionality is the business of the individual objects which
are part of the environment. These objects need to provide an “update” func-
tion which perform the work. The responsibility of the update function in the
simulation code is to call the update function of all the relevant objects in the
context.

This update function takes as a parameter the current time, and return
an integer value. Return 1 if you want to continue the simulation for another
timestep, return 0 if you want to terminate it early (the simulation will terminate
anyhow when the specified timestep in the simulation input expire).

5

3.5 The context

As we said previously, the context is the repository of the current state of the
simulation. There are essentially two different type of objects which you keep
here:

- constants and variables which are here for convenience as measurement
purposes

- active objects, which need to be updated (more exactly, be themselves
update) at every simulation step. Examples are agent, vehicles, network
nodes, sensors and so on. One special object of this type is the World.

The World object is supposed to represent the environment in which the
active objects operate. There are two ready-mode world objects in YAES:

- yaes.framework.world.World: a generic world for embodied agents.
Contains time, a map, a list of named locations, a directory of objects.

- yaes.framework.world.sensornetwork.SensorNetworkWorld in addi-
tion to the regular world, it maintains a list of sensors, actuators (mo-
bile node such as intruder). It is also managing the communication and
perception among the nodes.

In an ideal world, you need to develop a world model for your specific ap-
plication. In a lesser world, just take one of the existing ones, and if it does not
cover what you need, complement it with objects in your context.

4 How to create a video?

We assume that you have a running simulation of your chosen application. We
assume that you have a working display of your simulation on the visual panel.

The first step is to convince YAES to save an image of the visual panel at
every simulation step. To do this, you need to go to your xxxSimulation.java
class (the one which implement ISimulationCode). In the update function you
will probably find the call to repaint the visual display. Right after that, you
need to enter the saving of the file, so the result should be as follows:

context.getVisual().repaint();
String fileName = String.format("video%03d.jpg", (int) time);
context.getVisual().saveImage(fileName);

This will save it in files video001.jpg, video002.jpg... etc. What remains
is to create a video out of these files. You can use your favorite video editor
program - some versions of Microsoft Windows come with a simple one.

Another way is to use mencoder. Download the mplayer package from
http://www.mplayerhq.hu. The command line you want to use is something
like this:

6

mencoder mf://*.jpg -mf w=800:h=600:fps=25:type=jpg -ovc
lavc -lavcopts vcodec=mpeg4:mbd=2:trell -oac copy -o output.avi

For more complete information, check http://www.mplayerhq.hu/DOCS/HTML/
en/menc-feat-enc-images.html.

5 Generating graphs and presenting results

5.1 Parameter sweeps

We assume that you have your simulation running, and that you are collection
the performance results of your simulation in the SimulationOutput. Now,
you want to prepare a presentation or a paper with your performance results.
The accepted was to do this is to show a graph, which contains on the X axis
something which is considered an input parameter (such as number of nodes)
and on the Y axis something which is considered a performance metric (such as
packets lost).

Let us consider first the data acquisition. The normal way to do this is to
perform the simulation for all the values of the specific input parameter in the
range, while keeping all the other parameters constant. This process is called
a parameter sweep. Parameter sweeps tend to be computationally expensive,
thus you don’t want to run them visually - much more important than the
visualization is the ability to see how far they have progressed and how much is
left.

This is how you perform a parameter sweep:

List<SimulationInput> inputs = new ArrayList<SimulationInput>();
for (int nodes = 10; nodes < 100; nodes = nodes + 5) {

SimulationInput sim = new SimulationInput(model);
sim.setParameter("Nodes", nodes);
inputs.add(sim);

}
List<SimulationOutput> outputs =

Simulation.simulationSet(inputs, MySimulation.class, MyContext.class);

To put it simple, you create a list of SimulationInput objects which dif-
fer in only one parameter, feed it to YAES, and what you get is an array of
SimulationOutput object. One little thing to consider is that the context will
be created with a default constructor - thus if you need to initialize it, do it in
the setup() function of the simulation.

Many times you want to compare your algorithm against its competitors (eg.
random, greedy or differently parametrized versions of the same algorithm). You
will need to repeat the parameter sweep for each competitor. The output of this
process is a collection of lists of simulation output objects.

7

5.1.1 Saving your data

The lists of SimulationOutputs are serializable and can be read and written to a
file using the save, saveList, restore and restoreList functions in SimulationOut-
put.

Use them. Do not generate a long function which does all the calculations
in memory and at the end generates the graphs and discards the data. Put the
generation of the graphs and the running of simulation in separate menu items.

You might want to check the Simulation.cachedSimulationSet() func-
tion, which allows you to re-run only parts of the simulation.

Although it seems a wasted time, the effort put in to run your simulation ef-
ficiently, is time well spend. You will waste more time re-running the simulation
over and over.

5.2 Generating graphs

We assume that you have the lists of simulation outputs as discussed above.
Now, you can generate a graph by specifying for each individual line on the
graph

• what list of simulatoon outputs to take the data from

• what value to put on the X axis - this will be the parameter you have done
the parameter sweep on

• what value to put on the Y axis - this would be the performance metric
of interest, and its appropriate statistical sample: last value, average,
minimum, maximum and so on.

Here is an example:

List<SimulationOutput> myalgorithm... \\ obtained from simulation
List<SimulationOutput> randomalgorithm... \\ obtained from simulation

PlotDescription pd = new PlotDescription("The number of nodes",
"The performance");

pd.addPlotLine(new PlotLineDescription("Nodes", "Performance",
"My algorithm", myalgorithm));
pd.addPlotLine(new PlotLineDescription("Nodes", "Performance",

"Random algorithm", randomalgorithm));
pd.generate(new File("performancegraph.m"));

Note that a different constructor of PlotLineDescription class allows you
to plot various aggregates such as maximum, minimum, average, sum and so
on.

This segment of code will create a file performancegraph.m. You need to
simply run this file in Matlab to display the graph. You can use the Matlab tools
to customize the graph to your liking and then save it in the desired format,
such as EPS for inclusion in LaTeX.

8

