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Chapter 1

Introduction

1.1 Disclaimer

This script is intended to be a short introduction to the field of queueing theory, serving as a mod-

ule within the lecture “Leistungsbewertung von Kommunikationsnetzen” of Prof. Adam Wolisz

from the Telecommunication Networks Group at Technical University Berlin. It covers the most im-

portant queueing systems with a single service center, for queueing networks only some basics are

mentioned. This script is neither complete nor error free. However, we are interested in improving

this script and we would appreciate any kind of (constructive) comment or “bug reports”. Please

send all suggestions to awillig@ft.ee.tu-berlin.de.

In this script most of the mathematical details are omitted, instead often “intuitive” (or better:

prosaic) arguments are used. Most of the formulas are only used during a derivation and have no

numbers, however, the important formulas are numbered. The author was too lazy to annotate all

statements with a reference, since most of the material can be found in the standard literature.

1.2 Scope of Queueing Theory

Queueing Theory is mainly seen as a branch of applied probability theory. Its applications are in

different fields, e.g. communication networks, computer systems, machine plants and so forth. For

this area there exists a huge body of publications, a list of introductory or more advanced texts on

queueing theory is found in the bibliography. Some good introductory books are [9], [2], [11], [16].

The subject of queueing theory can be described as follows: consider a service center and a popu-

lation of customers, which at some times enter the service center in order to obtain service. It is often

the case that the service center can only serve a limited number of customers1. If a new customer ar-

rives and the service is exhausted, he enters a waiting line and waits until the service facility becomes

available. So we can identify three main elements of a service center: a population of customers, the

service facility and the waiting line. Also within the scope of queueing theory is the case where sev-

eral service centers are arranged in a network and a single customer can walk through this network

at a specific path, visiting several service centers.

1Since queueing theory is applied in different fields, also the terms job and task are often used instead customer. The service

center is often named processor or machine
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As a simple example of a service center consider an airline counter: passengers are expected to

check in, before they can enter the plane. The check-in is usually done by a single employee, however,

there are often multiple passengers. A newly arriving and friendly passenger proceeds directly to

the end of the queue, if the service facility (the employee) is busy. This corresponds to a FIFO service

(first in, first out).

Some examples of the use of queueing theory in networking are the dimensioning of buffers in

routers or multiplexers, determining the number of trunks in a central office in POTS, calculating

end-to-end throughput in networks and so forth.

Queueing Theory tries to answer questions like e.g. the mean waiting time in the queue, the

mean system response time (waiting time in the queue plus service times), mean utilization of the

service facility, distribution of the number of customers in the queue, distribution of the number

of customers in the system and so forth. These questions are mainly investigated in a stochastic

scenario, where e.g. the interarrival times of the customers or the service times are assumed to be

random.

The study of queueing theory requires some background in probability theory. Two modern

introductory texts are [11] and [13], two really nice “classic” books are [7], [6].

1.3 Basic Model and Notation

A basic model of a service center is shown in figure 1.1. The customers arrive to the service center in

a random fashion. The service facility can have one or several servers, each server capable of serving

one customer at a time (with one exception), the service times needed for every customers are also

modeled as random variables. Throughout this script we make the following assumptions:

� The customer population is of infinite size, the n-th customer Cn arrives at time �n. The in-

terarrival time tn between two customers is defined as tn := �n � �n�1. We assume that the

interarrival times tn are iid random variables, i.e. they are independent from each other and all

tn are drawn from the same distribution with the distribution function

A(t) := Pr[tn � t]

and the probability density function (pdf) a(t) := dA(t)

dt

� The service times xn for each customer Cn are also iid random variables with the common

distribution function B(t) and the respective pdf b(t).

Queueing systems may not only differ in their distributions of the interarrival- and service times,

but also in the number of servers, the size of the waiting line (infinite or finite), the service discipline

and so forth. Some common service disciplines are:

FIFO: (First in, First out): a customer that finds the service center busy goes to the end of the queue.

LIFO: (Last in, First out): a customer that finds the service center busy proceeds immediately to the

head of the queue. She will be served next, given that no further customers arrive.

Random Service: the customers in the queue are served in random order
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Round Robin: every customer gets a time slice. If her service is not completed, she will re-enter the

queue.

Priority Disciplines: every customer has a (static or dynamic) priority, the server selects always the

customers with the highest priority. This scheme can use preemption or not.

The Kendall Notation is used for a short characterization of queueing systems. A queueing system

description looks as follows:

A=B=m=N � S

where A denotes the distribution of the interarrival time, B denotes the distribution of the service

times, m denotes the number of servers, N denotes the maximum size of the waiting line in the finite

case (if N = 1 then this letter is omitted) and the optional S denotes the service discipline used

(FIFO, LIFO and so forth). If S is omitted the service discipline is always FIFO. For A and B the

following abbreviations are very common:

� M (Markov): this denotes the exponential distribution with A(t) = 1� e
��t and a(t) = �e

��t,

where � > 0 is a parameter. The name M stems from the fact that the exponential distribution

is the only continuous distribution with the markov property, i.e. it is memoryless.

� D (Deterministic): all values from a deterministic “distribution” are constant, i.e. have the same

value

� Ek (Erlang-k): Erlangian Distribution with k phases (k � 1). For the Erlang-k distribution we

have

A(t) = 1� e
�k�t

k�1X
j=0

(k�t)j

j!

where � > 0 is a parameter. This distribution is popular for modeling telephone call arrivals at

a central office

� Hk (Hyper-k): Hyperexponential distribution with k phases. Here we have

A(t) =

kX
j=1

qj(1� e
��jt)

where �i > 0; qi > 0; i 2 f1::kg are parameters and furthermore
P

k

j=1 qj = 1 must hold.

� G (General): general distribution, not further specified. In most cases at least the mean and the

variance are known.

The most simple queueing system, the M/M/1 system (with FIFO service) can then be described as

follows: we have a single server, an infinite waiting line, the customer interarrival times are iid and

exponentially distributed with some parameter � and the customer service times are also iid and

exponentially distributed with some parameter �.

We are mainly interested in steady state solutions, i.e. where the system after a long running time

tends to reach a stable state, e.g. where the distribution of customers in the system does not change
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Figure 1.1: Model of a Service Center

(limiting distribution). This is well to be distinguished from transient solutions, where the short-term

system response to different events is investigated (e.g. a batch arrival).

A general trend in queueing theory is the following: if both interarrival times and service times

are exponentially distributed (markovian), it is easy to calculate any quantity of interest of the queue-

ing system. If one distribution is not markovian but the other is, things are getting harder. For the

case of G/G/1 queues one cannot do much; even the mean waiting times are not known.

1.4 Little’s Law

Little’s law is a general result holding even for G/G/1-Queues; it also holds with other service dis-

ciplines than FIFO. It establishes a relationship between the average number of customers in the

system, the mean arrival rate and the mean customer response time (time between entering and

leaving the system after getting service) in the steady state. The following derivation is from [11,

chapter 7].

Denote N(t) for the number of customers in the system at time t, A(t) for the number of customer

arrivals to the system in the time interval [0; t], D(t) for the number of customer departures from the

system during [0; t] and let Ti denote the response time of the i-th customer. Then clearly N(t) =

A(t)�D(t) holds (assuming the system is empty at t = 0). A sample path for A(t) and D(t) is shown

in the upper part of figure 1.2 (Please be aware that customers do not necessarily leave the system in

the same sequence they entered it). The average number of arrivals in the time interval [0; t] is given by

�A(t) :=
A(t)

t
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Figure 1.2: Little’s Law

and we assume that

� := lim
t!1

�A(t)

exists and is finite. The value � can be seen as the long term arrival rate. Furthermore the time

average of the number of customers in the system is given by

�N(t) :=
1

t

Z
t

0

N(u)du

and we assume that �N := limt!1
�N(t) exists and is finite. Similarly we define the time customer

average response time

�T (t) :=
1

A(t)

A(t)X
i=1

Ti

Now consider a graph where A(t) and D(t) are shown simultaneously (see upper part of figure

1.2). Since always A(t) � D(t) holds we have N(t) � 0 and the area between the two curves is given

by

F (t) :=

Z
t

0

(A(u)�D(u))du =

Z
t

0

N(u)du
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We can take an alternative view to F (t): it represents the sum of all customer response times

which are active up to time t:

A(t)X
i=1

Ti

with the minor error that this expression takes also the full response times of the customers into

account that are in the system at time t and which are present in the system up to a time t1 > t (see

lower part of figure 1.2, where for each customer the bar corresponds to its system response time).

This “overlap” is denoted E(t) and now we can write

F (t) =

A(t)X
i=1

Ti �E(t)

We assume that E(t) is almost relatively small.

Now we can equate both expressions for F (t):

Z
t

0

N(u)du =

A(t)X
i=1

Ti �E(t)

After division by 1=t and using 1 =
A(t)

A(t)
we arrive at:

1

t

Z
t

0

N(u)du =
A(t)

t

1

A(t)

A(t)X
i=1

Ti �
E(t)

t

Now we use the above definitions, go to the limit and use that limt!1

E(t)

t
= 0 and finally arrive at

Little’s Law:

�N = � �T (1.1)

An alternative form of Little’s Law arises when we assume that �N = E[N ] holds (with N being a

steady state random variable denoting the number of customers in the system) and also �T = E[T ],

then we have

E[N ] = �E[T ] (1.2)

A very similar form of Little’s Law relates the mean number of customers in the queue (not in the

system!!!), denoted as �Nq (the underlying random variable for the number of customers in the queue

is denoted as Nq) and the mean waiting time �W , i.e. the time between arrival of a customer and the

start of its service. In this case Little’s Law is

�Nq = � �W (1.3)

or in mean value representation

E[Nq ] = �E[W ] (1.4)
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Chapter 2

Markovian Systems

The common characteristic of all markovian systems is that all interesting distributions, namely the

distribution of the interarrival times and the distribution of the service times are exponential dis-

tributions and thus exhibit the markov (memoryless) property. From this property we have two

important conclusions:

� The state of the system can be summarized in a single variable, namely the number of cus-

tomers in the system. (If the service time distribution is not memoryless, this is not longer true,

since not only the number of customers in the system is needed, but also the remaining service

time of the customer in service.)

� Markovian systems can be directly mapped to a continuous time markov chain (CTMC) which

can then be solved.

In this chapter we will often proceed as follows: deriving a CTMC and solve it by inspection or

simple numerical techniques.

2.1 The M/M/1-Queue

The M/M/1-Queue has iid interarrival times, which are exponentially distributed with parameter

� and also iid service times with exponential distribution with parameter �. The system has only a

single server and uses the FIFO service discipline. The waiting line is of infinite size. This section is

mainly based on [9, chapter 3].

It is easy to find the underlying markov chain. As the system state we use the number of cus-

tomers in the system. The M/M/1 system is a pure birth-/death system, where at any point in time

at most one event occurs, with an event either being the arrival of a new customer or the completion

of a customer’s service. What makes the M/M/1 system really simple is that the arrival rate and the

service rate are not state-dependent. The state-transition-rate diagram of the underlying CTMC is

shown in figure 2.1.
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Figure 2.1: CTMC for the M/M/1 queue

2.1.1 Steady-State Probabilities

We denote the steady state probability that the system is in state k (k 2 N) by pk, which is defined by

pk := lim
t!1

Pk(t)

where Pk(t) denotes the (time-dependent) probability that there are k customers in the system at time

t. Please note that the steady state probability pk does not dependent on t. We focus on a fixed state

k and look at the flows into the state and out of the state. The state k can be reached from state k � 1

and from state k + 1 with the respective rates �Pk�1(t) (the system is with probability Pk�1(t) in the

state k� 1 at time t and goes with the rate � from the predecessor state k� 1 to state k) and �Pk+1(t)

(the same from state k + 1). The total flow into the state k is then simply �Pk�1(t) + �Pk+1(t). The

state k is left with the rate �Pk(t) to the state k+1 and with the rate �Pk(t) to the state k�1 (for k = 0

there is only a flow coming from or going to state 1). The total flow out of that state is then given by

�Pk(t) + �Pk(t) The total rate of change of the flow into state k is then given by the difference of the

flow into that state and the flow out of that state:

dPk(t)

dt
= (�Pk�1(t) + �Pk+1(t)) � (�Pk(t) + �Pk(t));

, however, in the limit (t!1) we require

dPk(t)

dt
= 0

so we arrive at the following steady-state flow equations:

0 = �p1 � �p0

0 = �p0 + �p2 � �p1 � �p1

0 = ::::::

0 = �pk�1 + �pk+1 � �pk � �pk

0 = ::::::

These equations can be recursively solved in dependence of p0:

pk =

�
�

�

�k
p0

Furthermore, since the pk are probabilities, the normalization condition

1X
k=0

pk = 1

10
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Figure 2.2: CTMC for the M/M/1 queue

says that

1 = p0 +

1X
k=1

pk = p0 +

1X
k=1

p0

�
�

�

�k
= p0

 
1X
k=0

�
�

�

�k!
= p0

1

1� �

�

which gives

p0 = 1�
�

�
=: 1� � (2.1)

To summarize the results, the steady state probabilities of the M/M/1 markov chain are given by

p0 = 1�
�

�
(2.2)

pk =

�
�

�

�k
p0 (2.3)

Obviously, in order for p0 to exist it is required that � < �, otherwise the series will diverge. This is

the stability condition for the M/M/1 system. It makes also sense intuitively: when more customers

arrive than the system can serve, the queue size goes to infinity.

A second derivation making use of the flow approach is the following: in the steady state we

can draw a line into the CTMC as in figure 2.2 and we argue, that in the steady state the following

principle holds: the flow from the left side to the right side equals the flow from the right side to the

left side. Transforming this into flow equations yields:

�p0 = �p1

�p1 = �p2

::: = ::::::

�pk�1 = �pk

::: = ::::::

This approach can be solved using the same techniques as above.

The just outlined method of deriving a CTMC and solving the flow equations for the steady state

probabilities can be used for most markovian systems.
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2.1.2 Some Performance Measures

Utilization

The utilization gives the fraction of time that the server is busy. In the M/M/1 case this is simply

the complementary event to the case where the system is empty. The utilization can be seen as the

steady state probability that the system is not empty at any time in the steady state, thus

Utilization := 1� p0 = � (2.4)

Mean number of customers in the system

The mean number of customers in the system is given by

�N = E[N ] =

1X
k=0

kpk = p0

 
1X
k=0

k�
k

!
= (1� �)

�

(1� �)2
=

�

1� �
(2.5)

where we have used the summation
1X
k=0

kx
k =

x

(1� x)2

for jxj < 1

The mean number of customers in the system for varying utilizations is shown in figure 2.3. As

can be seen �N grows to infinity as �! 1, thus for higher utilizations the system tends to get unstable.

This trend is especially observable for utilizations of 70 % or more.
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Mean Response Time

The mean response time T is the mean time a customer spends in the system, i.e. waiting in the

queue and being serviced. We simply apply Little’s law to find

�T =
�N

�
=

1=�

1� �
=

1

�� �
(2.6)

For the case of � = 1 the mean response time (mean delay) of a customer is shown in figure 2.4

(for � = 1). This curve shows a behaviour similar to the one for the mean number of customers in

the system.

Tail Probabilities

In applications often the following question arises: we assume that we have an M/M/1 system,

however, we need to restrict the number of customers in the system to a finite quantity. If a cus-

tomer arrives at a full system, it is lost. We want to determine the size of the waiting line that is

required to lose customers only with a small probability. As an example consider e.g. a router for

which the buffer space is finite and packets should be lost with probability 10�6. In principle this

is a M/M/1/N queue, however, we use an M/M/1 queue (with infinite waiting room) as an ap-

proximation. We are now interested in the probability that the system has k or more customers (the

probability Pr[N > k] is called a tail probability) and thus would lose a customer in reality. We have

Pr[N > k] = 1� Pr[N � k] = 1�

kX
�=0

p� = 1� p0
1� �

k+1

1� �
= �

k+1 (2.7)
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2.2 The M/M/m-Queue

The M/M/m-Queue (m > 1) has the same interarrival time and service time distributions as the

M/M/1 queue, however, there are m servers in the system and the waiting line is infinitely long. As

in the M/M/1 case a complete description of the system state is given by the number of customers

in the system (due to the memoryless property). The state-transition-rate diagram of the underlying

CTMC is shown in figure 2.5. The M/M/m system is also a pure birth-death system.

2.2.1 Steady-State Probabilities

Using the above sketched technique of evaluating the flow equations together with the well-known

geometric summation yields the following steady state probabilities:

p0 =

"
m�1X
k=0

(m�)k

k!
+

�
(m�)m

m!

��
1

1� �

�#�1
(2.8)

pk =

(
p0

(m�)k

k!
: k � m

p0
�
k
m
m

m!
: k � m

(2.9)

with � = �

�
and clearly assuming that � < 1.

2.2.2 Some Performance Measures

Mean number of customers in the system

The mean number of customers in the system is given by

�N = E[N ] =

1X
k=0

kpk = m�+ �
(m�)m

m!

p0

(1� �)2
(2.10)

The mean response time again can be evaluated simply using Little’s formula.

For the case of M=10 we show the mean number of customers in the system for varying � in figure

2.6.

Queueing Probability

We want to evaluate the probability that an arriving customer must enter the waiting line because

there is currently no server available. This is often used in telephony and denotes the probability

that a newly arriving call at a central office will get no trunk, given that the interarrival times and

service times (call durations) are exponentially distributed (in “real life” it is not so easy to justify
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Figure 2.6: Mean Number of Customers in the system for the M/M/10-Queue

this assumption). This probability can be calculated as follows:

Pr[Queueing] =
1X

k=m

pk =

1X
k=m

p0
(m�)k

m!

1

mk�m
=

�
(m�)m

m!

��
1

1��

�
hP

m�1

k=0
(m�)k

k!
+

�
(m�)m

m!

��
1

1��

�i (2.11)

and is often denoted as Erlangs C Formula, abbreviated with C(m; �)

2.3 The M/M/1/K-Queue

The M/M/1/K-Queue has exponential interarrival time and service time distributions, each with

the respective parameters � and �. The customers are served in FIFO-Order, there is a single server

but the system can only hold up to K customers. If a new customer arrives and there are already K

customers in the system the new customer is considered lost, i.e. it drops from the system and never

comes back. This is often referred to as blocking. This behaviour is necessary, since otherwise (e.g.

when the customer is waiting outside until there is a free place) the arrival process will be no longer

markovian. As in the M/M/1 case a complete description of the system state is given by the number

of customers in the system (due to the memoryless property). The state-transition-rate diagram of the

underlying CTMC is shown in figure 2.7. The M/M/1/K system is also a pure birth-death system.

This system is better suited to approximate “real systems” (like e.g. routers) since buffer space is

always finite.

2.3.1 Steady-State Probabilities

One can again using the technique based on evaluation of the flow equations to arrive at the steady

state probabilities pk. However, since the number of customers in the system is limited, the arrival

process is state dependent: if there are fewer than K customers in the system the arrival rate is �,
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Figure 2.8: Mean number of Customers in the system for M/M/1/10-queue

otherwise the arrival rate is 0. It is then straightforward to see that the steady state probabilities are

given by:

p0 =
1� �

1� �K+1
(2.12)

pk = p0�
k (2.13)

where 1 � k � K and again � = �

�
holds. It is interesting to note that the system is stable even for

� > 1

2.3.2 Some Performance Measures

Mean number of customers in the system

The mean number of customers in the system is given by

�N = E[N ] =

KX
k=0

kpk = ::: =

(
�

1��
�

K+1
1��K+1 �

K+1 : � 6= 1

K

2
: � = 1

(2.14)

The mean number of customers in the system is shown in figure 2.8 for varying � and for K = 10.

Please note that for this queue � can be greater than one while the queueing system remains stable.

The mean response time again can be evaluated simply using Little’s formula.
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Loss Probability

The loss probability is simply the probability that an arriving customer finds the system full, i.e. the

loss probability is given as pK with

pLoss := pK =

(
�
K
��

K+1

1��K+1 : � 6= 1

1
K+1

: � = 1
(2.15)

For the case of 10 servers the loss probability for varying � is shown in figure 2.9

In section 2.1 we have considered the problem of dimensioning a router’s buffer such that cus-

tomers are lost only with a small probability and used the M/M/1 queue as an approximation, where

an M/M/1/K queue with unknown K may be more appropriate. However, it is not possible to solve

equation 2.15 algebraically for K when pLoss is given (at least if no special functions like LambertW

[1] are used).

2.4 A comparison of different Queueing Systems

In this section we want to compare three different systems in terms of mean response time (mean

delay) vs. offered load: a single M/M/1 server with the service rate m�, a M/M/m system and a

system where m queues of M/M/1 type with service rate � are in parallel, such that every customer

enters each system with the same probability.

The answer to this question can give some hints on proper decisions in scenarios like the follow-

ing: given a computer with a processor of type X and given a set of users with long-running number

cruncher programs. These users are all angry because they need to wait so long for their results. So

the management decides that the computer should be upgraded. There are three possible options:

� buy n� 1 additional processors of type X and plug these into the single machine, thus yielding

a multiprocessor computer

� buy a new processor of type Y, which is n times stronger than processor X and replacing it, and

let all users work on that machine

� provide each user with a separate machine carrying a processor of type X, without allowing

other users to work on this machine
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We show that the second solution yields the best results (smallest mean delays), followed by the first

solution, while the last one is the worst solution. The first system corresponds to an M/M/m system,

where each server has the service rate � and the arrival rate to the system is �. The second system

corresponds to an M/M/1 system with arrival rate � and service rate m � �. And, from the view of a

single user, the last system corresponds to an M/M/1 system with arrival rate �=m and service rate

�. The mean response times for m = 10 and � = 2 are for varying � shown in figure 2.10.

An intuitive explanation for the behaviour of the systems is the following: in the case of 10 parallel

M/M/1 queues there is always a nonzero probability that some servers have many customers in their

queues while other servers are idle. In contrast to that, in the M/M/m case this cannot happen. In

addition to that, the fat single server is especially for lighter loads better than the M/M/10 system,

since if there are only k < 10 customers in the system the M/M/10 system has a smaller overall

service rate k ��, while in the fat server all customers are served with the full service rate of 10 �� = 20
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Chapter 3

The M/G/1-System

In this chapter we will show some basic properties of the more advanced M/G/1 system. In this

system we have a single server, an infinite waiting room, exponentially distributed interarrival times

(with parameter �) and an arbitrary service time distribution, for which at least the mean value �

and the standard deviation is known. The service discipline is FIFO. However, before starting with

the M/G/1 queue we present some facts from renewal theory.

3.1 Some Renewal Theory Results

Consider the following scenario: consider the time axis, going from far in the past to infinity (please

refer to figure 3.1). There occur events Ek , k 2 N at the times �k. The interevent time is defined

as xk := �k � �k�1, and all interevent times are drawn from the same distribution F (x) (iid) with

the density function (pdf) f(x), the mean value E[(�k � �k�1)] =
R
1

0
xf(x)dx = m1 and the second

moment E[(�k � �k�1)
2] =

R
1

0
x
2
f(x)dx = m2 (thus having the variance �2 = m2 � m

2
1). We say

that the time interval [�k ; �k+1) is the lifetime of the event Ek. Now we look at an arbitrary time � at

the system. The last event that occured is En�1 at time �n�1, the next event En occurs at time �n. We

assume �n�1 � � < �n, so � is within the lifetime of the event En�1. We define � � �n�1 the age of

Ek and �n � � to be the residual lifetime of Ek. Now we may ask for the distribution function G(x) or

the corresponding pdf g(x) of the residual lifetime Y , given the distribution of the interevent times.

In addition we ask for the distribution function F̂ (x) (or its pdf f̂(x)) of the special interarrival time

X := �n� �n�1. The surprising fact is that in general FX 6= F̂X , what means that if we look at a random

point in time at the system, the special lifetime distribution of the currently active event is not the same as the

lifetime distribution of all other events.

One example where questions like these arise is the following: consider a machine that always

needs some maintenance, especially it needs some oil from time to time. If the machine runs out of

oil it will break down and a repairman must be called, who fills a new portion of oil into the machine.

However, due to several circumstances the machine uses (randomly) varying rates of oil, so the next

time when the machine runs out of oil, will be random. Now the machine is sold. The buyer then

has an interest to know when the next breakdown will probably come. It is intuitively clear, that the

probability, that the next breakdown happens within a short time is greater, when the last breakdown

is far away and conversely, if the the last breakdown was yesterday we expect the machine to run for
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a longer time. Thus the buyer is interested in the distribution of the residual lifetime.

In various textbooks on probability theory (e.g. [7]) the following important results are shown

(quoted from [9]):

� The special interarrival time X has the density function

f̂(x) =
xf(x)

m1

(3.1)

� The residual lifetime has the density function

g(x) =
1� F (x)

m1

(3.2)

� The mean residual lifetime is given by

E[Y ] =
m2

2m1

=
m1

2
+

�
2

2m1

(3.3)

Another useful representation of the mean residual lifetime is given by

E[Y ] =
m1

2
(1 + C

2
X
) (3.4)

where C2
X

is the squared coefficient of variation of the distribution of the interarrival times. In

general, for a random variable X with finite expectation and variance the squared coefficient

of variation is defined as

C
2
X

:=
Var[X ]

(E[X ])2
(3.5)

It provides a rough measure on how much a random variable varies about its mean.

A special application of these results is the so-called taxi paradoxon: consider you are leaving your

home at a random point in time and go to the border of the next street, planning to take a taxi. You

know that taxis arrive at your location according to an exponential interarrival-time distribution with

parameter �. So whats the mean time that you must wait for the next taxi? Two answers would make

sense:
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� Since the mean interarrival time is 1=� you can expect that you have hit “the middle” of an

interarrival time, so in the mean you have to wait for 1=(2�). This is the same expectation as

when the interarrival times are deterministic.

� Since the exponential distribution is memoryless, the residual lifetime should have the same

distribution as the interarrival times with the same parameter � and thus having the same mean

residual lifetime 1=�, twice the time as in the first answer. Furthermore for the same reasons

we expect the age of the current event also be exponentially distributed with parameter �. So

we conclude that the interarrival time we have hit has the mean 2=�.

We can evaluate equation 3.3 for the exponential distribution with m1 = 1=� and m2 = 2=�2 to see

that E[Y ] = 1=�. Furthermore we see that the density function of the special interarrival time f̂(x)

corresponds to a gamma distribution with parameters � = 2 and ~� = �, which is the distribution

function of the sum of two exponential distributed random variables with the same parameter. So

the second answer is correct. An intuitive justification of this answer is that it is more likely to hit a

long interarrival time than to hit a short one.

3.2 The PASTA Theorem

In this section we investigate the following question: when we look at the number of customers in a

queueing system at “random points” in time, do then have all “random points” the same properties

or do there exist points where the results differ fundamentally?

The answer is: yes, it makes a difference how you choose the points. A simple example illustrat-

ing this is the D/D/1 queue (with fixed interarrival times of � seconds and fixed service times of �

seconds, � < �. If we now choose “randomly” the arrival times of new customers as our random

points it is clear that we will see zero customers in the system every time (since customers are served

faster than they arrive). If we choose the random times with uniformly distributed time differences

there is always a probability of �=� > 0 to find a customer in the system. Thus, the final result of this

section is that arrival times are not random times. One important exception from this rule is when the

arrival times come from a poisson process (with exponentially distributed interarrival times). In this

case the arrival times are “random enough” and a customer arriving to a queue in the steady state

sees exactly the same statistics of the number of customers in the system as for “real random times”.

In a more condensed form this is expressed as Poisson Arrivals See Time Averages, abbreviated with

PASTA. This property comes also from the memoryless property of the exponential distribution.

3.3 The Mean Response Time and Mean Number of Customers in

the System / Pollaczek-Khintchine Mean Value Formulas

We first derive the mean value for the response time (taken from [11]). We assume that the arbitrary

service time distribrution is given by B(t) with the pdf b(t). The random variable for the service

times itself is denoted by B. The service rate (the inverse of the mean service time) is denoted as

� = 1=E[B], the arrival rate of the poisson arrival process has rate �. If we define � = minf1; �=�g
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then � can be interpreted as the utilization of the server, i.e. the steady state fraction of time that the

server is busy. The random variable for the number of customers in the queue is denoted by Nq.

Now we focus on a specific arriving customer. Since we have poisson arrivals this customer sees

the same system statistics as seen at every other random point in time (PASTA). The expected waiting

time of the customer can then be calculated as follows:

E[W ] = E[Nq]E[B] + �E[R]

where the first term E[Nq]E[B] accumulates all the service times of the customers currently waiting

in the queue (FIFO service discipline) and the second term �E[R] counts the residual service time

(residual lifetime) of the customer currently in service, weighted by the probability � that the server

is busy.

From section 3.1 we know that

E[R] =
E[B]

2
(1 + C

2
B
)

where C2
B

is the squared coefficient of variation for the service time random variable. Furthermore,

Little’s Law says that E[Nq] = �E[W ] so we get

E[W ] = �E[W ]E[B] + �E[R]

which can be solved for E[W ] to get

E[W ] = �E[R]
1

1� �E[B]

and since E[B] = 1=� this can be simplified to

E[W ] = E[R]
�

1� �
=
E[B]

2

�

1� �
(1 + C

2
B
)

Now the mean response time can be calculated as

E[T ] = E[B] + E[W ]

which yields the final result

E[T ] = E[B]

�
1 +

�(1 + C
2
B
)

2(1� �)

�
(3.6)

After applying Little’s Law to the last formula we get

E[N ] = �+
�
2(1 + C

2
B
)

2(1� �)
(3.7)

The last two equations are known as Pollaczek-Khintchine Mean Value Formulas. In figure 3.2

we show the mean number of customers in the system for different coefficients of variation and for

varying �. This result is worth some notes:

� We can see that all M/G/1 systems have in common that they tend to get unstable as � ap-

proaches 1.
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Figure 3.2: Mean number of Customers in the system for different coefficients of variation

� We can see that the coefficient of variation of the service times has a strong influence on the

mean values. The exponential distribution has a squared coefficient of variation of 1, while the

deterministic distribution (with constant service times) has a zero variance and thus C2
B

= 0 for

this distribution. For this reason we can achieve always the highest throughput (lowest delays)

for deterministic service times. Randomness increases service times, especially for distribu-

tion with large variations, where large service times occur with higher probability, causing the

customers in the queue to wait for a longer time.

3.4 Distribution of the Number of Customers in the System

In this section we show a method for deriving the distribution of the number of customers in the

system in the steady state in an M/G/1 system. The derivation is mainly taken from [11] and [9].

This information is often very important for dimensioning of real systems, e.g. buffers in routers,

since it allows for calculation of tail probabilities P [N > x] where x is the amount of memory we can

afford and the tail probability gives an estimation of the number of packets we will lose in our router.

However, we will not directly derive expressions for this distribution, but for its ordinary generating

function (ogf) or probability generating function (pgf), in terms of the Laplace transform of the service

time distribution. A rough introduction to ogf’s can be found in appendix A.1, to Laplace transforms

in appendix A.2.

Since the service times are iid, we take a random variable B with distribution function B(x) and

density function b(x) as representative for all service times. As usual, the arrival process is a poisson

process with parameter �. Next the family of random variables Vi denotes the respective number of

customer arrivals in the ith service time. Clearly Vi depends on the length of the ith service period,
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which always has the distribution B(x). Thus it is reasonable to assume that all Vi have the same

distribution and thus form an iid sequence of random variables (a rigorous proof of this would be of

only technical interest).

Now we look at the imbedded markov chain: if we want to describe the state of the system at a

random point in time, in general we need two variables: the number N(t) of customers in the system

at that time and furthermore the service time X(t) already received by the customer currently in

service. The latter variable is needed, since the service times in general do not have the memoryless

property. However, if we choose as special times the time instants tn, where the nth customer in

service leaves the system and the service time of the next customer starts, we have X(t) = 0. At this

times the system state is completely given by N(tn) and so we have a markov chain like the ones for

M/M/1.

Now we define Ni := N(ti) and it is straightforward to establish the following recurrence equa-

tion:

Ni+1 = (Ni � 1)+ + Vi (3.8)

where (x)+ := maxf0; xg. This equation in words: the number of customers in the system at time

instant tn+1 is given by the number at time tn minus the customer leaving the system plus newly

arriving customers. Additionally we assume N0 = 0. If the system is in steady state, the time

dependency disappears in the long run and the random variables Ni and Vi converge to random

variables N and V respectively. Taking the limits yields:

N = (N � 1)+ + V

Let GN (z) be the probability generating function (pgf) of N . From the last equation and from the

convolution property of the pgf1 we have

GN (z) = G(N�1)++V (z) = G(N�1)+(z) �GV (z) (3.9)

where from the definition

GN (z) =

1X
k=0

Pr[N = k] � zk

Also from the definition of the pgf we have

G(N�1)+(z) =

1X
i=0

Pr[(N � 1)+ = i] � zi

The random variable (N � 1)+ takes the value 0 if and only if N = 0 or N = 1 holds, thus we have

Pr[(N � 1)+ = 0] = Pr[N = 0] + Pr[N = 1]. On the other hand,(N � 1)+ takes the value i (i > 0) if

and only if N = i+ 1, thus Pr[(N � 1)+ = i] = Pr[N = i+ 1]. Collecting terms yields:

G(N�1)+(z) = (Pr[N = 0] + Pr[N = 1]) � z0 +

1X
�=1

Pr[N = � + 1] � z�

= Pr[N = 0] +
1

z
�

 
Pr[N = 1] � z +

1X
�=2

Pr[N = �] � z�

!

= Pr[N = 0] +
1

z
� (GN (z)� Pr[N = 0])

1Recall that the expression (N � 1)+ + V is the sum of two random variables with values from natural numbers and not

the sum of two probability sequences. Thus the probability sequence of the sum is given by the convolution of the sequences

for (N � 1)+ and V .

24



If we take � as the utilization of the server, then the server will in the steady state be free with

probability 1� �, thus we have Pr[N = 0] = 1� �, yielding

G(N�1)+(z) =
GN (z) + (1� �) � (z � 1)

z

Next we derive the pgf for V , for which we need to introduce the Laplace transform of the service

time B2. If the service interval has the length x then V has a poisson distribution with parameter �x,

since arrivals are markovian. The poisson distribution is defined as

p(k; t) = e
�t
t
k

k!

The probability generating function of V is defined as

GV (z) =

1X
�=0

Pr[� customers arrive during service time] � z�

= =

1X
�=0

Pr[V = �] � z�

In order to compute Pr[V = �] we use the continuous analogon to the law of absolute probability by

looking at all possible interval lengths, which yields

Pr[V = �] =

Z
1

0

p(�; �x)b(x)dx

(recall that b(x) is the pdf of the service time distribution B). Now we collect all together and get

GV (z) =

1X
i=0

Z
1

0

p(i; �x)b(x)dx � zi

=

1X
i=0

Z
1

0

(�x)i

i!
e
��x

b(x)dx � zi

=

Z
1

0

e
��x

1X
i=0

(�xz)i

i!
b(x)dx

=

Z
1

0

e
��x

e
�xz

b(x)dx

=

Z
1

0

e
��x(1�z)

b(x)dx

= LB(�(1� z))

where we have deliberately ignored questions on whether we may change the limits or on proper

convergence. So we have the result that we can express the ordinary generating function of V in

terms of the Laplace transform of the service time B. Now we can plug all our results back into

equation 3.9 to arrive at

GN (z) =
GN (z) + (1� �) � (z � 1)

z
� LB(�(1� z))

which can be rearranged to find the final result

GN (z) = LB(�(1� z)) �
(1� �)(1� z)

LB(�(1� z))� z
(3.10)

which is called Pollaczek-Khintchine Transform Equation. The result is thus that we can express

the distribution of the number of customers in its system indirectly through the Laplace transform of

the service time distribution.
2A rough overview of Laplace transforms can be found in appendix A.2.
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3.5 Two Examples

In this section we want to show two examples on the use of the Pollaczek-Khintchine Transform

Equation. The first example is the M/M/1 system and the second example an M/D/1-queue. How-

ever, we will only quote the main intermediate results without carrying out all calculations.

3.5.1 The M/M/1 Queue

The service times are exponentially distributed with parameter �, thus we have B(t) = 1� e
��t and

b(t) = �e
��t, the Laplace transform of B can be evaluated to

LB(s) =
�

s+ �

If we now compute LB(�(1�z)) = 1
�(1�z)+1

, plug this into equation 3.10 and perform some algebraic

manipulation we get

GN (z) =
1� �

1� �z

It is now very easy to invert this ogf to find the probabilities Pr[N = k] if we simply use that for the

geometric series we have
1X
i=0

x
i =

1

1� x

for jxj < 1. Then we can see that

GN (z) =

1X
i=0

(1� �)�izi

Since Pr[N = k] is from the definition of the ogf just the coefficient of the zk term it is then clear that

Pr[N = k] = (1� �)�k

which we already know from section 2.1.

3.5.2 The M/D/1 Queue

This example shows that the calculations are not always as neat as in the M/M/1 case. The Laplace

transform of the deterministic “distribution” is given by

LB(�(1� z)) = e
��(1�z)

which requires integration of the unit impulse function. Then we get

GN (z) = (1� �)(1� z)

1X
j=0

z
j
e
�j(1�z)

Unfortunately this must be expressed in a form of
P
1

i=0 bkz
k, where bk does not depend on z, in

order to give us the probabilities Pr[N = k] = bk. In this (lengthy) calculation the definition of the

exponential series is used to finally arrive at

Pr[N = k] = (1� �)

kX
i=0

e
i�(�1)k�i

(i�+ k � i)(i�)k�i�1

(k � i)!
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3.6 Distribution of the Customer Response Times

This distribution can be found using the following argument: in section 3.4 we have established the

following relationship between the ogf of the variable V (the number of customers arriving during a

service time) and the laplace transform of the random variable B (service time duration), namely

GV (z) = LB(�(1� z)) (3.11)

However, since there is no direct relationship between the service times and the arrival process, we

could have chosen any random variable X instead of B and the equation will still hold

GV (z) = LX(�(1� z))

Now consider a newly arriving customer C that is marked upon arrival to the queue. While C

experiences its response time T (waiting in the queue and getting service) new customers will arrive.

For this number of new customers then we have

GV (z) = LT (�(1� z))

Now we argue, that for this special duration (the customer response time) the variable V is in fact

the same as the variable N . This is true, since the customers, that are in the system when C finishes

service, are arrived during C’s response time. This number is in the steady state stochastically equal

to the number of customers in the system, when C has just entered, but, by PASTA, this random

variable is equal to the steady state random variable for the number of customers in the system, N .

Thus we have

GN (z) = LT (�(1� z)) (3.12)

If we now substitute s = �(1 � z) and use the Pollaczek-Khintchine transform equation 3.10 we

arrive at

LT (s) = LB(s)
s(1� �)

s� �+ �LB(s)
(3.13)

As result we can note that the laplace transform of the response time can also be expressed as a

function of the laplace transform of the service times. Now we have, at least in principle, all tools

necessary to compute the interesting distributions (response times and number of customers in the

system) and their moments (mean, variance).
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Chapter 4

Queueing Networks

So far we have only looked at a single standalone queueing system. However, most real systems

are better represented as a network of queues. An obvious example is the Internet, where we can

model each outgoing link of each router as a single queueing system, and where an end-to-end path

traverses a multitude of intermediate routers. In a queueing network a customer finishing service in

a service facility A is immediately proceeding to another service facility or he is leaving the system.

One basic classification of queueing networks is the distinction between open and closed queueing

networks. In an open network new customers may arrive from outside the system (coming from

a conceptually infinite population) and later on leave the system. In a closed queueing network

the number of customers is fixed and no customer enters or leaves the system. An arbitrary open

queueing network is shown in figure 4.1. As you may notice, customer may enter the system at

any queue and also may leave the system from any queue. The system may contain loopbacks and

splitting points, where a customer has several possibilities for selecting the next queue. In the latter

case to each possibility is often assigned a fixed probability for a customer taking this branch. A

simple (?) example for an open queueing network may be the internet, where new packets arrive

from “outside the system” (in fact, from the users).

As an example for a closed queueing network consider the simple central server computer model,

shown in figure 4.2. There is a fixed set of tasks (in a multitasking system) and each task alternates

between states where it performs some computations, thus using the processor and where it performs

some I/O, e.g. access a hard disk, plot a file and so forth. After doing I/O a task continues using

the processor (it is assumed that every task does just one thing at a time). Furthermore, since the

operating system performs time slicing, a task looses the processor after a fixed amount of time and

then again waits for the processor.

We will consider only the case of a single class network where all customers belong to the same

class, i.e. share some important characteristics, e.g. service times. In a multi class network there are

k classes of customers, each with different service times, paths through the network, and so forth.

Customers may dynamically change their class. For some classes of customers the network may be

closed, for other classes open (in this case we have a mixed network). Most of the material found in

this chapter is from [4].
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Figure 4.1: An Open Queueing Network

Processor

Harddisk

Plotter

Printer

Figure 4.2: A Closed Queueing Network
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4.1 Notation

� N : number of nodes (single service centers)

� K: the number of customers in a closed network

� ki: the number of jobs at the i-th node. The nodes are numbered from 1 to N

� mi: the number of parallel servers at node i, all servers have the same service rate

� �i: service rate of all the servers at node i. The overall service rate of this node is mi � �i.

� pij : the routing probability that a customer leaving node i proceeds to node j. These probabili-

ties remain fixed over time. Clearly, when there is no direct path from i to j we have pij = 0.

� p0j : the probability that a new job entering the system from outside enters the system at node

j. It must be true that
P

N

j=1 p0j = 1

� pi0: the probability that a job leaving the system does so from node i.
P

N

i=1 pi0 = 1

� �0i the arrival rate of jobs from outside to node i

� �i: the total arrival rate to node i.

� ei =
�i

�
is the visit ratio of node i, i.e. how often the node is visited by a single job

� �: the total arrival rate to all nodes in the network from outside. � =
P

N

i=1 �0i

The arrival rate �i to node i is clearly the sum of all arrivals from the outside to i and from all

nodes to i (also from i itself), thus we have

�i = �0i +

NX
j=1

pji�j (4.1)

where we take the output rate of node j as being equal to its arrival rate. This can be done in the case

where the system has a steady-state solution. These equations are called traffic equations and they

can be transformed into a set of N simultaneous linear equations. For the case of a closed queueing

network the traffic equations reduce to

�i =

NX
j=1

pji�j (4.2)

which can also be transformed into a simultaneous set of N homogeneous linear equations. How-

ever, in this case the solution is not unique, the solution space is a subspace of dimension of at least

one, since the vector (�1; :::; �N ) = (1; 1; :::; 1) is always a solution. Thus we can choose at least one

variable �i free, a common setting is �1 = 1.

In the remainder we consider mainly fully markovian networks, unless noted otherwise. By fully

markovian we mean that all arrival streams from outside are poisson streams and that all service

centers transform markovian arrivals to markovian output. Some example service station types are

M/M/1, M/M/m, M/M/1/N and so forth. In a markovian network the system state can be entirely

characterized by the number of customers in each system, thus it is given by an N -tuple (k1; :::; kN ).
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The steady-state probability of the system being in state (k1; :::; kN ) is denoted as �(k1; :::; kN ). The

normalization condition holds, i.e.
P

�(k1; :::; kN ) = 1

From this steady state probability we can derive the marginal probability �i(k) that the node i

contains exactly k customers. This can be expressed for the case of open queueing networks as

�i(k) =
X

k=(k1;:::;kN)2NN ;ki=k

�(k1; :::; kN )

and for the case of closed queueing networks as

�i(k) =
X

k=(k1;:::;kN);
P

N
j=1 kj=K;ki=k

�(k1; :::; kN ) ; k � N

For the marginal probabilities also the normalization condition
P
1

k=0 �i(k) = 1 holds for every node

i. The probability that a specific node i is busy is given by �i := 1� �i(0) =
P
1

k=1 �i(k).

With these definitions we can look at each node as if it is a single node and we can evaluate the

respective performance measures as described in Chapter 2.

4.2 Product Form Networks

In principle there exists a straightforward way to determine the state probabilities for a fully marko-

vian queueing network: determine the set of all states, determine the transition rates between each

pair of states, write this as an equation system for a steady state markov chain � �Q = 0 (eventually

after flattening the N-dimensional state description into a one-dimensional) and solve for �. This

sounds simple but it isn’t, except for the smallest networks. The resulting equations are called global

balance equations.

In some cases it is possible to represent the state probabilities as follows:

�(k1; :::; kN ) =
1

G(K)
�1(k1) � �2(k2) � ::: � �N (kN ) (4.3)

where G(K) is the so-called normalization constant (it depends on the number of customers in the

system). In the case of an open queueing network we have always G(K) = 1, in the case of a closed

queueing network G(K) must be chosen such that the normalization condition
P

�(k1; :::; kN ) = 1

holds. The equation 4.3 represents a product form solution. The nice thing about this equation is that

we can decompose the system and look at every service center separately.

An example illustrating the power of the product form is an open network of M/M/1 queues, as

given in figure 4.3 and with poisson arrivals. The solution is carried out by the following steps:

� Solve the traffic equations, thus determining for each node i its overall arrival rate �i

� determine the state probabilities for node i with arrival rate �i and service rate �i. These are

for the M/M/1 case known to be (see section 2.1)

�i(k) =

�
1�

�i

�i

�
�

�
�i

�i

�k

� plug the single state probabilities for every queue together to yield

�(k1; k2; k3) = �1(k1) � �2(k2) � �3(k3)

=

�
1�

�1

�1

�
�

�
�1

�1

�k1
�

�
1�

�2

�2

�
�

�
�2

�2

�k2
�

�
1�

�3

�3

�
�

�
�3

�3

�k3
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Figure 4.3: A Sample Open Network

More general, a product-form solution exists, if two conditions are met. First, all arrivals to any

node must be of the poisson type. Second, each node must be of one of the following node types:

� M/M/m-FCFS

� M/G/1-PS(RR), where the service discipline PS(RR) denotes round-robin processor sharing, as

found e.g. in a multitasking operating system

� M/G/1 (Infinite Server)

� M/G/1-LCFS PR (Last Come - First Served with Preemptive Resume): with this service disci-

pline when a new customer arrives to a nonempty system, the customer currently in service is

removed from the service facility, put into a LIFO queue and service starts for the new one. If

the new customer has finished, the old customer re-enters service and continues at the point,

where he was interrupted.

4.2.1 The Jackson Theorem for Open Queueing Networks

The theorem of Jackson specifies the condition, under which a product form solution in open queue-

ing networks exist. These conditions are the following:

� The number of customers in the network is not limited

� Every node in the network can have poisson arrivals from outside the network

� A customer can leave the system from any node (or a subset)

� all service times are exponentially distributed

� In every node the service discipline is FCFS

� The i-th service facility consists of mi identical servers, each with service rate �i (as a general-

ization the service rate �i may depend on the number of customers in system i).

Theorem. If in an open network the condition �i < �i �mi holds for every i 2 f1; ::; Ng then the steady state

probability of the network can be expressed as the product of the state probabilities of the individual nodes:

�(k1; :::; kN ) = �1(k1) � �2(k2) � ::: � �N (kN ) (4.4)
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4.2.2 The Gordon-Newell Theorem for Closed Queueing Networks

The same assumptions hold as in the case of the Jackson theorem in subsection 4.2.1, with the ex-

ception that no customer can enter or leave the system. In this case there exists also a product-form

solution, which, however has a special form. The steady-state probabilities are then given by

�(k1; :::; kN ) =
1

G(K)

NY
i=1

Fi(ki) (4.5)

where G(K) (the normalization constant) is given by

G(K) =
X

k=(k1;:::;kN);
P

N
j=1

kj=K

NY
i=1

Fi(ki) (4.6)

and the function Fi(ki) is defined by

Fi(ki) =

�
ei

�i

�ki
�

1

�i(ki)
(4.7)

where ei = �i

�i
and �i(ki) is defined by

�i(ki) =

8>><
>>:

ki! : ki � mi

mi! �m
ki�mi

i
: ki � mi

1 : mi = 1

(4.8)

The calculation of the normalization constant makes the treatment of closed queueing networks re-

ally awkward, since the whole state space needs to be enumerated.

4.3 Mean Value Analysis

For a larger closed product-form queueing network it is often very hard to compute the normaliza-

tion constant. The mean value analysis provides a way to compute some main performance character-

istics without the need to determine steady-state probabilities and the normalization constant. We

focus here only on the case where each service center has only a single server.

We need to introduce a change in notation: in the preceding chapters we have used the letter N

for the number of customers in a single queueing system, however, here N denotes the number of

queues in a closed queueing network. So in this section we will denote the number of customers in a

single queueing system i by Mi and its mean value by �Mi.

An important role in the mean value analysis plays the arrival theorem

Theorem. In a closed queueing network with product-form solution the steady-state probability distribution

function for the number of customers at node i when there are K customers in the network at the time instant

of a customer arriving at node i is equal to the distribution function for the number of jobs at node i when there

are K � 1 jobs in the network (at any other time instant).

Expressing this in terms of steady-state random variables Mi(K) and Ti(K) and taking into ac-

count, that the residual service time of the customer currently in service is by the memoryless prop-

erty equal to its service time distribution Bi (the exponential distribution), we get

Ti(K) = Bi(1 +Mi(K � 1)) ; i 2 f1; ::; Ng (4.9)
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Taking expectations this can be expressed as

�Ti(K) =
1

�i
(1 + �Mi(K � 1)) ; i 2 f1; ::; Ng (4.10)

where �Ti(K) is the mean response time of node i in a queueing network withK customers and �Mi(K)

is the mean number of customers in node i in a queueing network with K customers. However, this

holds only for a single visit of a customer at queue i.

Next we fix node 1 and call the period between two successive departures from node 1 a cycle or

passage. In a single cycle every node can be visited many times. We define the visit count Vi for node

i implicitly by the equation

�i = Vi � �1

saying that when node 1 is visited once, node i is in the mean visited Vi times during a cycle. The

average response time of node i per cycle is then given by

T̂i(K) =
Vi

�i
(1 + �Mi(K � 1)) ; i 2 f1; ::; Ng

Now, if we denote the overall throughput of the network �(K) as the throughput at the specific node

1, Little’s law gives us

�Mi(K) = �i(K) � �Ti(K) = �(K) � Vi � �Ti(K) = �(K) � T̂i(K) (4.11)

Summing over all stations yields

NX
i=1

�Mi(K) = �(K) �

NX
i=1

T̂i(K) = �(K) � T̂ (K) = M̂(K) = K

where T̂ (K) denotes the mean time for one cycle. So we have

�(K) =
K

T̂ (K)

Resubstituting the last result into equation 4.11 then yields

�Mi(K) = �(K) � T̂i(K)

=
K

T̂ (K)
� T̂i(K)

Now we can give an iterative algorithm for the computation of �Mi(K) and �Ti(K). Before we do

that we summarize the needed equations as derived above, using a variable number k of customers

instead of the fixed number K:

�Mi(k) = Vi � �(k) � �Ti(k) (4.12)

�Ti(k) =
Vi

�i
� (1 + �Mi(k � 1)) (4.13)

�(k) =
kP

N

j=1 Vj
�Tj(k)

(4.14)

The algorithm starts with the observation that clearly for all i 2 f1; ::; Ng we have �Mi(0) = 0. Fur-

thermore, the numbers Vi are given for i 2 f1; ::; Ng. Then we proceed with the following steps:
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1. for i 2 f1; ::; Ng calculate

�Ti(1) =
Vi

�i
� (1 + �Mi(0)) =

Vi

�i

2. Then we have all together to compute �(1):

�(1) =
1P

N

j=1 Vj
�Tj(1)

=
1P

N

j=1 Vj
Vj

�j

3. Then we compute �Mi(1) for i 2 f1; ::; Ng by

�Mi(1) = Vi � �(1) � �Ti(1)

4. Now that we have given �M1(1); :::; �MN (1) we can iterate the algorithm for k = 2; ::;K.
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Appendix A

Probability Generating Functions and

Linear Transforms

In this appendix we introduce some transformations, which are widely used in probability theory in

order to simplify calculations. These transformations are linear transformations. One of these trans-

formations, the Laplace Transform is also widely used in electrical engineering. Its main value is that

it allows the solution of linear differential equations with constant coefficients and given boundary

values in a purely algebraic manner.

A.1 Probability Generating Functions

Consider a discrete random variable X which can take values from the natural numbers 0; 1; 2; 3; :::.

This random variable has the distribution pk := Pr[X = k], however, we look at this as a simple

sequence (pk)k2N and introduce a transform from the set A of all sequences (fk)k2N such that
1X
k=0

fk <1

holds, to a function space. We will denote a sequence with
1X
k=0

fk = 1

as a probability sequence. For a given sequence (fk)k2N 2 A we define the ordinary generating function

(ogf) or probability generating function of f to be

Gf (z) =

1X
k=0

fkz
k (A.1)

(for the moment we are not interested in convergence issues). This transformation has the following

properties:

� It is linear: If f = (fk)k2N 2 A and g = (gk)k2N 2 A are two sequences and a and b are real

numbers then

Gaf+bg(z) = aGf (z) + bGg(z) (A.2)
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� We have Gf (0) = f0 and for probability sequences we have Gf (1) = 1

� Within the convergence radius the power series converges absolutely and is an analytic func-

tion and thus we have

fn =
1

n!

d
n

dxn
Gf (x)

����
x=0

(A.3)

This shows that we can get the original sequence from its transform, however, these calcula-

tions can get a little bit clumsy if you need more than, say, five values.

� The mapping between sequences and transforms is bijective, i.e. for two sequences f and g we

have f = g if and only if Gf = Gg

� For two sequences f and g we define the convolution sequence h with

hi = f0gi + f1gi�1 + :::+ fi�1g1 + fig0 (A.4)

Then the following equation holds:

Gh(x) = Gf (x) �Gg(x) (A.5)

Especially this is the reason why this transform is widely used in probability theory: if we have

two independent discrete random variablesX and Y with values from the natural numbers and

we define their sum Z = X+Y , then in the probability distribution ofZ convolution sequences

arise naturally. In fact, the distribution of Z is just the convolution of the the distributions of X

and Y . So, if we know the ogf of X and Y we quickly get the ogf of Z and by equation A.3 we

also know the distribution itself. So if we introduce a slight change in notation we have

GZ(x) = GX+Y (x) = GX (x) �GY (x) (A.6)

Thus we can say: for the sum of sequences this transform is linear, for the sum of random

variables with values from the natural numbers this transform is multiplicative.

As already mentioned, in probability theory one often works not directly with distributions, in-

stead the ogf is used, since in calculations simple algebra can be used in the transform space (think

of the multiplication for the sum of two variables) whereas in the original sequence space we need to

handle ugly things like convolutions. However, from time to time we need to get the sequence back

from its ogf, and this can be very clumsy using equation A.3. If the ogf is a rational function (i.e. a

ratio of two polynomials) then there is another way for the inverse transformation. This way uses

two ingredients: a table of some basic sequence-transform pairs and partial fraction expansion. With

partial fraction expansion a rational function is split into a sum of simpler rational functions, which

can then be inverted more easily and the corresponding inverses may be simply added up to yield

the inverse of the whole function. This is due to the linearity property.

In the most textbooks this transform is introduced together with a table of basic sequence-transform

pairs.
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A.2 Laplace Transform

Be f : R ! R�0 a function that takes nonnegative values only for t � 0. For t < 0 always f(t) = 0

holds. The Laplace transform of f is then defined as

Lf (s) :=

Z
1

�1

f(t)e�stdt =

Z
1

0

f(t)e�stdt ; s 2 C (A.7)

Thus the Laplace transform maps each real valued function with real parameter to a complex valued

function with complex parameter. Here we won’t bother with existence of this integral. It is surely

defined as long as f is almost continuous and if it grows not so fast as an exponential function. The

reasons for using Laplace transforms are almost the same as for probability generating functions, but

also the problem of the inverse transformation arises. In general this is a difficult problem involving

complex contour integrals, but for rational laplace transforms the general technique sketched in ap-

pendix A.1 (which involves partial fraction expansion and a table of function-transform pairs) will

work.

The Laplace transform has the following properties

� It is a linear transformation: if f and g are functions satisfying the above constraints and a and

b are real numbers we have

La�f+b�g(s) = a � Lf (s) + b � Lg(s) (A.8)

� It simplifies differentiation and integration:

L df(t)

dt

= s � Lf (s)� f(0�) (A.9)

LR t
�1

f(u)du =
Lf (s)

s
(A.10)

(where f(0�) = limx!0;x<0f(x)). Especially these properties together with the linearity are the

reason that Laplace transforms are often used for solving linear ordinary differential equations

(ode) with constant coefficients, since the ode is transformed to a simple algebraic expression.

� If we define the convolution of two functions f and g to be

f(t) � g(t) =

Z
1

�1

f(t� x)g(x)dx (A.11)

then for the Laplace transform we have

Lf�g(s) = Lf (s) � Lg(s) (A.12)

Again, the convolution arises when we look at the sum Z = X + Y of two independent contin-

uous random variables X and Y . We denote the Laplace transform of the random variable X as

LX(s) and define that LX(s) = LfX (s) where fX(x) is the pdf of the random variable X . The

pdf of Z is actually given by the convolution of fX and fY and thus we may write

LZ(s) = LX+Y (s) = LX(s) � LY (s) (A.13)

� Furthermore we can calculate all moments of a random variable X :

E[Xn] = (�1)n �

�
d
n
LX(s)

dsn

����
s=0

�
(A.14)
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� In addition there is a funny relationship between the ordinary generating function and the

Laplace transform: be f a function as defined above, and define ffi : i 2 N; fi := f(i)g the

sequence of “samples” of f taken at the discrete times i = 0; 1; 2; 3; :::, be Gf (z) the ordinary

generating function of that sequence and Lf (s) the Laplace transform of f . Then it is straight-

forward to show

Lf (s) = Gf (e
�s) (A.15)

A more exhaustive list of properties and a table of function-transform-pairs can be found in most of

the textbooks in the bibliography.
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