
Lecture Notes 2
Random Variables

• Definition
• Discrete Random Variables: Probability mass function (pmf)
• Continuous Random Variables: Probability density function (pdf)
• Mean and Variance
• Cumulative Distribution Function (cdf)
• Functions of Random Variables

Corresponding pages from B&T textbook: 72–83, 86, 88, 90, 140–144, 146–150,

152–157, 179–186.
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Random Variable

• A random variable is a real-valued variable that takes on values
randomly
Sounds nice, but not terribly precise or useful

• Mathematically, a random variable (r.v.) X is a real-valued
function X(ω) over the sample space Ω of a random experiment,
i.e., X : Ω → R

Ω

ω X(ω)

• Randomness comes from the fact that outcomes are random
(X(ω) is a deterministic function)

• Notation:
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◦ Always use upper case letters for random variables (X , Y , . . .)

◦ Always use lower case letters for values of random variables:
X = x means that the random variable X takes on the value x

EE 178: Random Variables Page 2 – 3

• Examples:

1. Flip a coin n times. Here Ω = {H,T}n. Define the random
variable X ∈ {0, 1, 2, . . . , n} to be the number of heads

2. Roll a 4-sided die twice.
(a) Define the random variable X as the maximum of the two rolls

(X ∈ {1, 2, 3, 4})
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(b) Define the random variable Y to be the sum of the outcomes
of the two rolls (Y ∈ {2, 3, · · · , 8})

(c) Define the random variable Z to be 0 if the sum of the two
rolls is odd and 1 if it is even

3. Flip coin until first heads shows up. Define the random variable
X ∈ {1, 2. . . .} to be the number of flips until the first heads

4. Let Ω = R. Define the two random variables
(a) X = ω

(b) Y =

{

+1 for ω ≥ 0

−1 otherwise

5. n packets arrive at a node in a communication network. Here Ω
is the set of arrival time sequences (t1, t2, . . . , tn) ∈ (0,∞)n

(a) Define the random variable N to be the number of packets
arriving in the interval (0, 1]
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(b) Define the random variable T to be the first interarrival time
(t2 − t1).
More generally, TN = N th interarrival time tN+1 − tN .
Note:

tN = t1 +
N−1
∑

k=1

Tk

!

0

!(

×
t1

!(
T1

×
t2

!(
T2

×
t3 · · ·

· · ·
×

tr−1

×
tr

!(
Tr−1

Arrivals and interarrivals important in many situations: Phone
calls, ships arriving, orders being placed, patients signing in,
queuing theory, . . .
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• Why do we need random variables?

◦ Random variable can represent the gain or loss in a random
experiment, e.g., stock market

◦ Random variable can represent a measurement over a random
experiment, e.g., noise voltage on a resistor

• In most applications we care more about these
costs/measurements than the underlying probability space

• Very often we work directly with random variables without
knowing (or caring to know) the underlying probability space
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Specifying a Random Variable

• Specifying a random variable means being able to determine the
probability that X ∈ A for any event A ⊂ R, e.g., any interval

• To do so, we consider the inverse image of the set A under X(ω),
X−1(A) = {ω : X(ω) ∈ A}

R

set A

inverse image of A under X(ω), i.e., {ω : X(ω) ∈ A}
• So, X ∈ A iff ω ∈ {ω : X(ω) ∈ A}, thus

P({X ∈ A}) = P({w : X(ω) ∈ A}), or in short
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P{X ∈ A} = P{ω : X(ω) ∈ A}

• Example: Roll fair 4-sided die twice independently: Define the r.v.
X to be the maximum of the two rolls. What is the
P{0.5 < X ≤ 2}?
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• We classify r.v.s as:

◦ Discrete: X can assume only one of a countable number of
values. Such r.v. can be specified by a probability mass function
(pmf). Examples 1, 2, 3, 4(b), and 5(a) are of discrete r.v.s

◦ Continuous: X can assume one of a continuum of values and
the probability of each value is 0. Such r.v. can be specified by a
probability density function (pdf). Examples 4(a) and 5(b) are of
continuous r.v.s

◦ Mixed: X is neither discrete nor continuous. Such r.v. (as well
as discrete and continuous r.v.s) can be specified by a
cumulative distribution function (cdf)
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Discrete Random Variables

• A random variable is said to be discrete if for some countable set

X ⊂ R, i.e., X = {x1, x2, . . .}, P{X ∈ X} = 1

• Examples 1, 2, 3, 4(b), and 5(a) are discrete random variables

• Here X(ω) partitions Ω into the sets {ω : X(ω) = xi} for
i = 1, 2, . . .. Therefore, to specify X , it suffices to know
P{X = xi} for all i

Ω

. . .. . .x1x2 x3 xn
R
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• A discrete random variable is thus completely specified by its
probability mass function (pmf)

pX(x) = P{X = x} for all x ∈ X

• Clearly pX(x) ≥ 0 and
∑

x∈X pX(x) = 1
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• Example: Roll a fair 4-sided die twice independently: Define the
r.v. X to be the maximum of the two rolls
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pX(x):
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• Note that pX(x) can be viewed as a probability measure over a
discrete sample space (even though the original sample space may
be continuous as in examples 4(b) and 5(a))

• The probability of any event A ⊂ R is given by

P{X ∈ A} =
∑

x∈A∩X

pX(x)

For the previous example P{1 < X ≤ 2.5 or X ≥ 3.5} =

• Notation: We use X ∼ pX(x) or simply X ∼ p(x) to mean that
the discrete random variable X has pmf pX(x) or p(x)

EE 178: Random Variables Page 2 – 14



Famous Probability Mass Functions

• Uniform: X ∼ Unif(N) for N a positive integer has pmf

pX(x) =
1

N
,x = 0, 1, 2, . . . , N − 1

(Or any finite set with N elements. Fair coin N = 1, fair die
N = 6, roulette wheel N = 37 (38 in the USA))

• Bernoulli : X ∼ Bern(p) for 0 ≤ p ≤ 1 has pmf

pX(1) = p, and pX(0) = 1 − p

• Geometric: X ∼ Geom(p) for 0 ≤ p ≤ 1 has pmf

pX(k) = p(1 − p)k−1 for k = 1, 2, . . .
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pX(k)

p

k
1 2 3 4

. . .. . .

This r.v. represents, for example, the number of coin flips until the
first heads shows up (assuming independent coin flips)

k
H −→ 1 p

TH −→ 2 (1 − p)p
TTH −→ 3 (1 − p)2p

TTTH −→ 4 (1 − p)3p
...

Note
∞
∑

k=0

p(1 − p)k−1 = 1
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• Binomial : X ∼ B(n, p) for integer n > 0 and 0 ≤ p ≤ 1 has pmf

pX(k) =

(
n

k

)

pk(1 − p)(n−k) for k = 0, 1, 2, . . . , n

PSfrag

pX(k)

k
0 1 2 3

. . .. . .

nk∗

The maximum of pX(k) is attained at

k∗ =









(n + 1)p, (n + 1)p − 1, if (n + 1)p is an integer
[(n + 1)p]
︸ ︷︷ ︸

integer part

, otherwise
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The binomial r.v. represents, for example, the number of heads in
n independent coin flips (see page 72 of Lecture Notes 1)

Flip coin with bias p until first head: (H=1, T=0)
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• Poisson: X ∼ Poisson(λ) for λ > 0 (called the rate) has pmf

pX(k) =
λk

k!
e−λ for k = 0, 1, 2, . . .

PSfrag

pX(k)

k
1 2 30

. . . . . .

k∗

The maximum of pX(k) attained at

k∗ =

{

λ, λ − 1, if λ is an integer
[λ], otherwise

EE 178: Random Variables Page 2 – 19

The Poisson r.v. often represents the number of random events,
e.g., arrivals of packets, photons, customers, etc.in some time
interval, e.g., [0, 1)

Common model (with origins in physics): Fix a time t > 0, then

P{k arrivals in [0, t)} =
(λt)ke−λt

k!

Note:

◦ If t very small, say ∆t then P{1 arrival in [0,∆t]} ≈ λ∆t, the
probability of more than one arrival in [0,∆t) is negligible
(higher order of t), and P{0 arrivals in [0,∆t]} ≈ 1 − λ∆t.
Reasonable, e.g., for random phone calls or photons.

◦ Combined with an assumption of independence in
nonoverlapping time intervals, this leads to powerful and
accurate models of many random phenomena.

EE 178: Random Variables Page 2 – 20



• Historically: Invented by Poisson as an approximation to the
Binomial for large n with p ∝ 1/n based on an important property
of e

lim
x→∞

(

1 − 1

x

)x

= e−1

To be precise: Poisson is the limit of Binomial when p ∝ 1
n, as

n → ∞
To show this let Xn ∼ B(n, λ

n) for λ > 0. For any fixed
nonnegative integer k,

EE 178: Random Variables Page 2 – 21

pXn(k) =

(
n

k

) (
λ

n

)k (

1 − λ

n

)(n−k)

=
n(n − 1) . . . (n − k + 1)

k!

λk

nk

(
n − λ

n

)n−k

=
n(n − 1) . . . (n − k + 1)

(n − λ)k

λk

k!

(
n − λ

n

)n

=
n(n − 1) . . . (n − k + 1)

(n − λ)(n − λ) . . . (n − λ)

λk

k!

(

1 − λ

n

)n

︸ ︷︷ ︸

→e−λ

→ λk

k!
e−λ as n → ∞
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Continuous Random Variables

• Suppose a r.v. X can take on a continuum of values each with
probability 0

Examples:

◦ Pick a number between 0 and 1

◦ Measure the voltage across a heated resistor

◦ Measure the phase of a random sinusoid . . .

• How do we describe probabilities of interesting events?

• Idea: For discrete r.v., we sum a pmf over points in a set to find its
probability. For continuous r.v., integrate a probability density over
a set to find its probability — analogous to mass density in physics
(integrate mass density to get the mass)

EE 178: Random Variables Page 2 – 23

Probability Density Function

• A continuous r.v. X can be specified by a probability density
function fX(x) (pdf) such that, for any event A,

P{X ∈ A} =

∫

A
fX(x) dx

For example, for A = (a, b], the probability can be computed as

P{X ∈ (a, b]} =

∫ b

a
fX(x) dx

• Properties of fX(x):

1. fX(x) ≥ 0

2.
∫ ∞
−∞ fX(x) dx = 1
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• Important note: fX(x) should not be interpreted as the probability
that X = x, in fact it is not a probability measure, e.g., it can be
> 1

• Can relate fX(x) to a probability using mean value theorem for
integrals: Fix x and some ∆x > 0. Then provided fX is
continuous over (x, x + ∆x],

P{X ∈ (x, x + ∆x]} =

∫ x+∆x

x
fX(α) dα

= fX(c) ∆x for some x ≤ c ≤ x + ∆x

Now, if ∆x is sufficently small, then

P{X ∈ (x, x + ∆x]} ≈ fX(x)∆x

• Notation: X ∼ fX(x) means that X has pdf fX(x)
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Famous Probability Density Functions

• Uniform: X ∼ U[a, b] for b > a has the pdf

f(x) =

{
1

b−a for a ≤ x ≤ b

0 otherwise

)

!

fX(x)

a b
x

1
b−a

Uniform r.v. is commonly used to model quantization noise and
finite precision computation error (roundoff error)
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• Exponential : X ∼ Exp(λ) for λ > 0 has the pdf

f(x) =

{

λe−λx for x ≥ 0
0 otherwise

fX(x)

λ

x

Exponential r.v. is commonly used to model interarrival time in a
queue, i.e., time between two consecutive packet or customer
arrivals, service time in a queue, and lifetime of a particle, time
between busses, etc.
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Example: Let X ∼ Exp(0.1) be the customer service time at a
bank (in minutes). The person ahead of you has been served for 5
minutes. What is the probability that you will wait another 5
minutes or more before getting served?

We want to find P{X > 10 |X > 5}
Solution: By definition of conditional probability

P{X > 10 |X > 5} =
P{X > 10, X > 5}

P{X > 5}

=
P{X > 10}
P{X > 5}

=

∫ ∞
10 0.1e−0.1x dx

∫ ∞
5 0.1e−0.1x dx

=
e−1

e−0.5
= e−0.5 = P{X > 5} ⇒
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the conditional probability of waiting more than 5 additional
minutes given that you have already waited more than 5 minutes is
the same as the unconditional probability of waiting more than 5
minutes!

This is because the exponential r.v. is memoryless, which in
general means that for any 0 ≤ x1 < x,

P{X > x |X > x1} = P{X > x − x1}
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To show this, consider

P{X > x |X > x1} =
P{X > x, X > x1}

P{X > x1}

=
P{X > x}
P{X > x1}

assuming x > x1

=

∫ ∞
x λe−λx dx

∫ ∞
x1

λe−λx dx

=
e−λx

e−λx1
= e−λ(x−x1)

= P{X > x − x1}
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• Gaussian (normal): X ∼ N (µ,σ2) has pdf

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 for −∞ < x < ∞,

where µ is the mean and σ2 is the variance

N (µ,σ2)

µ x

Gaussian r.v.s are frequently encountered in nature, e.g., thermal
and shot noise in electronic devices are Gaussian, and very
frequently used in modelling various social, biological, and other
phenomena
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Mean and Variance

• A discrete (continuous) r.v. is completely specified by its pmf (pdf)

• It is often desirable to summarize the r.v. or predict its outcome in
terms of one or a few numbers. What do we expect the value of
the r.v. to be? What range of values around the mean do we
expect the r.v. to take? Such information can be provided by the
mean and standard deviation of the r.v.

• First we consider discrete r.v.s

• Let X ∼ pX(x). The expected value (or mean) of X is defined as

E(X) =
∑

x∈X

xpX(x)

Interpretations: If we view probabilities as relative frequencies, the
mean would be the weighted sum of the relative frequencies.
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If we view probabilities as point masses, the mean would be the
center of mass of the set of mass points

• Example: If the weather is good, which happens with probability
0.6, Alice walks the 2 miles to class at a speed 5 miles/hr,
otherwise she rides a bus at speed 30 miles/hr. What is the
expected time to get to class?

Solution: Define the discrete r.v. T to take the value (2/5)hr with
probability 0.6 and (2/30)hr with probability 0.4. The expected
value of T

E(T ) = 2/5 × 0.6 + 2/30 × 0.4 = 4/15 hr

• The second moment (or mean square or average power) of X is
defined as

E(X2) =
∑

x∈X

x2pX(x) ≥ 0 rms =
√

E(X2)
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For the previous example, the second moment is

E(T 2) = (2/5)2 × 0.6 + (2/30)2 × 0.4 = 22/225 hr2

• The variance of X is defined as

Var(X) = E
[

(X − E(X))2
]

=
∑

x∈X

(x − E(X))2pX(x) ≥ 0

Also often written σ2
X . The variance has the interpretation of the

moment of inertia about the center of mass for a set of mass points

• The standard deviation of X is defined as σX =
√

Var(X)

• Variance in terms of mean and second moment: Expanding the
square and using the linearity of sum, we obtain
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Var(X) = E
[

(X − E(X))2
]

=
∑

x

(x − E(X))2pX(x)

=
∑

x

(x2 − 2xE(X) + [E(X)]2)pX(x)

=
∑

x

x2pX(x) − 2E(X)
∑

x

xpX(x)

︸ ︷︷ ︸

E(X)

+[E(X)]2
∑

x

pX(x)

︸ ︷︷ ︸
1

= E(X2) − 2[E(X)]2 + [E(X)]2

= E(X2) − [E(X)]2 ≥ 0

Note that since for any r.v., Var(X) ≥ 0, E(X2) ≥ (E(X))2

So, for our example, Var(T ) = 22/225 − (4/15)2 = 0.02667.
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Mean and Variance of Famous Discrete RVs

• Bernoulli r.v. X ∼ Bern(p): The mean is

E(X) = p × 1 + (1 − p) × 0 = p

The second moment is

E(X2) = p × 12 + (1 − p) × 02 = p

Thus the variance is

Var(X) = E(X2) − (E(X))2 = p − p2 = p(1 − p)

EE 178: Random Variables Page 2 – 36



• Binomial r.v. X ∼ B(n, p): It is not easy to find it using the
definition. Later we use a much simpler method to show that

E(X) = np

Var(X) = np(1 − p)

Just n times the mean (variance) of a Bernoulli!

• Geometric r.v. X ∼ Geom(p):

One way to find the mean is to use standard calculus tricks for
stuff. Do this for practice, but later find simpler methods using
transforms.
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If |a| < 1 then the geometric progression formula says that

∞
∑

k=0

ak =
1

1 − a

Suppose instead you want to evaluate

∞
∑

k=0

kak

How do you get the second sum from the first?

Just differentiate the first with respect to a and you almost get it:

d

da

∞
∑

k=0

ak =
∞
∑

k=0

kak−1 =
1

a

∞
∑

k=0

kak
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or

∞
∑

k=0

kak = a
d

da

1

1 − a
=

a

(1 − a)2

Thus

E[X] =
∞
∑

k=1

pk(1 − p)k−1

=
p

1 − p

∞
∑

k=1

k(1 − p)k

=
p

1 − p

∞
∑

k=0

k(1 − p)k

=
p

1 − p

1 − p

p2
=

1

p
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The second moment and variance can be similarly found by taking
two derivatives. Try it!

You should find that

E(X2) =
2 − p

p2

and therefore

Var(X) = E(X2) − (E(X))2 =
1 − p

p2
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• Poisson r.v. X ∼ Poisson(λ): The mean is given by

E(X) =
∞
∑

k=0

k
λk

k!
e−λ = e−λ

∞
∑

k=1

k
λk

k!

= e−λ
∞
∑

k=1

λk

(k − 1)!
= λe−λ

∞
∑

k=1

λ(k−1)

(k − 1)!

= λe−λ
∞
∑

k=0

λk

k!
︸ ︷︷ ︸

eλ

= λ

Can show that the variance is also equal to λ
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Mean and Variance for Continuous RVs

• Now consider a continuous r.v. X ∼ fX(x), the expected value (or
mean) of X is defined as

E(X) =
∫ ∞
−∞ xfX(x) dx

This has the interpretation of the center of mass for a mass density

• The second moment and variance are similarly defined as:

E(X2) =

∫ ∞

−∞
x2fX(x) dx

Var(X) = E
[

(X − E(X))2
]

= E(X2) − (E(X))2
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• Uniform r.v. X ∼ U[a, b]: The mean, second moment, and
variance are given by

E(X) =

∫ ∞

−∞
xfX(x) dx =

∫ b

a
x × 1

b − a
dx =

a + b

2

E(X2) =

∫ ∞

−∞
x2fX(x) dx =

∫ b

a
x2 × 1

b − a
dx

=
1

b − a

∫ b

a
x2 dx =

1

b − a
× x3

3

∣
∣
∣

b

a
=

b3 − a3

3(b − a)

Var(X) = E(X2) − (E(X))2

=
b3 − a3

3(b − a)
− (a + b)2

4
=

(b − a)2

12

Thus, for X ∼ U[0, 1], E(X) = 1/2 and Var = 1/12
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• Exponential r.v. X ∼ Exp(λ): The mean and variance are given by

E(X) =

∫ ∞

−∞
xfX(x) dx

=

∫ ∞

0
x︸︷︷︸
−u

λ e−λx
︸︷︷︸

v

dx
︸ ︷︷ ︸

−dv

= (−xe−λx)
∣
∣
∣

∞

0
+

∫ ∞

0
e−λx dx (integration by parts)

︸ ︷︷ ︸
R

udv=uv−
R

vdu

= 0 − 1

λ
e−λx

∣
∣
∣

∞

0
=

1

λ

E(X2) =

∫ ∞

0
x2λe−λx dx =

2

λ2

Var(X) =
2

λ2
− 1

λ2
=

1

λ2
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• For a Gaussian r.v. X ∼ N (µ,σ2), the mean is µ and the variance
is σ2 (will show this later using transforms, can prove using
calculus, but it is messy)
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Mean and Variance for Famous r.v.s

Random Variable Mean Variance

Bern(p) p p(1 − p)

Geom(p) 1/p (1 − p)/p2

B(n, p) np np(1 − p)

Poisson(λ) λ λ

U[a, b] (a + b)/2 (b − a)2/12

Exp(λ) 1/λ 1/λ2

N (µ, σ2) µ σ2
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Cumulative Distribution Function (cdf)

• For discrete r.v.s we use pmf’s, for continuous r.v.s we use pdf’s

• Many real-world r.v.s are mixed, that is, have both discrete and
continuous components

Example: A packet arrives at a router in a communication network.
If the input buffer is empty (happens with probability p), the
packet is serviced immediately. Otherwise the packet must wait for
a random amount of time as characterized by a pdf (e.g., Exp(λ))

Define the r.v. X to be the packet service time. X is neither
discrete nor continuous
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• There is a third probability function that characterizes all random
variable types — discrete, continuous, and mixed. The cumulative
distribution function or cdf FX(x) of a random variable is defined
by

FX(x) = P{X ≤ x} for x ∈ (−∞,∞)

• Properties of the cdf:

◦ Like the pmf (but unlike the pdf), the cdf is the probability of
something. Hence, 0 ≤ FX(x) ≤ 1

◦ Normalization axiom implies that

FX(∞) = 1, and FX(−∞) = 0
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◦ The probability of any event of the form X ∈ (a, b] can be easily
computed from a cdf, e.g.,

P{X ∈ (a, b]} = P{a < X ≤ b}
= P{X ≤ b}− P{X ≤ a} (additivity)

= FX(b) − FX(a)

◦ Previous property ⇒ FX(x) is monotonically nondecreasing, i.e.,
if a > b then FX(a) ≥ FX(b)

◦ The probability of any outcome a is:
P{X = a} = P{X ≤ a}− P{X < a} = FX(a) − FX(a−),
where FX(a−) = limx↑a FX(a)
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◦ If a r.v. is discrete, its cdf consists of a set of steps
pX(x) FX(x)

x x

1

11 22 33 44
◦ If X is a continuous r.v. with pdf fX(x), then

FX(x) = P{X ≤ x} =

∫ x

−∞
fX(α) dα

So, the cdf of a continuous r.v. X is continuous
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FX(x)
1

x

In fact the precise way to define a continuous random variable is
through the continuity of its cdf Further, if FX(x) is
differentiable (almost everywhere), then

fX(x) =
dFX(x)

dx
= lim

∆x→0

FX(x + ∆x) − FX(x)

∆x

= lim
∆x→0

P{x < X ≤ x + ∆x}
∆x
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◦ The cdf of a mixed r.v. has the general form

FX(x)

1

x
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Examples

• cdf of a uniform r.v.:

FX(x) =









0 if x < a
∫ x

a
1

b−a dα = x−a
b−a if a ≤ x ≤ b

1 if x ≥ b

fX(x) FX(x)

1
b−a

a a bb
xx

1
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• cdf of an exponential r.v.:

FX(x) = 0, X < 0, and FX(x) = 1 − e−λx, x ≥ 0

fX(x) FX(x)

λ 1

xx
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• cdf for a mixed r.v.: Let X be the service time of a packet at a
router. If the buffer is empty (happens with probability p), the
packet is serviced immediately. If it is not empty, service time is
described by an exponential pdf with parameter λ > 0

The cdf of X is FX(x) =













0 if x < 0
p if x = 0
p + (1 − p) (1 − e−λx)

︸ ︷︷ ︸

cdf of Exp(λ)

if x > 0

FX(x)

p

1

x
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• cdf of a Gaussian r.v.: There is no nice closed form for the cdf of a
Gaussian r.v., but there are many published tables for the cdf of a
standard normal pdf N (0, 1), the Φ function:

Φ(x) =

∫ x

−∞

1√
2π

e−
ξ2

2 dξ

More commonly, the tables are for the Q(x) = 1 − Φ(x) function

N (0, 1)

x

Q(x)

Or, for the complementary error function: erfc(x) = 2Q(
√

2x) for
x > 0 As we shall see, the Q(·) function can be used to quickly
compute P{X > a} for any Gaussian r.v. X
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Functions of a Random Variable

• We are often given a r.v. X with a known distribution (pmf, cdf,
or pdf), and some function y = g(x) of x, e.g., X2, |X|, cos X ,
etc., and wish to specify Y , i.e., find its pmf, if it is discrete, pdf,
if continuous, or cdf

• Each of these functions is a random variable defined over the
original experiment as Y (ω) = g(X(ω)). However, since we do not
assume knowledge of the sample space or the probability measure,
we need to specify Y directly from the pmf, pdf, or cdf of X

• First assume that X ∼ pX(x), i.e., a discrete random variable,
then Y is also discrete and can be described by a pmf pY (y). To
find it we find the probability of the inverse image {ω : Y (ω) = y}
for every y. Assuming Ω is discrete:
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x1x2 x3 y1y2 y . . .. . .. . .

g(xi) = y

pY (y) = P{ω : Y (ω) = y} =
∑

{ω: g(X(ω))=y}

P{ω}

=
∑

{x: g(x)=y}

∑

{ω: X(ω)=x}

P{ω} =
∑

{x: g(x)=y}

pX(x)

Thus

pY (y) =
∑

{x: g(x)=y} pX(x)

We can derive pY (y) directly from pX(x) without going back to
the original random experiment
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• Example: Let the r.v. X be the maximum of two independent rolls
of a four-sided die. Define a new random variable Y = g(X),
where

g(x) =

{

1 if x ≥ 3
0 otherwise

Find the pmf for Y

Solution: Recall pX : 1/16, 3/16, 5/16, 7/16

pY (y) =
∑

{x: g(x)=y}

pX(x)

pY (1) =
∑

{x: x≥3}

pX(x)

=
5

16
+

7

16
=

3

4

pY (0) = 1 − pY (1) =
1

4
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Derived Densities

• Let X be a continuous r.v. with pdf fX(x) and Y = g(X) such
that Y is a continuous r.v. We wish to find fY (y)

• Recall derived pmf approach: Given pX(x) and a function
Y = g(X), the pmf of Y is given by

pY (y) =
∑

{x: g(x)=y}

pX(x),

i.e., pY (y) is the sum of pX(x) over all x that yield g(x) = y

• Idea does not extend immediately to deriving pdfs, since pdfs are
not probabilities, and we cannot add probabilities of points

But basic idea does extend to cdfs
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• Can first calculate the cdf of Y as

F Y︸︷︷︸
g(X)

(y) = P{g(X) ≤ y} =

∫

{x: g(x)≤y}
fX(x) dx

x y

y

{x : g(x) ≤ y}

• Then differentiate to obtain the pdf

fY (y) =
dFY (y)

dy

Typically the hard part is getting the limits on the integral correct.
Often they are obvious, but sometimes they are more subtle

EE 178: Random Variables Page 2 – 61

Example: Squaring

• X ∼ fX(x).

• W = g(X) = X2, e.g., energy over a unit resistor of a voltage.

•

FW (w) = P (W ≤ w) = P (X2 ≤ w)

= P (−
√

w ≤ X ≤
√

w)

=

∫ √
w

−
√

w
fX(x) dx = FX(

√
w) − FX(−

√
w)

Note the formulas assume that w ≥ 0. If this is not true then the
cdf is 0.

Rather than evaluate the integral for a specific input pdf, it is
simpler to differentiate the cdf to directly find the pdf.
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• The following differentiation formula is often useful for this
purpose:

d

dw

∫ b(w)

a(w)
g(r) dr = g(b(w))

db(w)

dw
− g(a(w))

da(w)

dw

Applying formula:

fW (w) =
fX(

√
w) + fX(−

√
w)

2
√

w
; w > 0.

• Examples: fX(x) is uniform on (0, 1), then

fW (w) =
1

2
√

w
; w ∈ (0, 1)
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fX(x) is exponential with parameter λ, then

fW (w) =
λe−λ

√
w

2
√

w
; w > 0

fX(x) is N (0,σ2
X), then

fW (w) =
e−w

√
2πσXw

; w > 0
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Example: Linear Functions

• Let X ∼ fX(x) and Y = aX + b for some a > 0 and b. (The case
a < 0 is left as an exercise)

• To find the pdf of Y , we use the above procedure
y

x

y

y−b
a
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FY (y) = P{Y ≤ y} = P{aX + b ≤ y}

= P

{

X ≤ y − b

a

}

= FX

(
y − b

a

)

Thus

fY (y) =
dFY (y)

dy
=

1

a
fX

(
y − b

a

)

• Can show that for general a /= 0,

fY (y) = 1
|a|fX

(
y−b

a

)
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• Example: X ∼ Exp(λ), i.e.,

fX(x) = λe−λx, x ≥ 0

Then

fY (y) =

{
λ
|a|e

−λ(y−b)/a if y−b
a ≥ 0

0 otherwise
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• Example: X ∼ N (µ,σ2), i.e.,

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Again setting Y = aX + b,

fY (y) =
1

| a |fX

(
y − b

a

)

=
1

| a |
1√

2πσ2
e−

“

y−b
a −µ

”2

2σ2

=
1

√

2π(aσ)2
e−

(y−b−aµ)2

2a2σ2

=
1

√

2πσ2
Y

e
−(y−µY )2

2σ2
Y for −∞ < y < ∞

EE 178: Random Variables Page 2 – 68



Therefore, Y ∼ N (aµ + b, a2σ2)

E.g., X ∼ N (0, 1), Y = aX + b, then Y ∼ N (b, a2)

A linear (or affine) function of a Gaussian r.v. is another Gaussian
r.v.!

This result can be used to compute probabilities for an arbitrary
Gaussian r.v. from knowledge of the distribution a N (0, 1) r.v.

Suppose Y ∼ N (µY ,σ2
Y ) and we wish to find P{a < Y ≤ b} for

b > a using tables. From the above result, we can express
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Y = σY X + µY , where X ∼ N (0, 1). Then

P{a < Y ≤ b} = P{a < σY X + µY ≤ b}
= P{a − µY < σY X ≤ b − µY }

= P{a − µY

σY
< X ≤ b − µY

σY
}

= P{X ≤ b − µY

σY
}− P{X ≤ a − µY

σY
}

= φ(
b − µY

σY
) − φ(

a − µY

σY
)

= Q(
a − µY

σY
) − Q(

b − µY

σY
)
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Note Sometimes Q tables are only for positive arguments. Since
the Gaussian density is symmetric, if a > 0 then
Q(a) = 1 − Q(−a) or Q(−a) = 1 − Q(a). Thus if
(a − µY )/σY < 0,

P{a < Y ≤ b} = 1 − Q(−a − µY

σY
) − Q(

b − µY

σY
)
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The Q function

The Q(·) function is the area beneath the righthand tail of the
Gaussian pdf N (0, 1):

Q(x) =

∫ ∞

x

1√
2π

e−
1
2x2

dx .

The following table lists values of Q(x) for 0 ≤ x ≤ 4 .
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x Q(x) x Q(x)

0.0 0.50000 2.0 2.2750 × 10−2

0.1 0.46017 2.1 1.7864 × 10−2

0.2 0.42074 2.2 1.3903 × 10−2

0.3 0.38209 2.3 1.0724 × 10−2

0.4 0.34458 2.4 8.1975 × 10−3

0.5 0.30854 2.5 6.2097 × 10−3

0.6 0.27425 2.6 4.6612 × 10−3

0.7 0.24196 2.7 3.4670 × 10−3

0.8 0.21186 2.8 2.5551 × 10−3

0.9 0.18406 2.9 1.8658 × 10−3

1.0 0.15866 3.0 1.3499 × 10−3

1.1 0.13567 3.1 9.6760 × 10−4

1.2 0.11507 3.2 6.8714 × 10−4

1.3 0.09680 3.3 4.8342 × 10−4

1.4 0.08076 3.4 3.3693 × 10−4

1.5 0.06681 3.5 2.3263 × 10−4

1.6 0.05480 3.6 1.5911 × 10−4

1.7 0.04457 3.7 1.0780 × 10−4

1.8 0.03593 3.8 7.2348 × 10−5

1.9 0.02872 3.9 4.8096 × 10−5

2.0 0.02275 4.0 3.1671 × 10−5
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Example: A Nonlinear Function

• John is driving a distance of 180 miles at constant speed that is
uniformly distributed between 30 and 60 miles/hr. What is the pdf
of the duration of the trip?

• Solution: Let X be John’s speed, then

fX(x) =

{

1/30 if 30 ≤ x ≤ 60

0 otherwise,

The duration of the trip is Y = 180/X
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To find fY (y) we first find FY (y). Note that
{y : Y ≤ y} = {x : X ≥ 180/y}, thus

FY (y) =

∫ ∞

180/y
fX(x) dx

=









0 if y ≤ 3
∫ 60
180/y fX(x) dx if 3 < y ≤ 6

1 if y > 6

=









0 if y ≤ 3

(2 − 6
y) if 3 < y ≤ 6

1 if y > 6

Differentiating, we obtain
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fY (y) =

{

6/y2 if 3 ≤ y ≤ 6

0 otherwise

EE 178: Random Variables Page 2 – 76



Monotonic Functions

• Let g(x) be a monotonically increasing and differentiable function
over its range

Then g is invertible, i.e., there exists a function h, such that

y = g(x) if and only if x = h(y)

Often this is written as g−1. If a function g has these properties,
then g(x) ≤ y iff x ≤ h(y), and we can write

FY (y) = P{g(X) ≤ y}
= P{X ≤ h(y)}
= FX(h(y))

=

∫ h(y)

−∞
fX(x) dx
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Thus
fY (y) =

dFY (y)

dy
= fX(h(y))

dh

dy
(y)

• Generalizing the result to both monotonically increasing and
decreasing functions yields

fY (y) = fX(h(y))

∣
∣
∣
∣

dh

dy
(y)

∣
∣
∣
∣

• Example: Recall the X ∼ U[30, 60] example with
Y = g(X) = 180/X

The inverse is X = h(Y ) = 180/Y
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Applying the above formula in region of interest Y ∈ [3, 6] (it is 0
outside) yields

fY (y) = fX(h(y))

∣
∣
∣
∣

dh

dy
(y)

∣
∣
∣
∣

=
1

30

180

y2

=

{
6
y2 for 3 ≤ y ≤ 6

0 otherwise
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• Another Example:

Suppose that X has a pdf that is nonzero only in [0, 1] and define
Y = g(X) = X2

In the region of interest the function is invertible and X =
√

Y

Applying the pdf formula, we obtain

fY (y) = fX(h(y))

∣
∣
∣
∣

dh

dy
(y)

∣
∣
∣
∣

=
fX(

√
y)

2
√

y
, for 0 < y ≤ 1

• Personally I prefer the more fundamental approach, since I often
forget this formula or mess up the signs
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