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Abstract

The study of computational agents capable of rational behaviour has received a great
deal of attention in recent years. A number of theoretical formalizations for such multi-
agent systems have been proposed. However, most of these formalizations do not have a
strong semantic basis nor a sound and complete axiomatization. Hence, it has not been
clear as to how these formalizations could be used in building agents in practice.

This paper explores a particular type of multi-agent system, in which each agent is
viewed as having the three mental attitudes of belief (B), desire (D), and intention ().
It provides a family of multi-modal branching-time BDI logics with a semantics that
is grounded in traditional decision theory and a possible-worlds framework, categorizes
them, provides sound and complete axiomatizations, and gives constructive tableau-
based decision procedures for testing the satisfiability and validity of formulas. The
computational complexity of these decision procedures is no greater than the complexity
of their underlying temporal logic component. The paper thus provides a basis for devel-
oping formal methods to assist in the specification, design, and verification of complex
multi-agent systems.



1 Introduction

The design of systems that are required to perform high-level management and control
tasks in complex dynamic environments is becoming of increasing commercial importance.
These systems include air traffic control, telecommunications management, control of man-
ufacturing plant, and health service delivery. Experience in applying conventional software
techniques to develop such systems has shown that they are very difficult and very expensive
to build, verify, and maintain. Multi-agent systems, based on a radically different view of
computational entities, offer prospects for a qualitative change in this position.

A number of different approaches have emerged as candidates for the study of multi-
agent systems [Bratman et al., 1988; Doyle, 1992; Rao and Georgeff, 1991c; Rosenschein
and Kaelbling, 1986; Shoham, 1991]. One such architecture views the system as a rational
agent having certain mental attitudes of Belief, Desire and Intention (BDI), representing,
respectively, the informational, motivational, and deliberative states of the agent. These
mental attitudes determine the system’s behaviour and are critical for achieving adequate
or optimal performance when deliberation is subject to resource bounds [Bratman, 1987;
Kinny and Georgeff, 1991].

While much work has gone into the formalization of BDI agents [Cohen and Levesque,
1990; Jennings, 1992; Kinny et al., 1994; Rao and Georgeff, 1991c; Singh and Asher, 1990;
Singh, 1994], three main criticisms have been leveled against these endeavours. These criti-
cisms are:

e A number of different multi-modal, temporal logics have been proposed as the basis
for building rational agents. Rationality postulates that these logics satisfy or do not
satisfy have also been extensively discussed. However, there seems to be no clear
semantic picture of what these attitudes mean and how they relate to more classical
methods of determining rationality, such as decision theory.

e The BDI logics discussed in the literature are expressive modal logics, with modalities
for beliefs, desires, intentions, capabilities, action, agency, and time. Existing works on
BDI logics postulate various axioms that capture interesting interactions between dif-
ferent modalities and analyze the theorems that they entail, but fall short of providing
sound and complete axiomatization of such logics.

e Given the expressive power of these multi-modal BDI logics it is not clear if there are
any constructive decision procedures for checking validity or satisfiability. Even if such
decision procedures can be found, it is not clear what their computational complexities
are and how practical they are for specifying, designing, and verifying properties of
agents.

This paper addresses these criticisms. First, we discuss from an abstract system viewpoint
the need to capture the informational, motivational, and deliberative states of an agent. We
describe how a classical decision tree can be used to represent these states and then show
how it can be transformed into a quantitative possible-worlds model. This provides a solid
semantic model from which we can study a number of different BDI logics.

Second, based upon our semantic model, we provide a family of sound and complete
axiomatizations of BDI systems. Unlike previous researchers we do not present a single
BDI system and argue for its intuitive appeal; on the contrary, we believe that there may
not be a single BDI system suitable for all situations. We concentrate on categorizing BDI
systems based on the inter-relationships between the three mental attitudes and catalogue
the properties that correspond to such inter-relationships. Thus our formalization extends



the classical study of modal logics with one modal operator to multiple modal operators and
the interactions between these modal operators. This has the advantage that the designer
chooses the properties an agent has to satisfy which in turn constrains the BDI logics that
are suitable for modelling that agent. This is similar to classical modal logic in which one
first determines the properties required of the modal operators (e.g., knowledge of a formula
implies its truth, but belief of a formula need not imply the truth), which then constrain the
modal system (e.g., the modal system should contain the T-axiom for knowledge but not for
beliefs).

Third, we provide tableau-based decision procedures for our BDI logics. Existing work
on tableaus for belief logics cannot be readily extended to BDI logics as the underlying
branching-time logic is an infinitary logic. In infinitary logics the standard quotient con-
struction does not preserve modelhood and hence cannot be used for showing complete-
ness [Segerberg, 1994]. On the other hand, existing constructions for computation tree
logics cannot handle interactions among multiple modalities. In this paper, we introduce
a family of tableaus that can handle interactions among multiple modalities and a tableau
construction that preserves modelhood. This enables us to systematically demonstrate the
soundness and completeness of a family of BDI logics. We analyze the computational com-
plexity of our tableau-based decision procedures and show that the complexity is no greater
than the complexity of the underlying temporal logic, i.e., exponential in the size of the input
formula. This shows that we can introduce the modalities for beliefs, desires, and intentions,
without significantly altering the complexity.

Finally, we clarify the relationship between building multi-agent systems and the formal-
ization of BDI logics. A multi-agent system is a collection of agents! that continuously in-
teract with the environment and one another according to their informational, motivational,
and deliberative states. A number of such systems have been built and applied to com-
plex application domains, such as traffic management [Burmeister and Sundermeyer, 1992;
Ljungberg and Lucas, 1992], space shuttle fault diagnosis [Ingrand et al., 1992], telecommu-
nications network management [Ingrand et al., 1992], and air-combat modelling [Rao et al.,
1992a). However, there are no tools or methods available for formally verifying that these
systems satisfy their specification. For example, one may want to verify that a multi-agent
system for air-traffic management does not admit behaviours in which two aircraft come
into conflict. To develop such tools and methods, one needs to construct formal models and
logics for BDI agents. Thus formalization of BDI agents plays the same role as formalization
of other programming languages and systems, such as concurrent programs [Emerson, 1990,
in that it allows us to study properties of these systems without actually running them?2.

2 The System and its Environment

We first aim to informally establish the necessity of beliefs, desires, and intentions for a
system to act appropriately in a class of application domains characterized by various prac-
tical limitations and requirements. As typical of such a domain, consider the design of an
air traffic management system that is to be responsible for calculating the expected time of
arrival (ETA) for arriving aircraft, sequencing them according to certain optimality criteria,
reassigning the ETA for the aircraft according to the optimal sequence, issuing control di-
rectives to the pilots to achieve the assigned ETAs, and monitoring conformance [Ljungberg
and Lucas, 1992].

'In our case, BDI agents.
?However, we do not intend the formalization presented here to be used as a programming language for
BDI agents or that the tableau methods be used as a realization of a BDI agent.



This and a wide class of other real-time application domains exhibit a number of impor-
tant characteristics:

1. At any instant of time, there are potentially many different ways in which the environ-
ment can evolve (formally, the environment is nondeterministic); e.g., the wind field
can change over time in unpredictable ways, as can other parameters such as operating
conditions, runway conditions, presence of other aircraft, and so on.

2. At any instant of time, there are potentially many different actions or procedures the
system can execute (formally, the system itself is nondeterministic); e.g., the system
can take a number of different actions, such as requesting an aircraft change speed,
stretch a flight path, shorten a flight path, hold, and so on.

3. At any instant of time, there are potentially many different objectives that the system
is asked to accomplish; e.g., the system can be asked to land aircraft QF001 at time
19:00, land QF003 at 19:01, and maximize runway throughput, not all of which may
be simultaneously achievable.

4. The actions or procedures that (best) achieve the various objectives are dependent on
the state of the environment (context) and are independent of the internal state of the
system; e.g., the actions by which the aircraft achieve their prescribed landing times
depend on wind field, operating conditions, other aircraft, and so on, but not on the
state of the computational system.

5. The rate at which computations and actions can be carried out is comparable to the
rate at which the environment evolves; e.g., changes in wind field, operational condi-
tions, runway conditions, presence of other aircraft, and so on, can occur during the
calculation of an efficient landing sequence and during the period that the aircraft is
flying to meet its assigned landing time.

As the system has to act, it needs to select appropriate actions or procedures to execute
from the various options available to it. The design of such a selection function should enable
the system to achieve effectively its primary objectives, given the computational resources
available to the system and the characteristics of the environment in which the system is
situated.

Under the above-mentioned domain characteristics, there are at least two types of input
data required by such a selection function. First, given Condition (4), it is essential that
the system have information on the state of the environment. We call such a component
the system’s beliefs. This component may be implemented as a variable, a database, a set
of logical expressions, or some other data structure. Thus, beliefs can be viewed as the
informative component of system state.?

Second, it is necessary that the system also have information about the objectives to be
accomplished or, more generally, what priorities or payoffs are associated with the various
current objectives (Conditions 3 and 4). We call this component the system’s desires, which
can be thought of as representing the motivational state of the system.?

SWe distinguish beliefs from the notion of knowledge, as defined for example in the literature on distributed
computing, as the system beliefs are only required to provide information on the likely state of the environ-
ment; e.g., certain assumptions may be implicit in the implementation but sometimes violated in practice,
such as assumptions about accuracy of sensors, or rate of change of certain environmental conditions.

*We distinguish desires from goals as they are defined, for example, in the Al literature in that they may
be many at any instant of time and may be mutually incompatible.



Given this picture, the most developed approach relevant to the design of the selection
function is decision theory. However, this approach does not take into account Condition
(5); namely, that the environment may change in possibly significant and unanticipated ways
either (1) during execution of the selection function itself or (2) during the execution of the
course of action determined by the selection function.

The possibility of the first situation arising can be reduced by using a faster (and thus
perhaps less optimal) selection function, as there is then less risk of a significant event
occurring during computation.

Interestingly, to the second possibility, classical decision theory and classical computer
science provide quite different answers: decision theory demands that one re-apply the se-
lection function in the changed environment; standard computer programs, once initiated,
expect to execute to completion without any reassessment of their utility.

Given Condition (5), neither approach is satisfactory. Re-application of the selection
function increases substantially the risk that significant changes will occur during this calcu-
lation and also consumes time that may be better spent in action towards achieving the given
objectives. On the other hand, execution of any course of action to completion increases the
risk that a significant change will occur during this execution, the system thus failing to
achieve the intended objective or realizing the expected utility.

We seem caught on the horns of a dilemma: reconsidering the choice of action at each step
is potentially too expensive and the chosen action possibly invalid, whereas unconditional
commitment to the chosen course of action can result in the system failing to achieve its
objectives. However, by adopting an appropriate commitment strategy ° it is possible to
limit the frequency of reconsideration and thus achieve an appropriate balance between too
much reconsideration and not enough [Kinny and Georgeff, 1991]. For this to work, it is
necessary to include a component of system state to represent the currently chosen course
of action; that is, the output of the most recent call to the selection function. We call this
additional state component the system’s intentions. In essence, the intentions of the system
capture the deliberative component of the system.

3 Decision Trees to Possible Worlds

While in the previous section we talked abstractly about the belief, desire, and intention
components of the system state, we here attempt to develop a theory for describing those
components in a propositional form. We begin with classical decision theory and show how
we can view such a theory within a framework that is closer to traditional epistemic models
of belief and agency.

One way of modelling the behaviour of such a system, given Conditions (1) and (2), is
as a branching tree structure [Emerson, 1990], where each branch in the tree represents an
alternative execution path. Each node in the structure represents a certain state of the world,
and each transition a primitive action made by the system, a primitive event occurring in
the environment, or both.

If we differentiate the actions taken by the system and the events taking place in the
environment, the two different types of nondeterminism manifest themselves in two different
node types. We call these choice (decision) nodes and chance nodes, representing the options
available to the system itself and the uncertainty of the environment, respectively. If required,
the chance nodes can be labeled with the probability of their occurrence.

5That is, a procedure or protocol specifying under what recognizable conditions the commitment is main-
tained or terminated.



P(Win) = 0.4

P(Loss) = 0.6
P(yes) = 0.42
P(no) = 0.58

P(Win|yes) = 0.571
P(Loss|yes) = 0.429

P(Win|no) = 0.276
P(Loss|no) = 0.724

Loss 100

Figure 1: Example of a Decision Tree

In this formal model, we can also identify the objectives of the system with particular
paths through the tree structure, each labeled with the objective it realizes and, if required,
the benefit or payoff obtained by traversing this path.

The above structure can be viewed as a decision tree [Jones, 1977]. Informally, a decision
tree consists of decision nodes, chance nodes, and terminal nodes, and includes a probability
function that maps chance nodes to real-valued probabilities (including conditional proba-
bilities) and a payoff function that maps terminal nodes to real numbers. A deliberation
function, such as mazimin or mazimizing expected utility can be defined for choosing one or
more best sequences of actions to perform at a given node.

Consider the following example. Phil, who is currently in the House of Representatives,
believes that he can stand for the House of Representatives (Rep), switch to the Senate
and stand for a Senate seat (Sen), or retire from politics (Ret) [Jones, 1977]. He does not
consider the option of retiring seriously and is sure to retain his House seat. He has to
make a decision regarding conducting or not conducting an opinion poll, based upon which
he has to decide to stand for the House or the Senate. The results of the poll would be
either a majority approving his switch to the Senate (yes) or a majority disapproving of his
switch (no). The decision tree for this example is given in Figure 1. The probabilities and
conditional probabilities of various events are also shown in the figure. Payoffs are shown
at the terminal nodes. The double line indicates the paths that are optimal based on the
criteria of maximizing the expected value.



Our aim in this section is to transform such a decision tree, and appropriate deliberation
functions, to an equivalent model that represents beliefs, desires, and intentions as separate
accessibility relations over sets of possible worlds. This transformation provides a better
basis for cases in which we have insufficient information on probabilities and payoffs and,
perhaps more importantly, for handling the dynamic aspects of the problem domain.

We begin by considering a full decision tree, in which every possible path is represented
(including those with zero payoffs). Given such a decision tree, we start from the root node
and traverse each arc. For each unique state labeled on an arc emanating from a chance
node, we create a new decision tree that is identical to the original tree except that (a)
the chance node is removed and (b) the arc incident on the chance node is connected to
the successor of the chance node. This process is carried out recursively until there are no
chance nodes left. This yields a set of decision trees, each consisting of only decision nodes
and terminal nodes, and each corresponding to a different possible state of the environment.
That is, from a traditional possible-worlds perspective, each of these decision trees represents
a different possible world with different probability of occurrence. Finally, the payoff function
is assigned to paths in a straightforward way. The algorithm for this transformation can be
found elsewhere [Rao and Georgeff, 1991b].

The resulting possible-worlds model contains two types of information, represented by
the probabilities across worlds and the payoffs assigned to paths. We now split these out
into two accessibility relations, the probabilities being represented in the belief-accessibility
relation and the payoffs in the desire-accessibility relation. At this point in the story, the sets
of tree structures defined by these relations are identical, although without loss of generality
we could delete from the desire-accessible worlds all paths with zero payoffs.

Given a decision tree and the above transformation, an agent can now make use of
the chosen deliberation function to decide the best course(s) of action. We can formally
represent these selected path(s) in the decision tree using a third accessibility relation on
possible worlds, corresponding to the intentions of the agent. In essence, for each desire-
accessible world, there exists a corresponding intention-accessible world which contains the
best course(s) of action as determined by the appropriate deliberation function.

Thus, our possible-worlds model consists of a set of possible worlds where each possible
world is a tree structure. A particular index within a possible world is called a state. With
each state we associate a set of belief-accessible worlds, desire-accessible worlds, and intention-
accessible worlds; intuitively, those worlds that the agent believes to be possible, desires to
bring about; and intends to bring about, respectively.

Figure 2 shows the four belief-accessible worlds for our running example. They correspond
to Phil winning or losing the Senate seat based on the majority answering yes or no in the
poll. The probabilities of these worlds are shown in the top right hand corner of each world.
The propositions win, loss, yes, and no are true at the states shown.

The desire-accessible worlds are also shown in Figure 2. The values at the end of the
paths (100, 200, and 300) signify the value of losing a Senate seat, winning a House seat,
and winning a Senate seat. Note that the option of retiring from politics exists only in
belief-accessible worlds, not in desire-accessible worlds, i.e., Phil believes that retiring is an
option, but does not have any desire to retire. The intention-accessible worlds capture the
“best” path(s) based on the decision-theoretic criteria of maximizing the expected value.

4 Branching-Time BDI Logics

The above transformation provides the basis for developing a logical theory for deliberation
by agents that is compatible with quantitative decision theory in those cases where we have
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Figure 2: Belief-, Desire-, Intention-accessible worlds

good estimates for probabilities and payoffs [Rao and Georgeff, 1991b]. However, it does not
address the case in which we do not have such estimates, nor does it address the dynamic
aspects of deliberation, particularly those concerning commitment to previous decisions.

To do this we begin by abstracting the model given above to reduce probabilities and
payoffs to dichotomous (0-1) values. That is, we consider propositions to be either believed
or not believed, desired or not desired, and intended or not intended, rather than ascribing
continuous measures to them. We thus go some way to achieving Thomason’s [1993] criterion
that a satisfactory logical model of rational agency should generalize to the decision-theoretic
viewpoint when sufficient quantitative data is available.

Within such a framework, we now look at the static properties of BDI systems. The BDI
systems we consider are extensions of Computation Tree Logics, CTL and CTL* [Emer-
son and Srinivasan, 1989] that have been used extensively for reasoning about concurrent
programs. We extend the branching-time logics to represent the mental state or belief-desire-
intention state of an agent. These logics can then be used to reason about agents and the way
in which their beliefs, desires, and actions can bring about the satisfaction of their desires.

We introduce two propositional, temporal, multi-modal logics: BDI¢tr, and BDIgyr,*.
The primitives of this language include a non-empty set ® of primitive propositions; propo-
sitional connectives V and —; modal operators BEL (agent believes), DES (agent desires),
and INTEND (agent intends); and temporal operators X (next), U (until), F (sometime in
the future or eventually), E (some path in the future or optionally). Other connectives and



operators such as A, D, =, G (all times in the future or always), B (before), A (all paths in
the future or inevitably), can be defined in terms of the above primitives.

There are two types of well-formed formulas in these languages: state formulas (which
are true in a particular world in a particular state) and path formulas (which are true in a
particular world along a certain path). We inductively define the class of state formulas for
BDIgpr,* using rules S1-S4 and the class of path formulas for BDIgyr,* using rules P1-P3.

(S1) each atomic proposition ¢ is a state formula;

(S2) if ¢ and % are state formulas then so are =¢ and ¢ A ¥;

(S8) if ¢ is a path formula then A¢ and E¢ are state formulas;

(S4) if ¢ is a state formula then BEL(¢), DES(¢), and INTEND(¢) are state formulas;
(P1) each state formula is also a path formula;

(P2) if ¢ and v are path formulas then so are —¢ and ¢ A 1¥; and

(P3) if ¢ and v are path formulas then so are X¢ and ¢ U .

Path formulas for BDIg7r,» can be any arbitrary combination of a linear-time temporal
formula, containing negation, disjunction, and the linear-time operators X and U. Path
formulas of BDIgty, are restricted to be primitive linear-time temporal formulas, with no
negations or disjunctions and no nesting of linear-time temporal operators. Replacing the
rules P1-P3 of BDIgr,« by the following rule PO we can define the path formulas of BDI¢Tr,
as follows:

(PO) if ¢ and v are state formulas then X¢ and ¢ U ¢ are path formulas.

For example, AF(¢ V ) is a state formula and GF¢ is a path formula of BDIgy,« but not
of BDIgtr,. Comparing the above formation rules with those for CTL* and CTL [Emerson,
1990] one can observe that we have added the formation rule S4.

The operators BEL, DES, and INTEND represent, respectively, the beliefs, desires, and
intentions of the agent. Disjunctions, implications, and equivalences are defined in the
classical way: ¢ V 9 is defined as —(—¢ A =9); ¢ D ¥ is defined as =(¢ A =9); and ¢ =
is defined as =(¢ A =) A =(p A —9).

The language BDIgr, can be used to represent the mental state of an agent, in particular
its belief-desire-intention state. For example, consider an agent who has the desire to eventu-
ally win a lottery, intends to buy a lottery ticket sometime in the future, but does not believe
that he will eventually win the lottery. The mental state of this agent can be represented by
the following formula of BDIcTr,: DES(AF(win-lottery)) A INTEND(EF (buy-lottery-ticket))
A —BEL(AF(win-lottery)).

Following Halpern and Moses [1992], we first define some basic properties of these for-
mulae. The size of a formula ¢, denoted by |¢|, is its length over the alphabet ® U {—, A, (,
), BEL, DES, INTEND, A, E, X, F, G, U, B}. The depth of a formula ¢, denoted by depth(¢),
is the depth of nesting of BEL, DES, and INTEND operators in ®. The formula % is said to
be a subformula of ¢, if 1 is a substring of ¢. Let Sub(¢) be the set of all subformulas of ¢.
Note that depth(¢) < |¢| and |Sub(¢)| < |¢|. For example, the formula ¢ = = p A BEL(p A
q) A DES(q) has a size of 14, depth of 1, and |Sub(¢)| = 7.



4.1 Possible-Worlds Semantics

The traditional possible-worlds semantics of beliefs considers each world to be a collection
of propositions and models belief by a belief-accessibility relation B linking these worlds. A
formula is said to be believed in a world if and only if it is true in all its belief-accessible
worlds [Halpern and Moses, 1992].

Cohen and Levesque [Cohen and Levesque, 1990] treat each possible world as a time-line
representing a sequence of events, temporally extended infinitely into the past and the future.
Formulas are evaluated with respect to a given world and an index into the course of events
defining the world. The accessibility relation B is a relation between the world at an index
to a set of worlds or courses of events. Intuitively, an agent believes a formula in a world at
a particular index if and only if in all its belief-accessible worlds the formula is true.

As discussed in Section 3, we instead consider each possible world to be a tree structure
with a single past and a branching future. Each tree structure denotes the optional courses
of events that can be chosen by an agent in a particular world. Evaluation of formulas is
with respect to a world and a state. Hence, a state acts as an index into a particular tree
structure or world of the agent. The belief-accessibility relation maps a possible world at a
state to other possible worlds. The desire-, and intention-accessibility relations behave in a
similar fashion. More formally, we have the following definition of a Kripke structure.

Definition 1 A Kripke structure is defined to be a tuple M = (W, {S,: w € W}, {R,:
w e W}, L, B, D, Z), where W is a set of possible worlds, S,, is the set of states in each
world W, R, is a total binary relation, i.e., R,, C S, X Sy, L is a truth assignment to the
primitive propositions of ® for each world w € W at each state s € S, (i.e. L(w,s): & —
{true,false}), and B, D, and T are relations on the worlds, W and states, S (i.e. B C W x
S x W).

We also define a world to be a sub-world of another if one of them contains fewer paths,
but they are otherwise identical to each other. More formally, we have the following defini-
tion.

Definition 2 A world w’ is a sub-world of the world w, denoted by w’ C w, if and only if
(@) Sy C Su; (b) Ry C Ry (¢) Vs € Sy, L(w', s) = L(w, s); (d) Vs € Sy, (W', s,v) € B
iff (w’, s, v) € B; and similarly for D and Z.

We say that w’ is a strict sub-world of w denoted by w’ C w if and only if v’ C w and
w Z w'. If w' is a sub-world of w then w is a super-world of w’, denoted by w 3 w'. Also,
w’ is said to be structurally equivalent to w, denoted by w' ~ w iff w' C w and w C w'.

Satisfaction of formulas, denoted by |=, is given with respect to a structure M, a world
w, and state s. The expression M, w, = ¢ is read as “structure M in world w and state s

satisfies ¢”. A path sq, s1, ..., in world w is denoted by (ws,, ws,, .. .).
(S1) M, ws | ¢ iff ¢ € L(w,s) where ¢ is a primitive proposition.
(S2) M, ws = - iff M, ws £ ¢.
M, ws E o NViff M, ws = ¢ and M, wg = 2.
(S3) M, ws, = E¢ iff there exists a fullpath (wg,,ws,,...) such that M, (ws,,ws,,...) | ¢.
M, w,, = A¢ iff for all fullpaths (ws,, ws,,...) such that M, (ws,, ws,,...) E ¢.
(S4) M, w, = BEL(¢) iff V v satisfying (w, s, v) € B, M, v, [ ¢.
M, w, = DES(¢) iff V v satisfying (w, s, v) € D, M, vs = ¢.
M, ws, = INTEND(¢) iff V v satisfying (w, s, v) € Z, M, vs E ¢.
(P1) M, (wsy, ws,, ...) E @ iff M, wy, E ¢.



(P2) M, (ws,, ws,, ...) E 2@ iff M, (ws,, ws,, ...) & ¢.

M, (wsy, ws,, ...) E & A Y iff M, (ws,, ws,, ...) E ¢ and M, (ws,, ws,, ...) E .
(P3) M, (wyy, ws,, ...) = X ifft M, (ws,, ...) = ¢.

M, (wgy, ws,, ...) E ¢ U 9 iff

(a) Ik, k>0 such that M, (ws,, ...) F ¥ and V0 < j <k, M, (ws,, ...) = ¢ or
) forall j >0, M, (ws,, ...) = ¢.

We say that an agent has a belief ¢, denoted BEL(¢), in state s if and only if ¢ is true
in all the belief-accessible worlds of the agent at time ¢{. As the belief-accessibility relation
is dependent on the state, the mapping of B at some other state may be different. Thus the
agent can change its beliefs about the options available to it.

Similar to belief-accessible worlds, for each state we also associate a set of desire-accessible
worlds to represent the desires of the agent. Thus, in the same way that we treat belief, we
say that the agent has a desire ¢ in state s if and only if ¢ is true in all the desire-accessible
worlds of the agent in state s.

In the philosophical literature, desires can be inconsistent and the agent need not know
the means of achieving these desires. Desires have the tendency to ‘tug’ the agent in different
directions. They are inputs to the agent’s deliberation process, which results in the agent
choosing a subset of desires that are both consistent and achievable. In the Al literature
such consistent achievable desires are usually called goals.

The desires as presented here are logically consistent, but due to the branching-time
structure, conflicting desires can ‘tug’ the agent along different execution paths. That is,
while the desires may be logically consistent, they may not all be realizable, as the agent can
only follow one execution path in the branching tree of possible executions. The deliberation
process must eventually resolve these conflicts and choose a set of realizable desires before
the agent can act intentionally.

Intentions are similarly represented by sets of intention-accessible worlds. These worlds
are ones that the agent has chosen to attempt to realize. The intention-accessibility relation
7 is used to map the agent’s current world and state to all its intention-accessible worlds.
We say that the agent intends a formula in a certain state if and only if it is true in all the
agent’s intention-accessible worlds at that state.

Validity of formulas is defined in the standard manner, i.e., a formula is valid if it is true
in every state, in every world, in every structure. A formula ¢ is said to be wvalid in M,
written as M | ¢, if M, w, = ¢ for every world w € W and every state s € S,,. Similarly,
one can define validity and satisfiability with respect to a class M of structures. We say
that ¢ is valid with respect to a class M of structures, written as M = ¢, if ¢ is valid in all
structures in M, and say that ¢ is satisfiable with respect to a class M of structures if ¢ is
satisfiable in some structure in M.

We adopt standard definitions of a relation being total, serial, transitive, and euclidean.
More formally, we have:

(Total) YwVs3t (s, t) € Ry;

(Serial) YwVs3v (w, s, v) € B;

(Transitive) Yw,v,z Vs if (w, s, v) € B and (v, s, ) € B then (w, s, z) € B;
(Euclidean) Yw,v,z Vs if (w, s, v) € B and (w, s, ) € B then (v, s, z) € B.

We consider two classes of structures: M which requires R to be total and does not
impose any constraints on the accessibility-relations B, D, and Z; and M®t, which requires
R to be total, B to be serial, transitive, and euclidean and D and Z to be serial.
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Although we discussed above the syntax and semantics of both BDIgTr, and BDIgrr,«,
from now on we will consider only BDIc7r, and its variants.

4.2 Basic Axiom System

In this section, we discuss a basic axiom system for our BDI¢Tr, logic that will form the basis
for an entire family of BDI logics. As CTL is contained within BDI¢7y,, the axiomatization
of BDI¢r, will contain all the CTL axioms and inference rules. For completeness we include
the full-set of axioms and inference rules for CTL as given by Emerson [Emerson, 1990] here.

4.2.1 Axiomatization of CTL Component
(CTL1) All validities of propositional logic;
(CTL2) EF$ = E(true U ¢);

(CTL2b) AGp = —EF-¢;

(CTL3) AF¢ = A(true U ¢);

(CTL3b) EGp = - AF—¢;

(CTL4) EX(¢ V ¢) = EX¢ vV EX¥;

(CTL5) AX¢ = ~EX—¢;

(CTL6) E(¢ U¢) =9V (¢ A EXE(o U ));
(CTLT7) A(¢ U ) =9 V (¢ A AXA(¢ U 9));
(CTL8) EXtrue A AXtrue;

(CTL9) AG(E D (—t A EXE)) D (€ D —A(6 U ¢));
(CTL9b) AG(E D (-9 A EXE)) D (€ D ~AFY);
(CTL10) AG(¢ D (=¥ A (¢ D AXE))) D (€ D =E(¢ U ¥));
(CTL10b) AG(¢ D (=9 A AXE)) D (€ D —~EFY);
(CTL11) AG(¢ D %) D (EX¢ D EX9);
(CTL-Gen) If - ¢ then - AGg;

(MP) If - ¢ and - ¢ D ¢ then  ¢.

4.2.2 Axiomatization of BDI component

In addition to the CTL-component, we will adopt the K-axiom of modal logic, for beliefs,
desires, and intentions. The K-axiom is the minimal system for normal modal logics. This
axiom states that if an agent believes ¢ and believes that ¢ D ¢ then he will believe 1. We
extend this constraint to desires and intentions.

(B-K) BEL(¢) A BEL(¢ D ¢) D BEL(¥);
(D-K) DES(¢) A DES(¢ D ) D DES(%);
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(I-K) INTEND(¢) A INTEND(¢ D ¢) D INTEND().

We also have the generalization rule for beliefs, desires, and intentions, which states that
any valid formula is believed, desired, and intended.

(B-Gen) If - ¢ then - BEL(¢);
(D-Gen) If - ¢ then - DES(¢);
(I-Gen) If - ¢ then F INTEND(¢).

As we will be introducing a number of different logics, we need a uniform nomenclature.
As far as possible we will use the classical nomenclatures. We abbreviate beliefs, desires,
and intentions by B, D, and I. The axiom system for each one of these operators is written
as a superscript. Thus the modal logic (BX DXIX)orp signifies that we have adopted the
K-axiom system for beliefs, desires, and intentions, with an underlying CTL-system for the
temporal aspects. When the same axiom system is used for the modal operators BEL, DES,
and INTEND, we simplify the notation by writing the superscript once for all the modal
operators, e.g., (BX DFIX)crr is written as BDIS; .

The standard weak-S5 (or KD45) modal system [Hughes and Cresswell, 1984] is usually
adopted for beliefs [Halpern and Moses, 1990]. The D-axiom expresses the consistency of be-
liefs and the 4-axiom and 5-axiom express the positive and negative introspection capabilities
of an agent with respect to its beliefs. These axioms can be expressed as follows:

(B-D) BEL(¢) > —BEL(~¢);
(B-4) BEL(¢) D BEL(BEL(¢));
(B-5) —BEL(¢) D BEL(—BEL(¢)).

For desires and intentions, in addition to the K-axioms stated above, we also adopt the
standard D-axiom, which expresses the consistency of desires and intentions. Hence, we have
the following axioms for desires and intentions:

(D-D) DES(¢) > ~DES(=¢);
(I-D) INTEND(¢) > —INTEND(=¢);

According to our nomenclature, the above axiom system for beliefs, desires, and intentions
is denoted by (BXP#DEDIKDY 1 Without considering the multi-modal axioms (to be
discussed later) this is our preferred axiom system for beliefs, desires, and intentions. As
the modal systems BDIfy; and (BRP4DXPIED) o will be used very often, we further
abbreviate these basic systems to BDI-B1 and BDI-B2, respectively.

Given an arbitrary axiom system &, notions such as S-provability, S-consistency, and
maximal consistent sets are defined in the standard manner [Halpern and Moses, 1992]. A
formula ¢ is said to be S-provable, denoted by S F ¢, if ¢ is an instance of one of the axioms
of §, or if ¢ follows from provable formulas by one of the inference rules of S. A formula ¢ is
S-consistent if —¢ is not S-provable. A finite set of formulas is consistent if its conjunction
is consistent, and an infinite set of formulas is consistent exactly if all of its finite subsets
are consistent. If a formula or set of formulas is not consistent, it is inconsistent. A set F of
formulas is a mazimal consistent set if it is consistent and for all ¢ € F', the set F' U {¢} is
inconsistent [Halpern and Moses, 1992].

An axiom system § is said to be sound with respect to a class M of structures if every
formula provable from § is valid with respect to M. § is said to be complete with respect
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to M if every formula that is valid with respect to M is provable from §. For example, we
will prove later that BDIéTL is complete with respect to the class of structures given by M
and (BKD45DKDIKD)CTL is complete with respect to the class of structures given by At

5 Basic BDIZ}; System

So far, one of the main problems with BDI has been the lack of decision procedures for
checking the satisfiability and validity of formulas. While these logics [Cohen and Levesque,
1990; Konolige and Pollack, 1993; Rao and Georgeff, 1991c; Singh and Asher, 1990; Singh,
1994] have been shown to be highly expressive, none addresses the issue of decidability. In
this section, we address this important aspect by extending previous work in temporal and
dynamic logic [Emerson, 1990; Fischer and Ladner, 1979] and modal logics of knowledge and
belief [Halpern and Moses, 1990; Kripke, 1963].

We first establish the small model property for our logic. This property states that if a
formula is satisfiable, then it is satisfiable in a ‘small’ finite model, where ‘small’ is interpreted
as a size that is bounded by some function, say f, of the length of the input formula [Emerson,
1990]. An equivalence relation of small finite index can be defined on states which collapse
a possibly infinite model to a small finite model. Such a construction is called the quotient
construction.

In modal logics of knowledge and belief this construction is used to generate a model,
called the canonical model. Soundness and completeness of an axiom system can be shown
with respect to this canonical model. In other words, a formula that is provable in the modal
system can be shown to be satisfiable in the canonical model and vice versa.

However, this straightforward construction does not work for our temporal logic compo-
nent. For example, there could be a model M of AF¢ such that for every finite set of formulas
H, the quotient construction induced by the agreement of formulas in H, does not result in
a model for AF¢ [Emerson, 1990]. In other words, the standard quotient construction does
not yield a decision procedure for the BDI logics as the BDI logics contain within them
fragments of temporal logics, like CTL and CTL* for which the quotient construction does
not preserve modelhood.

In temporal logics, such as CTL, for a structure to be a model it is required that each
eventuality formula be fulfilled. An eventuality formula AF¢ (or EF¢) is said to be fulfilled
at state s in M, if for every (some) path starting at s, there exists a finite prefix of the path
in M whose last state is labelled with ¢. In the case of eventuality formulas A(¢ U %) (or
E(¢ U v)) the last state must be labelled with ¢ and all other states on the path by ¢. A
structure that fulfils all eventuality formulas and satisfies certain other constraints (to be
described later) is called a Hintikka structure [Emerson, 1990)].

In a Hintikka structure each eventuality is ‘cleanly embedded’. However, when a quotient
construction is applied to this structure it introduces cycles that do not preserve modelhood.
As a result, such structures are called pseudo-models. The cycles in pseudo-models can be
unwound to obtain proper finite models.

In other words, to show that a formula ¢¢ has the small model property we first show
that it has an infinite tree model with finite branching bounded by the size of the formula.
We then apply the quotient construction to this infinite tree model to obtain a finite pseudo-
Hintikka structure of size exponential (at most) to the length of the formula. From this
pseudo-Hintikka structure we can unwind a finite model of size exponential (at most) to the
length of the formula. This establishes the finite model property for our logic.

We now formalize the above description by giving precise definitions for the concepts
introduced above and then formally prove the small model theorem for our BDI logic. This
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then leads us to a more constructive decision procedure for checking satisfiability of formulas.

5.1 Small Model Theorem

We assume that the formula for which we are checking satisfiability, ¢o, is in positive normal
form. A formula ¢ can be transformed into a positive normal form formula by pushing
negations inward as far as possible using the propositional equivalences (i.e., =(¢ A ) = —¢
V = (¢ V) = —¢ A =) and temporal equivalences (i.e., " AG¢p = EF—¢; -A(¢ U o) =
E(—¢ B %)). This results in propositions and belief, desire, and intentions modal operators
being negated. The positive normal form of the formula —¢q is denoted by ~¢y.

A positive normal formula of the form E¢ is called an optional formula or O-formula and
is denoted by +; similarly a positive normal formula of the form Adgis called an inevitable
formula or I-formula and is denoted by 4.

The closure of ¢o, denoted by cl(¢o), is the least set of subformulas which satisfy the
following conditions:

o if 1 € Sub(co) then ¥ € cl(o);

o it EF, EGe, E(é U o) or E(¢ B ) € cl(do) then EXEFy, EXEGe, EXE(é U ) or
EXE(¢ B ) € cl(¢o), respectively;

o if AFy, AGy, A(¢p U o) or A(¢ B ¥) € cl(¢po) then AXAF, AXAGy, AXA(¢ U 9) or
AX(A¢ B ) € cl(¢o), respectively.

The extended closure of ¢q is defined as: ecl(¢o) = cl(po) U {~¢ : ¢ € cl(do)}.

We define an elementary formula to be a formula with one of the following forms: ¢, —=¢,
EX¢, AX¢, BEL(¢), "BEL(¢), DES(¢), -DES(¢), INTEND(¢) or =\INTEND(¢). Any formula
that is not an elementary formula will be called a non-elementary formula. Each non-
elementary formula is classified as either a conjunctive formula @ = a1 A a5 or a disjunctive
formula 8 = 3; V 3; [Emerson, 1990]. Clearly, ¢ A ¢ is an a formula and ¢ V % is a 3
formula. The fixpoint characterizations of temporal formulas are used to classify them as «
or 3 formulas. For example, AF¢ = ¢ V AXAF¢ is a f-formula and —-AF¢ = —¢p A -AXAFp
is an « formula. Table 1 shows the o and  rules for BDIgTr,.

« oy Qg B B B2
oNY ¢ ¥ oVY | 9 G
AGB &) |~ | 6V AXAG B ) | A(GU D) | & | & A AXA(S U )
E(¢B¢) |~y | ¢ VEXE(@B ) | E(6U) | ¥ | ¢ AEXE(o U 9)
AGy | o AXAGH) AFG | o AXAF )
EGy | o EXEGd EFg | o EXEF )

Table 1: Alpha and Beta Rules for BDIgTy,

Similar to CTL-logics [Emerson, 1990], we define a prestructure M to be a tuple
(W, S, R, B, D, Z, L) except that the binary relation R, for each world w is not required
to be total. An interior node of a prestructure is one with at least one successor. A frontier
node is one with no successors. A fragmentis a prestructure whose graph is a directed acyclic
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graph such that all of its nodes satisfy PC0-2, LC0, BC0, DCO0, and ICO0, and all of its interior
nodes satisfy LC1, BC1, DC1, and IC1 as defined below.
Propositional Consistency Rules:

(PCo) if ~¢ € L(w,s) then ¢ ¢ L(w,s);
(PC1) if @ € L(w,s) then aq € L(w,s) and ay € L(w,s);
(PC2) if g € L(w,s) then 1 € L(w,s) or 3 € L(w,s).
Local Consistency Rules:
(LCo) if AX¢ € L(w,s) then for all successors ¢ of s, ¢ € L(w, t);
(LC1) if EX¢ € L(w,s) then for some successor t of s, ¢ € L(w, t);
Basic BDI-Consistency Rules:
(BCo) if BEL(¢) € L(w,s) and (w, s, v) € B then ¢ € L(v, s);
(BC1) if -BEL(¢) € L(w,s) then 3 v such that (w, s, v) € B and =¢ € L(v, s);
(DCo) if DES(¢) € L(w,s) and (w, s, v) € D then ¢ € L(v, s);
(DC1) if -DES(¢) € L(w,s) then 3 v such that (w, s, v) € D and =¢ € L(v, s);
(ICo) if INTEND(¢) € L(w,s) and (w, s, v) € Z then ¢ € L(v, s);
(IC1) if =\INTEND(¢) € L(w,s) then 3 v such that (w, s, v) € Z and —¢ € L(v, s);

A set of formulas T that satisfies all of the PC0O-PC2 rules will be called a propositional
CTL tableau. Following Halpern and Moses [1990] we say that a set T of formulas is fully
expanded if for every formula ¢ € T and subformula i of ¢, either b € T or —=¢p € T. A
fully-expanded propositional CTL tableau is one that is both a propositional CTL tableau
and is fully-expanded.

All non-elementary formulas are marked in a fully-expanded propositional CTL tableau.
A node whose label is a fully-expanded propositional CTL tableau is called a world-state.

Definition 3 A BDIS -tableau (for ¢o), M, is a tuple (W, S, R, B, D, Z, L) (with ¢ €

L(w, s) for some w € W and some s € S,, € S) which meets the following conditions:
e the propositional consistency rules (PC0-2);
e the local consistency rules (LCO0-2);
e cach eventuality is fulfilled; and

e the basic BDI-consistency rules BC0O, BC1, DC0, DCI1, IC0, and IC1 are satisfied.

The primary differences between the above definition and that of CTL-logics are the
basic BDI-consistency rules which define the constraints on the belief-, desire-, and intention-
accessibility relations. These constraints correspond to the K-axiom system for normal modal
logics [Hughes and Cresswell, 1984]. As we will see later, it is these rules that we modify
to obtain additional constraints on the accessibility relations and also to define constraints
between accessibility relations.
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If M is a BDI& ; -tableau, then for each world w and state s of M and each eventuality ¢
in ecl(¢o) such that M, wy = &, there is a fragment, DAG[ws, £], which certifies the fulfilment
of £ in world w at state s in M. If £ is of the form AF%, then DAG[ws, £] can be obtained
by taking state s and all states along all paths in w emanating from s up to and including
the first state where 1 is true. This fulfilling fragment is said to be cleanly embedded in
M [Halpern and Moses, 1990].

Now we would like to apply the following quotient construction to collapse equivalent
states.

Definition 4 Let M = (W, S, R, B, D, Z, L) be a model of ¢y, let H be a set of formulas,
and let =g be an equivalence relation on W and S induced by agreement on the formulas
in H,ie., ws =g vy whenever ¥V ¢ € H, M, w, |= ¢ iff M, vy = 1. We use [w;] to denote
the equivalence class {v; =g ws} of ws. Then the quotient structure of M by =g M /=g
is (W9, 59 Re BY D 79 L7 where W? = S? = {[ws]: s € Sy, and w € W}; R? =
{([ws),[w4]): (s, t) € Ru}; BT = {([ws],[vs]): BEL™ ([ws]) C [vs]}; similarly for D?, and Z¢;
Li([ws]) = L(ws) N H. Normally, H is taken to be ecl(¢o). BEL™(X) = {¢: BEL(¢) € X}
and similarly for DES™ (X) and INTEND™ (X).

Unlike normal modal logics where the above quotient construction will result in a model
(called the canonical model), the above quotient construction for BDIgTr, may not result in a
model. This is because cycles are introduced in the fulfilling fragments and these fragments
are no longer cleanly embedded, but are just contained in M. However, the construction
still yields useful information which can be unwound into a proper model. Hence, we have
the following definition of a pseudo-BDIB; -tableau.

Definition 5 A pseudo-BDIy -tableau (for ¢o) is a structure M = (W, S, R, L) (with ¢,
€ L(w, s) for some w € W and some s € S,, € S) which meets the following conditions:

1. the propositional consistency rules (PCO0-2);
2. the local consistency rules (LC0-2); and
3. each eventuality is pseudo-fulfilled in the following sense:

(a) AFy € L(w,s) (respectively, A(¢ U ) € L(w, s)) implies there is a finite fragment,
called DAG[ws, AF9] (respectively, DAG[ws, A(¢ U 1)]), rooted at world w and
state s contained in M such that for all frontier nodes ¢ of the fragment, ¢ € L(w,
t) (respectively and for all interior nodes u of the fragment, ¢ € L(w, u));

(b) EF% € L(w,s) (respectively, A(¢ U ) € L(w, s)) implies there is a finite fragment,
called DAG[ws, AF9] (respectively, DAG[ws, A(¢ U 1)]), rooted at world w and
state s contained in M such that for some frontier node ¢ of the fragment, ¥ €
L(w, t) (respectively and for all interior nodes u of the fragment, ¢ € L(w, u));

4. the basic BDI-consistency rules BC0, BC1, DCO0, DC1, IC0, and IC1 are satisfied.

Theorem 1 Let ¢o be a BDIcTr, formula of length n. Then we have the following equiva-
lences ©:
1. ¢o is BDIEL; -satisfiable;

2. ¢o has a model M with finite branching in each world bounded by O(n);

8Proofs of all lemmas and theorems are given in the Appendix.
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3. ¢o has a finite pseudo-BDIEr -tableau of size < exp(n);

4. ¢o has a finite model M of size < exp(n).

There are two major differences between the small model theorem for CTL [Emerson,
1990] and the one given above. First, instead of a single branching tree structure we have
multiple branching tree structures, one for each world. Second, there are non-temporal modal
operators for beliefs, desires, and intentions that define accessibilities across the multiple
trees. As we will see later, various constraints on these accessibility relations lead to different
classes of models.

The small model theorem for normal modal logics, such as the modal logic for be-
lief [Halpern and Moses, 1990], is relatively straightforward as it does not have the com-
plications introduced by the temporal operators.

Having proved the finite model theorem we know that we can construct a finite model
for checking the satisfiability of a formula in BDISp;. In the next section we provide an
algorithm for constructing a pseudo-BDI&p -tableau and then extracting a BDIE; -tableau
from it.

5.2 Algorithm

The algorithm for constructing a pseudo-BDI% -tableau consists of five different procedures.
The first procedure expands a set of formulas to a propositional CTL tableau. The second
procedure expands a propositional CTL tableau into a fully expanded propositional CTL
tableau.

A formula ¢ is said to be a witness [Halpern and Moses, 1990] if it does not satisfy one
of the PCO-PC2 rules or ¢ is a subformula of ¢ and neither ¢ nor —¢ is in the label. If
all formulas are ordered according to their length, then a least witness is a witness with the
least length. When there are more than one least witness, a witness is arbitrarily chosen
to expand a tableau. When a witness has been expanded, it is marked as having been
expanded. Starting from the given formula ¢¢ as the root of the tableau, one can choose
the least witness one after the other until the tableau is a fully-expanded propositional CTL
tableau.

The only unmarked formulas in a fully-expanded propositional CTL tableau are elemen-
tary formulas, i.e., formulas of the form ¢, =¢, EX¢, AX¢p, M(¢), -M(¢) (where M is one
of BEL, DES, or INTEND). The third and fourth procedures independently expand the ele-
mentary formulas of CTL (i.e., EX¢ and AX¢) and elementary formulas of BDI (i.e., M(¢)
and —-M(¢)), respectively. The former results in the creation of R-successors ensuring the
satisfaction of local consistency rules LCO and LC1 and the latter results in the creation of
B-, D-, and Z-successors ensuring the satisfaction of the BDI-consistency rules BC0, BCI,
DCo, DC1, IC0, and IC1.

The fifth procedure checks for satisfiability of labels. Any label that is blatantly incon-
sistent, i.e., contains ¢ and —¢ for some formula ¢, is unsatisfiable and the corresponding
node is not marked as being ‘satisfiable’. Depending on a label being a fully-expanded CTL
tableau or not, different satisfaction conditions apply for the label. When the root node of
a pseudo-BDI&; -tableau is marked ‘satisfiable’ we can say that the label of such a node is
BDIS -satisfiable.

Algorithm for Constructing a Pseudo-BDIS;; -Tableau
Step 1: Construct a tree consisting of a single node ng, with L(ng) = {¢o}.
Step 2: Repeat until none of (a) — (d) below applies:
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(a) Forming a propositional CTL tableau: If node n; is a leaf of the tree, L(n;) is not
blatantly inconsistent, L(n;) is not a propositional CTL tableau, and ¢ is the least
witness to this fact, then:

1. if ¢ is an a-formula, create a son of this node, labeled by L(n;) U{ay,a2} and
mark ¢ as ‘expanded’.

2. if ¢ is a f-formula, create two sons of this node, labeled by L(n;) U{#1} and L(n;)
U{ B2}, respectively, and mark ¢ in the label of each son as ‘expanded’.

(b) Forming a fully expanded propositional CTL tableau: If node n; is a leaf of the tree,
L(n;) is not blatantly inconsistent, L(n;) is not a fully expanded propositional CTL
tableau, and ¢ is the least witness to this fact, then create two sons labeled by L(n;)
U {¢} and L(n;) U {—¢}, respectively.

(c) Fzpanding elementary CTL formula: If node n; is a leaf of the tree, L(n;) is not blatantly
inconsistent, L(n;) is a fully expanded propositional CTL tableau, all nonelementary
CTL formulas at the node are marked ‘expanded’, and L(n;) is labeled with formulas
AXey .. ,AXpn, EXthy, .. ,EXy, then create k R-successors of node n;, labeled with
the set {P1,. . Om;s¥V1} .oy {P1,e« Om, Uk}, respectively. If there is an ancestor with an
identical label the edge is directed to the existing ancestral node.

(d) Ezpanding elementary BDI formula: 1f node n; is a leaf of the tree, L(n;) is not blatantly
inconsistent, and L(n;) is a fully expanded propositional tableau, then

1. if L(n;) contains —=BEL(¢;) ... "BEL(¢n) then create m B-successors of node n;,
labeled with BEL™ (L(n;)) U {—¢;}, where 1 < j < m;

2. if L(n;) contains =DES(¢1) ... "DES(¢n) then create m D-successors of node n;
labeled with DES™(L(n;)) U {—¢;}; where 1 < j < m;

3. if L(n;) contains =INTEND(¢1) ... Z/INTEND(¢n) then create m Z-successors of
node n;, labeled with INTEND™ (L(n;)) U {—¢;}; where 1 < j < m.

(e) Marking nodes ‘satisfiable’: If node n; is not marked ‘satisfiable’ then mark node n;
satisfiable if one of the following conditions holds:

1. node n; is not a fully-expanded propositional CTL tableau and one of its sons is
marked satisfiable;

2. node n; is a fully-expanded propositional CTL tableau such that for every eventu-
ality ¢ € L(n;) there exists a fragment DAG[n;, ¢] rooted at node n; contained in
the tableau which certifies pseudo-fulfilment of ¢, and all R-, B-, D-, Z-successors
of node n; are marked ‘satisfiable’;

3. node n; is a fully expanded propositional CTL tableau, there are no eventuality
formulas or formulas of the form —=BEL(¢), -DES(¢), -INTEND(¢) in L(n;), and

L(n;) is not blatantly inconsistent.

Step 3: If the root of the tree is marked ‘satisfiable’ , then return ‘¢q is satisfiable’; otherwise
return ‘¢q is unsatisfiable’. &
Now we illustrate the construction of a pseudo-BDI&y; -tableau using an example. Fig-

ure 9 shows a pseudo-tableau for EF¢ A =BEL(EF¢)”.

"In the figure we use & for A and formulas are marked with a *.
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We start with the root node ng whose label L(ng) = {EF¢ A =-BEL(EF¢)}. According to
Step 2 (a) of the algorithm we apply one of the a-rules to get node n; with the formula EF¢
A —BEL(EF¢) expanded and marked.

Next, according to Step 2 (a) we choose EF¢ as the least witness and apply the appropriate
B-rule to obtain the nodes ny and nz. The labels of ny and ng are as follows: L(ng) = L(ny)
U {¢} and L(nz) = L(n1) U{EXEF¢}. The label of node n; is a fully-expanded propositional
CTL tableau with only elementary formulas. There are no elementary CTL formulas and
the only elementary BDI formula is =BEL(EF¢). Following Step 2 (d) we create node ny4
with the edge from n3 to ny4 labeled with B, to indicate that n4 is a B-successor of n3. The
label for n4, L(ng4) = BEL™(L(n3)) U {-EF¢} = {-EF¢} = {AG—¢}.

Following Step 2 (a) and applying the a-rule for AG we get node ns. The label for ns,
L(ns) = L(n4) U {—=¢, AXAG—¢}. Following Step 2 (d) if we expand AXAG—¢ we will get a
label that is identical to n4. Therefore, we draw an edge from ns to ny.

We now continue with the expansion of node n3. As the label of n3 is a propositional CTL
tableau there are no « or g rules to apply. However, the label of n3 is not fully-expanded
and ¢ is the least witness to this fact. We therefore create two nodes ng and nq5 whose labels
are as follows: L(ng) = L(ns) U {¢} and L(n12) = L(ns) U {—¢}.

The label of node ng is a fully-expanded propositional CTL tableau. We now expand the
elementary formulas EXEF¢ and =BEL(EF¢) simultaneously.

Following Step 2 (c) we create a node ny with the edge from ng to ny labeled with R,
to indicate that n; is a R-successor of ng. The label of n7, L(n7) = {EF¢}. Applying
the g-rule for EF¢, we create two nodes ng and ng, with labels L(n7) U {¢} and L(n7) U
{EXEF¢}. There are no further rules to apply to ng. The label of node ng is a fully-expanded
propositional CTL tableau. Expanding the formula EXEF¢, by Step 2 (c) we have to create
a node whose label is {EF¢}. We notice that there is an ancestor to ng with the same label,
i.e., ny. Therefore, we create an edge from ng to ny labeled with R.

Following Step 2 (d) we create a node njg as a B-successor to node ng. The label of node
nyo is {—EF¢} which is identical to the label of node ny and the tree proceeds in a similar
fashion as discussed before.

The expansion of node my9 proceeds in a similar fashion as the expansion of node ng.
This is shown in Figure 9 by essentially repeating the block SO indicated by dashed lines.

Having expanded the tree completely, we now follow Step 2 (e) to mark the satisfiable
nodes. We proceed from the leaf nodes. The node ng is a fully-expanded propositional
CTL tableau. The formulas AF—¢ and AXAF—¢ require that in all paths from ns, we have
F-¢ and XAF—¢. As there are no R-successors of ns the formulas are trivially satisfied.
Therefore, node ns is marked ‘satisfiable’ (indicated by a SAT in the figure). Node n4 is
marked ‘satisfiable’ because the only path from n4 satisfies F—¢ because ns contains —¢.
Node ng is a fully-expanded propositional CTL tableau and all of its successors, i.e., its
B-successor is marked satisfiable. Furthermore, the eventuality formula EF¢ is fulfilled by ¢
being contained in the label of ny. As node n; is not fully-expanded, it is sufficient for one
of its successors to be marked ‘satisfiable’. As ng is marked ‘satisfiable’, ny can be marked
‘satisfiable’. As ny is the only successor of ng and is marked ‘satisfiable’ we can mark ng as
being ‘satisfiable’. Note that we have not marked the rest of the nodes from nz onwards as
we have already marked the root node as being ‘satisfiable’.

The construction so far has given us a pseudo-BDIS ; -tableau for the satisfaction of the
formula EF¢ A -BEL(EF¢). We need to extract a model for EF¢ A =BEL(EF¢) from this.
In particular, we need to collapse the nodes where the non-elementary formulas are being
expanded or fully-expanded and take the nodes which are world-states, i.e., fully-expanded
propositional CTL tableau. Intuitively, an edge labeled with R between two ‘satisfiable’
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world-states n and m corresponds to (s, t) € Ry, where n is the world-state ws; and m is
the world-state w;. Similarly, an edge labeled with B between two world-states n and m
corresponds to (w, s, v) € B, where n is the world-state w, and m is the world-state v,.
Similarly, for desires and intentions.

More formally, a world-state m is said to be an R successor to a world-state n if and only
if there is a path in ng,..., ng in the pseudo—BDIgTL—tableau such that ng = n and np = m,
the edge from ng and n; is labeled with R and for all j with 0 < j < k, n; is an internal
node and n;4; is a successor of n; in the pseudo-BDIE; -tableau. Similarly, we can define
a world-state m to be a B (respectively, D or Z) successor of world-state n.

In our example, nodes ny and ns are ‘satisfiable’ world-states and ns is a B-successor of
ng. This yields the model for EF$ A —-BEL(EF¢) as shown in Figure 9. We have taken ny to
be the world-state wqg, or (wo, so) and the node ns to be the world-state wy, or (wy, so).

5.3 Completeness

We are now in a position to prove the soundness and completeness of BDIgTy,-system using
tableaus. In other words, we can prove that a formula ¢ is BDIgTL—provable if and only if
o is marked ‘satisfiable’ in a pseudo-BDIS -tableau.

To prove this we show that if a node m is not marked ‘satisfiable’ then ¢,, is inconsistent
or -y, is BDIgTL—provable, where ¢, is the conjunction of formulas in the label of node
m. By induction on the depth of the BDIE}; -tableau we then show that if the root node ng
is not marked ‘satisfiable’ then —¢y is BDIé;FL—provable. We prove this by establishing the
following two lemmas. The first lemma shows that if the label of a node m is inconsistent
then the label of its R predecessor is also inconsistent. The second lemma proves a similar
result for B predecessors.

Lemma 1 If ¢, is inconsistent and (n, m) € R as constructed in the pseudo-BDISy -
tableau then ¢, is inconsistent, where ¢, and ¢, are the conjunction of propositions in
nodes n and m, respectively.

Lemma 2 If ¢, is inconsistent and (n, m) € B as constructed in the pseudo-BDI&y -
tableau then ¢, is inconsistent, where ¢, and ¢, are conjunctions of propositions in node n
and m, respectively.

Theorem 2 The BDIé’TL -system is sound and complete (i.e., every valid formula is provable
and every provable formula is valid).

6 Additional Basic BDI-systems

So far we have considered the tableau construction for BDIEy -logic which has the K-axiom
for beliefs, desires, and intentions. As discussed earlier we have adopted a weak-S5 or
KD45-modal system for beliefs, and the K and D axioms for desires and intentions. In this
section we show how to modify the definitions of BDI¢1r-tableaus and the BDIgrr -tableau
construction procedures so as to obtain decision procedures for the above axiom system
(BKD45DKDIKD)CTL.
Similar to the BDI-consistency rules BC0, BC1, etc. we now give the consistency rules

for the D, 4, and 5 axioms.
(BC2) if BEL(¢) € L(w, s) then 3 v such that (w, s, v) € B and ¢ € L(v, s);
(DC2) if DES(¢) € L(w, s) then 3 v such that (w, s, v) € D and ¢ € L(v, s);
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(IC2) if INTEND(¢) € L(w, s) then 3 v such that (w, s, v) € Z and ¢ € L(v, s);
(BC3) if (w, s, v) € B then BEL(¢) € L(w,s) iff BEL(¢) € L(v,s).

The BDI-consistency rules BC2, DC2, and IC2 imply the rules BC0, DCO0, and ICO,
respectively. The former set of rules are stronger as they require at least one B-accessible
(respectively, D-accessible, or Z-accessible) for every world containing a belief (respectively,
desire or intention) formula.

Definition 6 (BKD45DKDIKD)CTL-tableau is one that in addition to all the conditions sat-
isfied by BDIéTL—tableau satisfies conditions BC2, BC3, DC2, and IC2. Similarly, one can

define a pseudo-(BRP4DRPIED) 1y _tableau.

6.1 Small Model Theorem

Now we prove the small model theorem for the above logic. The main difference between the
two theorems is that a formula ¢, is satisfiable only in a certain class of structures, M®*, in
which the B relation is serial, transitive, and euclidean, and the relations D and Z are serial.

Theorem 3 Let ¢y be a BDIcTr, formula of length n. Then we have the following equiva-
lences;

1. ¢o is (BRPHDRPIED) 1y _satisfiable;
2. ¢o has a model M®* with finite branching in each world bounded by O(n);
3. ¢o has a finite pseudo-(BKP¥DRPIRD) o1y _tableau of size < exp(n);

4. ¢o has a finite model M of size < exp(n).

6.2 Algorithm

The algorithm for constructing a pseudo—(BKD45DKDIKD)CTL tableau is identical to the
previous one as far as the first three procedures of forming a propositional CTL tableau,
fully-expanding it, and expanding the elementary CTL formulas are concerned. The main
difference is in the fourth procedure for expanding belief, desire, and intention formulas.

For beliefs, we require that for all formulas of the form =BEL(¢) we create a B-successor
that is labeled with the union of all formulas of the form (a) BEL™ (L(n)); (b) —¢; (c) BEL(%4)
where ; is believed by the agent; and (d) =BEL(¢;) for all ¢; that is not believed by the
agent. Furthermore, we create this successor only if there is no ancestor with an identical
label. This is done to prevent an infinite sequence of nodes. Conditions (a) and (b) are
as before for pseudo-BDIEy; -tableau and conditions (c) and (d) capture the positive and
negative introspection axioms for beliefs.

If there are no belief formulas of the form —BEL(¢) then we create a B-successor that is
labeled with the union of all formulas of the form (a) and (c).

For desires, we require that if there are no formulas of the form —DES(¢) we create
a D-successor labeled with DES™( L(n)), provided there are formulas of the form DES(%)).
Otherwise, we proceed as before. We follow the same procedure for intentions. This results in
a successor being created which checks for the consistency between the desired (or intended)
formulas.

More formally, Step 2 (d) has to be modified as follows:
Algorithm for Constructing a Pseudo-(BXP4DKPIKD)
Step 1: Same as in Section 5.2.

Step 2 a-c: Same as in Section 5.2.

cotr,-Tableau
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(d) Ezpanding elementary BDI formula: 1f node n; is a leaf of the tree, L(n;) is not blatantly
inconsistent, and L(n;) is a fully expanded propositional tableau, then

1. (a) if L(n;) contains =BEL(¢1), ..., "BEL(¢n) then create m B-successors of node
n;, labeled with BEL™( L(n;)) U {BEL(¢): BEL(¥) € L(n;)} U {=BEL(¢):
-BEL(¢) € L(n;)} U {—¢;j}, where 1 < j < m, only if there is no ancestor of
n; with the same label;

(b) if L(n;) does not contain any formula of the form —BEL(¢), but contains

BEL(%1),....BEL(¢m), we create a B-successor of node n;, labeled with BEL™ (L(n;))
U {BEL(%): BEL(%)) € L(n;)} only if there is no ancestor of n; with the same
label;

2. if L(n;) does not contain any formula of the form =DES(¢), but contains DES(#),
..., DES(%), create a D-successor labeled with DES™( L(n;)). Otherwise, proceed
as in Step 2 (d) - 2 of Section 5.2.

3. if L(n;) does not contain any formula of the form =INTEND(¢), but contains IN-
TEND( ¢4),...,INTEND( ¢y), then create a Z-successor labeled with INTEND™ (L(n;)).
Otherwise, proceed as in Step 2 (d) - 3 of Section 5.2.

(e) Same as in Section 5.2.
Step 3: Same as in Section 5.2. &

6.3 Completeness

Now we can establish the completeness of the (BKP4DKDKD)
the class of structures M®* using the (BXP4DKDKD)

oTL-system with respect to
cT-tableau construction.

Theorem 4 The (BKD45DKDIKD)CTL-system is sound and complete with respect to M®t,

7 Multi-Modal BDI Systems

In this section we examine the relationship between the belief-, desire-, and intention-
accessible worlds. These relationships will be examined along two different dimensions, one
with respect to the set relationship among these possible worlds and the other with respect
to the structure of possible worlds.

Given two sets S and R, the following relationships can hold between them: S C R, R
CS, SNR#O,and SN R = @. These set relationships could hold between the sets of
belief- and desire-accessible worlds, desire- and intention-accessible worlds, and belief- and
intention-accessible worlds. ® Although not all the relationships will be meaningful, we can
characterize the meaningful ones semantically and axiomatically. These relationships are
depicted pictorially in Figure 3 for belief- and desire-accessible worlds.

Case (a), in which the set of desired worlds is a subset of those believed possible, is quite
common and occurs when the agent believes a world to be possible, but does not desire to
be in such a world. For example, consider two belief-accessible worlds, one world in which
an agent gets rich after buying high risk shares and the other where he remains poor. The
agent, for obvious reasons, may desire to be in the first, rather than the second, world.

8For simplicity, we have considered only pairwise relationships between belief-, desire-, and intention-
accessible worlds. One can also consider three-way relationships amongst the belief-, desire-, and intention-
accessible worlds.
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Figure 3: Subset relationships between belief- and desire-accessible worlds

Consider Case (b) where the worlds believed to be achievable are a subset of the desired
worlds. Intuitively, this relationship states that there are certain desire-accessible worlds
that are not believed to be possible by the agent. For example, consider two desire-accessible
worlds, one where the agent becomes rich by buying and winning a lottery and the other
where the agent works hard to qualify himself, get a good job and eventually become rich.
The agent may not believe that winning a lottery is a possibility and may therefore believe
that he is going to get rich only by working hard.

When both these cases are combined, one arrives at Case (c) in which there are some
desired worlds that are not believed and vice versa. Combining the above two examples, we
can say that the agent has three ways of getting rich: (i) buying and winning a lottery; (ii)
buying high-risk shares; and (iii) working hard. The agent may believe that (ii) and (iii) are
possible and may desire to be in (i) and (ii). Therefore, if the agent’s beliefs are true of the
real world, the agent can accomplish his desires only by buying high-risk shares.

Finally, Case (d) occurs when the set of belief-accessible and desire-accessible worlds of
an agent are totally disjoint and is of little interest.

Next, we consider the structural relationships between belief-, desire-, and intention-
accessible worlds. As each possible world is a time tree, one can consider additional structural
relationships between two given worlds. Given two worlds w and v, if the tree structure of
v is a sub-tree of w and has the same truth-assignment and accessibility relations as w, we
say that v is a sub-world of w. If w and v are two worlds then the following relationships
could hold between them: w could be a sub-world of v, v a sub-world of w, v and w could be
identical or v and w could be totally different. For a given belief-accessible world and goal-
accessible world the above relationships are shown in Figure 4. Similar relationships hold
between belief- and intention-accessible worlds, and desire- and intention-accessible worlds.

Case (a) of Figure 4 shows a desire-accessible world being a sub-world of a belief-accessible
world. Intuitively, this means that, of all the paths that the agent believes it can choose
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Figure 4: Subworld relationships between belief- and desire-accessible worlds

among, it desires only some of them. Case (b), in which a belief-accessible world is a sub-
world of a desire-accessible world, means that of all paths that the agent desires only some
of them are believed to be achievable. When Cases (a) and (b) are combined we have Case
(c) in which all the paths desired by an agent are believed to be achievable and vice versa.
Case (d) depicts the uninteresting case where the paths that are desired and the paths that
are believed to be achievable are disjoint.

The set and structural relationships can be combined to obtain a variety of different
possible world structures. Ignoring Case (d) of both relationships, one can obtain nine
different relationships between belief-accessible and desire-accessible worlds. Similarly, there
are nine different relationships between desire- and between intention-accessible worlds and
belief- and intention-accessible worlds. Some of these relationships can be derived from
the others. Three of these relationships have been considered previously under the terms
realism [Cohen and Levesque, 1990], strong realism [Rao and Georgeff, 1991c] and weak
realism [Rao and Georgeff, 1991a).

The semantic conditions and the corresponding axioms for the various relationships are
summarized in Table 6. We restrict our attention to binary constraints, i.e., constraints
between two modal operators, and do not consider ternary constraints, i.e., constraints
that involve the three modalities of belief, desire, and intention. We briefly describe some
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Figure 5: Strong realism possible worlds structure

important cases below.

7.1 Strong Realism

A strong realism constraint is one where the set of belief-accessible worlds is a subset of
desire-accessible worlds and each belief-accessible world is a super-world of some desire-
accessible world [Rao and Georgeff, 1991c]. As a result of this constraint, if the agent desires
to optionally achieve a proposition, the agent also believes the proposition to be an option
it can achieve (if it chooses).

The strong realism constraint can also apply to desire-accessible and intention-accessible
worlds. As a result, if an agent intends to optionally achieve a proposition, then it also has
the desire to optionally achieve that proposition.

Under strong realism, different belief-, desire-, and intention-accessible worlds represent
different possible scenarios for the agent. Intuitively, the agent believes the actual world to
be one of its belief-accessible worlds; if it were to be in belief world by, then its desires (with
respect to by) would be a corresponding desire-accessible world, d; say, and its intentions
a corresponding intention-accessible world, 7;. The worlds d; and #; represent increasingly
selective choices from b; about the desire for and choice of possible future courses of action.

If v is an O-formula, the above condition enforces the following strong realism axioms:

(ID-SA1) INTEND(y) D DES(v);
(DB-SA1) DES(y) > BEL(y).

The above axiom essentially states that, if the agent has the intention towards E(%), it also
desires that E(¢); i.e., there is at least one path in all the desire-accessible worlds in which
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¥ is true. Also, if the agent has the desire that E(¢), it also believes that E(%); i.e., there is
at least one path in all the belief-accessible worlds in which % is true.

Consider, for example, the case where the formula i above is Fp. The axiom then states
that, if in all the intention-accessible worlds of the agent there is at least one path where
eventually p becomes true, it must be the case that in all the desire-accessible worlds of the
agent there is at least one path where eventually p is true. Similarly, it must be the case that
in all the belief-accessible worlds of the agent there is at least one path where eventually p is
true. However, because of the branching nature of time, the agent need not believe or desire
that it will ever reach the state where p is true.

The (BRP4DEDIKDY 1y _system together with the axioms ID-SA1, and DB-SA1 will be
called the (BKP4SDKDIKD)SL - _gystem.

The semantic condition for strong realism can be stated as follows:
(ID-SC1) VwVsVv if (w, s, v) € D then ', (w, s, v') € Z and v J v’ (or D Cyy, Z) ;
(DB-SC1) YwVsVv if (w, s, v) € B then 30/, (w, s, v') € D and v J v’ (or B Cs,,, D).

Figure 5 shows the strong realism possible worlds structure pictorially.
The tableau rules for the above axioms and semantic conditions are as follows:

(ID-ST1) if INTEND(y) and (w, s, v) € D then v € L(v, s);
(IB-ST1) if INTEND(y) and (w, s, v) € B then v € L(v, s);
(DB-ST1) if DES(y) and (w, s, v) € B then v € L(v, s);

Retaining the same subset relationship but changing the structural relationships such
that a belief-accessible world is a sub-world of a desire-accessible world which in turn is a
sub-world of an intention-accessible world imposes the following semantic condition:

(ID-SC2) VwVsVuv if (w, s, v) € D then F', (w, s, v') € Z and v C v’ (or D Cyyp I);
(DB-SC2) VwVsVv if (w, s, v) € B then ', (w, s, v') € D and v C v’ (or B Cyp D).

The above semantic condition is equivalent to an axiom that states that if an agent intends
an I-formula, say &, then the agent desires § and also believes §. In other words, the following
expression is an axiom of such a possible-world structure:

(ID-SA2) INTEND(3) > DES(5);
(DB-SA2) DES(5) > BEL(3).

The (BKD45DKDIKD)CTL—system together with the axioms ID-SA2, and DB-SA2 will be
called the (BKP4SDKDIKD)S2 - _gystem.
The tableau rules for the above axioms and semantic conditions are as follows:

(ID-ST2) if INTEND($) and (w, s, v) € D then § € L(v, s);
(IB-ST2) if INTEND(4) and (w, s, v) € B then ¢ € L(v, s);
(DB-ST2) if DES(6) and (w, s, v) € B then é§ € L(v, s);

Finally, if the structures in corresponding belief-; desire-, and intention-accessible worlds
are identical, we have the following axioms:

(ID-SA3) INTEND(¢) > DES(¢);
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(DB-SA3) DES(¢) > BEL(g).

The (BRP4DRPIED) (1 _system together with the axioms ID-SA3 and DB-SA3 will be
called the (BKP#DKPIKDYSS _system. As we will be using this modal system often we
abbreviate this to BDI-S3-system.

These axioms correspond to a multi-modal containment condition. In other words, all
desire-accessible worlds are contained in the set of intention-accessible worlds; and all belief-
accessible worlds are contained in the set of desire-accessible worlds.

(ID-SC3) VwVsVuv if (w, s, v) € D then (w, s, v) € Z (or D C I);
(DB-SC3) VwVsVv if (w, s, v) € B then (w, s, v) € D (or B C D).
The tableau rules for the above axioms and semantic conditions are as follows:
(ID-ST3) if INTEND(¢) and (w, s, v) € D then ¢ € L(v, s);
(IB-ST3) if INTEND(¢) and (w, s, v) € B then ¢ € L(v, s);
(DB-ST3) if DES(¢) and (w, s, v) € B then ¢ € L(v, s);

All these semantic conditions and characterizing axioms are listed in Table 6.

7.1.1 Tableau and Small Model Theorem

We can now describe the tableau for the above modal systems.

Definition 7 A (BRKPDRDIKDYSL - sableau is a (BRPPDRPIKD) (qy _tableau that satisfies
the conditions ID-STi, IB-STi, and DB-STi, where i is 1, 2, or 3.

Now we prove the small model theorem for the above logic. The class of structures,
(./\/leSt)Si, is defined to be the class of structures, M, where the B relation is serial, transitive,
and euclidean; D is serial; 7 is serial; and the multi-modal containment conditions ID-SCi
and DB-SCi are satisfied by the relations B, D and Z, where i is 1, 2, or 3. We show the

equivalence between this class of structures and the (BKP4SDEPKD)SL. tableau discussed
above.

Theorem 5 Let ¢g be a BDIcTr, formula of length n. Then we have the following equiva-
lences;

1. ¢ is (BRPHDEPIRDVAL - _satisfiable;
2. ¢o has a model (M) with finite branching in each world bounded by O (n);
(BKD45DKDIKD)

3. ¢o has a finite pseudo- i -tableau of size < exp(n);

4. ¢o has a finite model (M®*)S of size < exp(n).
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7.1.2 Algorithm
The algorithm for constructing a pseudo-(BXP4#DEPIEDYEL  tableau is the same as the one
for pseudo-(BKP4DKEPIKD) 1 with an additional step after Step 2 (d).

Consider the construction of a pseudo-(BKP#DEDIKDYS2 tableau. For this tableau,
Step 2 (d') must ensure that for every formula of the form INTEND(¢) in node n, we add
¢ to all the D-successors and B-successors of node n, if they exist, or create one and add ¢
if it does not exist. Similarly, for every formula of the form DES(¢) one adds ¢ to all the
B-successors.

More formally, Step 2 (d) is modified as follows:

Algorithm for Constructing a Pseudo-(BXP#DKP[KD)33. _Tableau

All steps are the same as in Section 6.2. Include the following step, Step 2 (d’), after Step 2

(d).

2 1. € L(n;) then V m such that m is a D-successor of n;, let L(m) =
d’ If INTEND(¢ L hen V h th i D f let L
L(m) U {¢} and V k such that £ is a B-successor of n;, let L(k) = L(k) U {¢}. If

there is no D-successor or B-successor create one and initialize as above.

2. 1f DES(¢) € L(n;) then V k such that & is a B-successor of n;, let L(k) = L(k) U

{¢}. If there is no B-successor create one and initialize as above.

3. If the label of the new leaf node n; is identical to the label of an ancestral node,
erase the node n;.

Replacing ¢ above by an O-formula v or I-formula ¢ yields the pseudo-tableau construc-

tions for (BKP4SDKDIKDYEL. _gystem and (BKP#DKPKD)32 _system, respectively.

7.1.3 Completeness

Now we can demonstrate the soundness and completeness of the (BRP4SDKPIKDYEL _systems.

Once again, the proofs can be found in the Appendix.

Theorem 6 The (BKD45DKDIKD)%iTL-system is sound and complete with respect to the class
of models (M®t)si.

7.2 Realism

Cohen and Levesque [Cohen and Levesque, 1987] consider a structure in which the set of
intention-accessible worlds is a subset of the set of belief-accessible worlds® and the structures
of the belief- and intention-accessible worlds are identical; namely a time line. This constraint
is called the realism constraint and has the effect that if the agent believes a proposition it
will also have the intention (or goal in their terminology) towards that proposition.

The realism axiom can be formally stated as follows: 1°

(ID-RA3) DES($) D INTEND(¢);
(DB-RA3) BEL(¢) > DES(¢).

?Note that the “goals” of Cohen and Levesque are called intentions by us. Our notion of beliefs, desires,
and intentions is more in line with the philosophical literature [Bratman, 1987; Bratman et al., 1988].
19Cohen and Levesque introduced this property in their logic where they had the axiom BEL(¢) D GOAL().
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Figure 6: Realism possible-worlds structure

The (BKD45DKDIKD)CTL—system together with the axioms ID-RA3 and DB-RA3 can be
called the (BKP4DKDIKD)B2 _gystem or BDI-R3-system.

These axioms also correspond to a multi-modal containment condition, but in the reverse
direction. In other words, all intention-accessible worlds are contained in the set of desire-
accessible worlds; and all desire-accessible worlds are contained in the set of belief-accessible
worlds.

(ID-RC3) VwV¥sVv if (w, s, v) € T then (w, s, v) € D (or Z C D);
(DB-RC3) VwVsVv if (w, s, v) € D then (w, s, v) € B (or D C B) .

Figure 6 shows this relationship.

This realism constraint characterizes an agent that intends all future propositions that
it desires to bring about and desires all future propositions that it believes can be achieved.
Such an agent can be reasonably characterized as an “over-enthusiastic” agent.

As in the previous section we have the following tableau rules:

(BD-RT3) if BEL(¢) and (w, s, v) € D then ¢ € L(v, s);
(BI-RT3) if BEL(¢) and (w, s, v) € Z then ¢ € L(v, s);
(DI-RT3) if DES(¢) and (w, s, v) € T then ¢ € L(v, s);

Retaining the same set relationship between belief-, desire-, and intention-accessible
worlds but allowing their structural relationships to be a sub-world or super-world of the
other leads to variations of the above semantic constraints and axioms. They result in the
BDI systems (BKP4SDEDIKDYRL _and (BKP4SDRDKD)R2. system and tableau conditions
similar to the above. These variations are summarized in Table 6.

We can now describe the tableau for the above modal system.
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Figure 7: Weak realism possible-worlds structure

Definition 8 A (BRPHDEDIKRL _tablequ is a (BKP4SDKEPIKD) o r _tableau that satisfies
the conditions ID-RTi and DB-RTi, where i is 1, 2, or 3.

By now it should be clear that we can easily prove the small model theorem for the
above logic. The class of structures, (M®")™ is defined to be the class of structures, M,
where the B relation is serial, transitive, and euclidean; D is serial; 7 is serial; and the multi-
modal containment conditions ID-RCi and DB-RCi are satisfied by the relations B, D, and Z.
One can show the equivalence between this class of structures and the (BKP4°DRDIKD)RI
tableau.

The algorithms for (BKP4SDEDIKDYRIL - _tahleau and pseudo-(BEPDEPKD) R tableau

constructions can be given based on the previous algorithms and one can demonstrate the

completeness of the (BKP#DRPKDVRI . _system with respect to (M),

7.3 Weak Realism

While rational agents based on the realism constraint are “over-enthusiastic”, rational agents
based on the strong realism constraint are “over-cautious” in that they only desire future
propositions that are believed to be achievable and only intend future propositions that
are part of their desires. A balance between the two can be obtained if agents have the
property that they do not desire propositions the negations of which are believed; do not
intend propositions the negations of which are desired; and do not intend propositions the

negations of which are believed by the agent. Such a property is called weak realism [Rao
and Georgeff, 1991a).
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More formally, we have the following axioms:
(ID-WA3) INTEND(¢) O —DES(—¢);
(IB-WA3) INTEND(¢) O —-BEL(—¢);
(DB-WA3) DES(¢) D -BEL(—¢).

These axioms correspond to a multi-modal version of the seriality condition. In other
words, semantically we require that the intersection of intention-accessible worlds and belief-
accessible worlds be non-empty. Similarly, the intersection of intention-accessible and desire-
accessible worlds, and desire-accessible and belief-accessible worlds must be non-empty.

(ID-WC3) VwVsiv (w, s, v) € Ziff (w, s,v) € D (or D NI #D);
(IB-WC3) YwVs3v (w, s, v) € Ziff (w, s, v) € B (or BNI # 0);
(DB-WC3) VwVsdv (w, s, v) € Diff (w, s, v) € B (or BN D # ().

The (BKPDKPIEDY (11 system together with the axioms ID-WA3, IB-WA3, and DB-
WA3 will be called the (BRP4DEPEDYWS _gystem or BDI-W3-system. For historical reasons
we have called the above modal system the weak realism system with a superscript ‘W’ that
stands for weak realism, as it is weaker than the realism system introduced by Cohen and
Levesque [Cohen and Levesque, 1990] in the context of linear-time BDI-logics.

7.3.1 Tableau and Small Model Theorem

We can now describe the tableau for the above modal system. The following consistency
rules capture the weak-realism constraints ID-WC3, IB-W(C3, and DB-WC(C3.

(ID-WT3a) If INTEND(¢) € L(w, s) then v such that (w, s, v) € D and ¢ € L(v,s);
(ID-WT3b) If DES(¢) € L(w, s) then Jv such that (w, s, v) € T and ¢ € L(v,s);
(IB-WT3a) If INTEND(¢) € L(w, s) then Jv such that (w, s, v) € B and ¢ € L(v,s);
(IB-WT3a) If BEL(¢) € L(w, s) then Jv such that (w, s, v) € Z and ¢ € L(v,s);
(DB-WT3a)) If DES(¢) € L(w, s) then Jv such that (w, s, v) € B and ¢ € L(v,s);
(DB-WT3b) If BEL(¢) € L(w, s) then Jv such that (w, s, v) € D and ¢ € L(v,s).

Definition 9 A (BRPHDEDIKDYWL _tablequ is a (BKP4SDEPIKD) o p _tableau that satisfies
the conditions ID-WTia, ID-WTib, IB-WTia, IB-WTib, DB-WTia, and DB-WTib.

Once again it should be clear that we can prove the small model theorem for the above
logic. The class of structures, (M®t)¥i is defined to be the class of structures, M, where
the B relation is serial, transitive, and euclidean; D is serial; 7 is serial; and the multi-modal
seriality conditions ID-WTia, ID-WTib, IB-WTia, IB-WTib, DB-WTia, and DB-WTib are
satisfied by the relations B, D and Z. One can show the equivalence between this class of

structures and the (BKP#DKPIKDYVWI _tableau.

Theorem 7 Let ¢o be a BDIcTr, formula of length n. Then we have the following equiva-
lences;
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1. ¢ is (BEPHDEPIKDYVWL _satisfiable;
2. ¢o has a model (MY with finite branching in each world bounded by O (n);
3. ¢o has a finite pseudo-(BXPPDEPIEDYVWL _tableau of size < exp(n);

4. ¢o has a finite model (M®)¥! of size < exp(n).

7.3.2 Algorithm
The algorithm for constructing a pseudo-(BKP4DKPIKD)WIL tableau is the same as the one
for pseudo-(BXKPDEPIED) 1 with an additional step after Step 2 (d).

This step, say Step 2 (d’), must ensure that for every formula of the form INTEND(¢)
in node n, we create a new D-successor and B-successor with the same label as before and
add ¢ to the label. Similarly, for every formula of the form DES(¢), we create a new Z- and
B-successor and add ¢ to it; and for BEL(¢) we create a new B- and Z-successor and add ¢
to it.

More formally, Step 2 (d) has to be modified as follows:

Algorithm for Constructing a Pseudo-(BXP#*DKP[KD)WI _Tableau

All steps are the same as in Section 6.2. Include the following step, Step 2 (d’), after Step 2

(d).

(2d") 1. If INTEND(¢) € L(n;), create a new D-successor m of n; and let L(m) =

DES™(L(n;)) U {¢} and create a new B-successor k of n; and let L(k) = BEL™(
L(n;)) U {¢} U {BEL(%): BEL(%) € L(n;)} U {=BEL(&): =BEL(§) € L(n;)}.

2. If DES(¢) € L(n;), create a new Z-successor m of n; and let L(m) = INTEND™ (L(n;))
U {¢} and create a new B-successor k of n; and let L(k) = BEL™( L(n;)) U {¢}
U {BEL(%): BEL(%)) € L(n;)} U {-BEL(&): =BEL(&) € L(n;)}.

3. If BEL(¢) € L(n;), create a new Z-successor m of n; and let L(m) = INTEND™ (L(n;))
U {¢} and create a new D-successor k of n; and let L(k) = DES™(L(n;)) U {¢}.

4. If the label of the new leaf node n; is identical to the label of an ancestral node,
erase the node n;.

7.3.3 Completeness

Now we can demonstrate the soundness and completeness of the (BRP4DEPIRDYWI _systems.

The proof of this theorem can be found in the Appendix.

Theorem 8 The (BKD45DKDIKD)¥JV%L-3ystem is sound and complete with respect to the class
of models (M®t)™i,

Uniform, pair-wise restrictions between beliefs, desires, and intentions, as given in Table 6
will be referred to as Uniform BDI-systems. An example, of a non-uniform BDI-system is
given in Section 8.3.

The reader need not despair with the number of BDI systems we have introduced. What
we have done here is similar to the characterization of mono-modal systems [Hughes and
Cresswell, 1984] based on the restrictions on the accessibility relation. However, just as in
standard modal logic, not all the characterized modal systems are equally useful, some like
S5 and KD45 being more useful than the others. Similarly, we will indicate our preferred
BDI system in Section 8.3 after examining the properties that the above systems satisfy or
fail to satisfy.
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8 Properties of the Logics

In this section, we examine some of the properties of belief, desire, and intention interaction
that one would expect of a system that claims to represent these mental attitudes, and then
evaluate the BDI-systems introduced earlier with respect to these properties.

8.1 Asymmetry Thesis

Name Asymmetry Thesis
AT1 | = INTEND(¢) D = BEL(—¢)
AT2 | £ INTEND(¢) D BEL(¢
AT3 | = BEL(¢) D INTEND(¢

)
)

AT4 | = INTEND(¢) D — DES(=¢)
AT5 | i INTEND(¢) > DES(¢)
AT6 | j£ DES(¢) D INTEND(g)

AT7 | = DES(¢) D — BEL(—¢)
AT8 | & DES(¢) D BEL(¢)
AT9 | £ BEL(¢) D DES(¢)

Table 2: Asymmetry Thesis Principles

Bratman [Bratman, 1987] argues that it is irrational for an agent to intend to do an action
and also believe that it will not do it. Thus he does not allow intention-belief inconsistency.
For example, if Robbie the Robot intends to serve beer and also believes that it will not
serve beer it would be considered as irrational behaviour.

On the other hand, Bratman does allow a rational agent to intend to do an action but
not believe that it will do it. Thus intention-belief incompleteness is allowed. For example,
it is rational for Robbie the Robot to have the intention of opening the door when the bell
rings, but not believe that it will open the door when the bell rings (it might be serving
beer, while someone else answers the door). These two principles were called the asymmetry
thesis by Bratman.

In addition to intention-belief incompleteness, it is rational to have belief-intention incom-
pleteness as well, i.e., a rational agent can believe that it can do an act without necessarily
intending the action. For example, Robbie can believe that it is capable of self-destruction
without necessarily intending to destruct itself. We refer to all these three principles as the
asymmetry thesis.

The first principle is stated as an axiom and the second and third as formulas that are
not valid. Also note that we state these principles in terms of intending a state of the world,
rather than intending an action. More formally,

(AT1) [ INTEND(¢) > — BEL(=¢).
(AT2) I~ INTEND(¢) > BEL().
(AT3) |~ BEL(¢) D INTEND().
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We follow the same principle of uniformity and require that the asymmetry thesis hold
pairwise between the attitudes of beliefs, desires, and intentions. That is, we do not allow
intention-desire and desire-belief inconsistency, whereas we allow intention-desire, desire-
intention, desire-belief, and belief-desire incompleteness. Table 2 summarizes all the asym-
metry thesis principles.

Now we examine the various BDI systems and analyze which of them satisfy the various
asymmetry principles. Amongst the basic BDI systems we consider the BDI-B1 and BDI-B2
systems and amongst the multi-modal systems, the BDI-S3, BDI-R3, and BDI-W3 systems.

The principle of intention-belief inconsistency, AT1, requires that INTEND(¢) O =BEL(—¢)
be a valid formula. In other words, the formula INTEND(¢) A BEL(—¢) should be marked
unsatisfiable. As shown in Figure 10, the formula is marked satisfiable in both the BDI-B1
tableau and BDI-B2 tableau and marked unsatisfiable in BDI-W3, BDI-S3, and BDI-R3
tableaus. The unsatisfiability of the formula in the weak-realism modal system is as ex-
pected because the weak-realism modal system takes as one of its axioms the consistency of
intentions and beliefs. However, the strong-realism and realism modal systems also main-
tain consistency between intentions and beliefs. Similar properties hold pairwise between
intentions and desires and between desires and beliefs.

Now consider the principle of intention-belief incompleteness. We want INTEND(¢) A
—BEL(¢) to be a satisfiable formula in our BDI-logic. The formula is marked satisfiable in
all the tableaus except the (BKP4DKDPTKD)S3. _tableau.

For belief-intention incompleteness, we want BEL(¢) A =INTEND(¢) to be a satisfiable
formula in our BDI-logic. The formula is marked satisfiable in all the tableaus under con-
sideration except the (BEKP#DKDIKDYR _tableau.

Similar properties hold pairwise between intentions and desires and between desires and
beliefs. Once again, the properties are unsatisfiable only in the strong-realism multi-modal
system.

More formally, we have the following:

Theorem 9 The following properties are satisfied by the modal systems:
e BDI-B1 satisfies properties AT2, AT3, AT5, AT6, AT7, and ATS;
o BDI-B2 satisfies properties AT2, AT3, AT5, AT6, AT7, and ATS;
e BDI-S3 satisfies properties AT1, AT3, AT}, AT5, AT6, and AT7;
e BDI-R3 satisfies properties AT1, AT2, AT4, ATH5, AT7, and ATS;
e BDI-W3 satisfies properties AT1-AT9Y.

This is summarized in Table 3. In the table, the value ‘T’ indicates that the modal
system given by the row satisfies the property given by the column; and ‘F’ indicates that
the modal system does not satisfy the property. For example, the modal system BDI-S3
satisfies AT1 but does not satisfy AT2. The above theorem clearly shows that if one wants
all the asymmetry thesis properties then one should adopt the BDI-W3 modal system.

8.2 Consequential Closure Principles

One of the properties of belief, desire, intention interaction that has received a great deal of
attention in the literature is the consequential-closure problem or side-effect problem [Allen,
1990; Cohen and Levesque, 1990]. The problem arises when an agent who intends to do a
certain action is forced to intend all the side-effects of such an action as well. For example,
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Logic AT1 | AT2 | AT3 || AT4 | AT5 | AT6 || AT7 | AT8 | AT9
BDI-B1 F T T F T T F T T
BDI-B2 F T T F T T F T T
BDI-S3 T F T T F T T F T
BDI-R3 T T F T T F T T F
BDI-W3 T T T T T T T T T

Table 3: Asymmetry Thesis Principles Satisfied by Uniform BDI Systems

an agent who intends to go to the dentist to have a tooth removed, but believes inevitably
that going to the dentist will always cause pain as a side-effect, should not be forced to
intend to suffer pain.

Rather than stating the above property as a problem we rephrase it as a closure principle
that needs to be satisfied. The belief-intention consequential closure principle states that it is
rational for an agent to intend ¢; and at the same time not intend ¢3, no matter how strong
the belief about ¢1 O ¢. The strength of the belief could be either one of the following:!!
BEL(¢1 D ¢2), BEL(AG(¢1 D ¢2)), or AGBEL(AG(¢1 D ¢2)). The strongest consequential

closure principle for intentions and beliefs is stated as:

(CC3) M, w, = INTEND(¢;) A AGBEL(AG(¢1 D ¢2)) A ~INTEND(¢3).

Substituting the second conjunct of CC3 with the weaker forms of beliefs yields CC1 and
CC2. The closure principle is required not only between intentions and beliefs, but also
between intentions and desires and between desires and beliefs. Table 4 summarizes all the
consequential closure principles.

For intention-belief consequential closure principles we want INTEND(¢) A BEL(¢ D
¥) A —INTEND(%); intend(¢) A BEL(AG(¢ D %)) A —INTEND(%); and INTEND(¢) A
AGBEL(AG(¢ D %)) A -INTEND(%) to be marked satisfiable in our BDI-logic. The for-
mula is marked satisfiable by all the tableaus except the BDI-R3 tableau.

In this way, an agent believing that it is inevitable that pain (p) always accompanies
having a tooth filled (f) may yet have the desire (or intention) to have a tooth filled without
also having the desire (or intention) to suffer pain [Cohen and Levesque, 1987]. This rela-
tionship between belief, desire, and intention-accessible worlds is illustrated by the example
shown in Figure 8. Although the agent believes that inevitably always (f D p), it does not
adopt this as a desire nor as an intention. Similarly, although the agent adopts the desire
(and intention) to achieve f, it does not thereby acquire the desire (or intention) p.

More formally, we have the following:

Theorem 10 The following properties are satisfied by the modal systems:
e BDI-B1 satisfies properties CC1-CCY;

e BDI-B2 satisfies properties CC1-CCY;

"1n reality, there are nine different cases for linear-time logics and twenty-five different cases for branching-
time logics.
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Name Consequential Closure Principles
CC1 | M, w, = INTEND(¢;) A BEL((¢y D ¢2)) A =INTEND(b).
CC2 | M, w, = INTEND(¢;) A BEL(AG(¢y D ¢3)) A =INTEND(¢3).
CC3 | M, w, = INTEND(¢;) A AGBEL(AG(¢1 D ¢2)) A ~INTEND(¢h,).
CC4 | M, w, = INTEND(¢;) A DES((¢1 D é3)) A ~INTEND(¢b5).
CC5 | M, w, = INTEND(¢;) A DES(AG(¢1 D ¢2)) A =INTEND().
CC6 | M, w, = INTEND(¢;) A AGDES(AG(¢1 D ¢3)) A ~INTEND(¢y).
CCT7T | M, w, = DES(¢1) A BEL((¢1 D é3)) A —DES(¢).
CC8 | M, w, = DES(¢1) A BEL(AG(¢1 D ¢2)) A =DES(cby).
CC9 | M, w, = DES(¢1) A AGBEL(AG(¢1 D ¢3)) A =DES(s).

Table 4: Consequential Closure Principles

e BDI-53 satisfies properties CC1-CCY;
e BDI-R3 does not satisfy any of the properties CC1-CC9 when the premise is true;
e BDI-W3 satisfies properties CC1-CC9.

This is summarized in Table 3. In the table, the value ‘T’ indicates that the modal system
given by the row satisfies the property given by the column; and ‘F’ indicates that the modal
system does not satisfy the property. IFrom the above theorem it is clear that both the strong
realism modal system, BDI-S3, and the weak-realism modal system, BDI-W3, satisfy all the
consequential closure properties.

Variants of the above consequential closure properties can be given which are satisfied by
BDI-R3 and BDI-W3, but not by BDI-S3. Hence, it turns out that the weak realism modal
system BDI-W3, is the only modal system that satisfies all the asymmetry and consequential
closure properties.

Logic CC1 | CC2 | CC3 | CC4 | CCh | CC6 || CCT | CC8 | CCY
BDI-B1 T T T T T T T T T
BDI-B2 T T T T T T T T T
BDI-S3 T T T T T T T T T
BDI-R3 F F F F F F F F F
BDI-W3 T T T T T T T T T

Table 5: Consequential Principles Satisfied by Uniform BDI Systems

This section demonstrates the value of having constructive tableau-based decision proce-
dures to evaluate and understand the large number of potential BDI-logics that can possibly
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Figure 8: Belief-, Desire-, and Intention-Accessible Worlds

be defined. As discussed earlier, we do not believe that a single BDI-logic will satisfy the
needs of all types of applications. A designer of a multi-agent system has to carefully choose
the properties he wants his agents to exhibit and choose an appropriate BDI agent for that
purpose.

8.3 Other BDI Systems

So far, we have only considered uniform restrictions between beliefs, desires, and intentions.
With the semantic conditions and axioms given in Table 6 one can easily construct other BDI
systems. For example, consider a BDI system with the following semantic conditions: (a) B
Ngup Z # 0; and (b) D Ngyp T # 0. This results in the following two axioms: (a) BEL(d) D
—INTEND(=6); and (b) DES(6) O —INTEND(—4). This BDI system results in the beliefs and
desires of an agent being loosely coupled with intentions. However, the beliefs and desires are
totally decoupled from one another. This modal system would satisfy all the incompleteness
principles and weaker forms of intention-belief and intention-desire inconsistency principles.
However, it will not satisfy the desire-belief inconsistency principle.

This modal system is our preferred choice for capturing the major philosophical intuitions
relating to the structure of possible worlds as well as set relationships. Structurally, intention-
accessible worlds are sub-worlds of belief- and desire-accessible worlds. But an agent’s desire-
accessible world is not necessarily a sub-world of any belief-accessible world, i.e., an agent
can desire options that it believes are not achievable. Set-theoretically, the intersection
between the set of intention-accessible and belief-accessible worlds is non-empty and the
set of intention-accessible and desire-accessible worlds is also non-empty. However, no such
restriction is placed between the set of belief-accessible and desire-accessible worlds. This
results in intentions being compatible with beliefs and desires, while beliefs and desires can
be incompatible with one another.

Having said this, it is important to note that the other models discussed earlier may
be preferable in certain computational applications, depending on the characteristics of the
application domain.
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9 Further Extensions

The formalization of BDI logics discussed so far provides a firm foundation for analyzing the
dynamic properties of agents. In Section 2, we emphasized the need for intentions to capture
prior decisions or choices that the agent has made. Just how committed the agent is to these
previous decisions (as represented by its intentions) is an important factor in determining
how the beliefs, desires, and intentions of an agent change over time. A commitment strategy
embodies the balance between the reactivity and goal-directedness of a multi-agent system.
In a continuously changing environment, commitment lends a certain sense of stability to
the reasoning process of an agent. This results in savings in computational effort and hence
better overall performance [Bratman, 1987; Kinny and Georgeff, 1991; Rao and Georgeff,
1991c].

Elsewhere [Rao and Georgeff, 1991c; Georgeff and Rao, 1995], we have studied various
types of commitment and discussed axioms for maintaining one’s intention using the same
possible-worlds framework as discussed in this paper. More recently [Georgeff and Rao,
1995], we have provided a semantic basis for the dynamics of BDI systems using the only
modal operator for beliefs, desires, and intentions. Although we have shown the soundness
of this system, its completeness is still an open problem currently being addressed.

Unlike most work in this area, our formalization of BDI logics was driven by the need
to explain the workings of one of the first implemented multi-agent systems, the Procedural
Reasoning System [Georgeff and Lansky, 1986]. This system and its successor, dAMARS, have
been used successfully in a number of different applications, including a system for space
shuttle diagnosis [Ingrand et al., 1992], air-traffic management [Ljungberg and Lucas, 1992],
telecommunications network management [Ingrand et al., 1992], air-combat modelling [Rao
et al., 1992a)], and more recently business process management.

The formalization of BDI logics provides the foundation for studying the properties of
these implemented systems; in particular, to prove safety and liveness properties [Emerson,
1990]. Elsewhere [Rao and Georgeff, 1993] we show how one can use a model-checking
approach to verify such properties of BDI agents. It turns out that, unlike the theorem-
proving approach discussed in this paper, the complexity of checking for satisfaction of
formulas in the BDIB;; is polynomial in the size of the given formula and the model.

In addition to the basic attitudes of beliefs, desires, and intentions, the Procedural Rea-
soning System includes the notion of plans as recipes [Pollack, 1990] (more formally, a special
class of beliefs about possible courses of action). Plans, when committed, become intentions.
To describe the procedural semantics of the implemented system and to abstract the unnec-
essary implementation details of the system we have designed an abstract architecture for
such agents [Rao and Georgeff, 1992]. The abstract architecture can be made to reflect the
different axioms discussed in this paper by changing certain functions of the abstract BDI
interpreter.

Many researchers who have formalized BDI agents have also formalized the notion of
plans as dynamic logic formulas or some variant thereof [Cohen and Levesque, 1990; Singh,
1994]. Elsewhere, we have formalized the notion of plans as dynamic logic formulas and used
them for generating, as well as recognizing, plans [Rao, 1994]. However, the completeness
and decision procedures for such a combined system have not been studied in the literature
and deserve careful consideration.

It is well known that the possible-worlds framework suffers from the logical omniscience
problem [Vardi, 1986]. Other difficulties with the possible-worlds approach to modelling
intentions have also been identified [Allen, 1990; Konolige and Pollack, 1993]. While our
possible-worlds approach avoids many of these difficulties (see Section 8) we do not claim
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that it is capable of modelling all aspects of rational agency. However, our model provides
a valuable idealization that has a well-grounded semantics and allows the analysis of a wide
range of important properties of BDI agents.

Finally, we have been actively working on extending the notion of beliefs, desires, and
intentions for single agents to teams of agents. Teams have joint mental attitudes such
as mutual beliefs, joint goals, and joint intentions. The formalization of such joint mental
attitudes and the procedural semantics of how such joint mental attitudes can be manipulated
have been discussed by us elsewhere [Rao et al., 1992b; Kinny et al., 1994]. The notion of
teams has also been used to model the team tactics of a group of pilots in beyond-visual-range
air combat [Rao et al., 1992a].

10 Comparison and Conclusion

The notion of BDI agents draws its inspiration from the philosophical theories of Brat-
man [Bratman, 1987], who argues that intentions play a significant and distinct role in
practical reasoning and cannot be reduced to beliefs and desires. Cohen and Levesque [Co-
hen and Levesque, 1990] provide one of the first logical formalizations of intentions and the
notion of commitment. They adopt a possible-worlds structure in which each world is a
linear-time temporal structure. They introduce modal operators for beliefs, goals, persis-
tent goals, and intentions, and analyze their inter-relationships. Later formalizations include
the representationalist theory by Konolige and Pollack [Konolige and Pollack, 1993] and the
work by Singh [Singh and Asher, 1990; Singh, 1994]. However, none of these papers discusses
either the completeness of the modal systems or any constructive decision procedures to test
for satisfiability or validity.

On the other hand, previous work in tableau procedures for modal logics has concen-
trated predominantly on modal systems with a single modal operator. Wooldridge and
Fisher [Wooldridge and Fisher, 1994] present a Temporal Belief Logic and provide a tableau-
based decision procedure for it. However, they do not consider tableaus for interacting
modalities and do not provide rules for systematically deriving families of decision proce-
dures for different BDI-logics. Catach [Catach, 1991] provides generalized tableau-based
provers, but again does not analyze the interactions of modal operators.

Whereas previous approaches present a particular set of semantic constraints or axioms
as being the formalization of a BDI agent, we adopt the view that one might require different
constraints for different purposes. As a result, following the modal logic tradition, we have
provided an elaborate categorization of different combinations of interactions between beliefs,
desires, and intentions. This allows one to choose an appropriate BDI system for a particular
application based on the rational behaviours required for that application.

The contributions of this paper are three-fold. First, it provides a general semantic
model of BDI agents that abstracts the classical decision-theoretic model and at the same
time generalizes the classical possible-worlds model.

Second, from the viewpoint of designing and analyzing multi-agent systems, it provides
a family of sound and complete BDI-logics that have constructive decision procedures. The
computational complexity of these decision procedures is shown to be no worse than the
complexity of the underlying temporal logic, i.e., exponential in the size of the input formula.
So far, such decision procedures have not been available for BDI-logics. Furthermore, the
properties satisfied by these BDI-logics are analyzed using the decision procedures presented.

Third, from the viewpoint of multi-modal logics, the paper presents a principled way
of classifying inter-relationships between various modal operators, introduces multi-modal
semantic constraints such as the multi-modal version of seriality and the multi-modal con-
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tainment relation, shows how these classes of modal systems are complete with respect to
certain classes of structures, and provides constructive decision procedures for satisfiability
in these multi-modal logics.
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Centres Program.

Appendix

Theorem 1: Let ¢y be a BDIgtr, formula of length n. Then we have the following equiva-
lences:

1. ¢o is BDIEy -satisfiable;
2. ¢o has a model M with finite branching in each world bounded by O(n);
3. ¢o has a finite pseudo-BDIEp; -tableau of size < exp(n);

4. ¢o has a finite model M of size < exp(n).

Proof: We show that (a) — (b) — (¢) = (d) — (a).

(a) — (b): Suppose, M w; |= ¢o. Using the standard mechanisms of CTL [Emerson,
1990] one can unwind the world w into an infinite tree with finite branching bounded by
O(n) all of whose eventualities are fulfilled. Some of these nodes will be accessible to other
worlds through the B, D, and Z-accessibility relations. Each one of these worlds can be
unwound into an infinite tree with finite branching, as before. This process is carried out
recursively until there are no embedded modal formulas. This process will terminate due to
the finite size of the formula ¢,.

(b) = (c): Let M be a class of structures, with M in M, such that M, wy = ¢o. We
show that the quotient structure M? = M /Eed(po) is a pseudo—BDIgTL—tableau.

The proof that the quotient structure M? satisfies the propositional consistency rules
PC0-PC2 and the local consistency rules LC0-LC1 is trivial. Now we show that M? pseudo-
fulfils each eventuality and also satisfies the BDI-consistency rules.

We consider the pseudo-fulfilment of AF; the other cases are similar. In the original
structure M, AFt is true and hence there must exist a finite fragment DAG[w;, AFv] with
root s in w cleanly embedded in M. However, the quotient construction introduces cycles
into such fragments. Therefore, to obtain a fragment in the quotient structure which is
acyclic we copy the original fragment and remove all duplicate labels. Given two states s
and t in w, we let the deeper state replace the shallower. After removing all such duplicates
we have a finite fragment DAG'[[w;], AF%] that is contained in the quotient structure M.

We show that the quotient construction satisfies (BC0). The other conditions can be
proved in a similar manner. Let BEL(¢)) € L(w, s) and (w, s, v) € B. From the quotient
construction we have M?, [w,] = BEL(¢) and ([ws],[vs]) € B?. From the definition of beliefs
we have M, [vs] E ¥. As a result ¥ € L(v, s).

(c) = (d): The only difference between a pseudo-BDI& ~tableau for ¢ and a BDIE -
tableau for ¢¢ is the pseudo-fulfilment as opposed to the fulfilment of eventualities. One can
follow a procedure similar to the one used in CTL-logics [Emerson, 1990] (Page 1034-1036)
to splice together copies of the DAG’s, one for each eventuality in each state, to obtain a
BDI&; -tableau model for ¢o.

The size of the model can be shown to consist of m.N? nodes, where m is the number
of eventualities and N is the number of nodes in the model. The number of nodes N < 27,
where n is the length of ¢¢. In other words the size of the model is ezp(n).
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(d) — (a): This follows directly from the definition. &

Lemma 1: If ¢,, is inconsistent and (n, m) € R as constructed in the pseudo-BDIEy; -
tableau then ¢, is inconsistent, where ¢, and ¢, are the conjunction of propositions in nodes
n and m, respectively.

Proof: Suppose (n, m) € R. By construction, for some set of formulas AX¢y,...,AX¢,,
EX%y in node n, we have ¢q,...,¢5,0¢ in node m.

1. F (1A . A ¢2AYx) {Assumption that ¢, is inconsistent}

2. F =(p1A. . .A ¢,) V =P {Propositional Reasoning}

o

. F Yk = (A .. A ¢z) {Propositional Reasoning}

4. F AG(x = —(d1A .. .A ¢;)) {Generalization Rule CTL-Gen}

(@3

- EX() = EX(=(h1A .. A ¢,)) {Axiom CTL11}

(@]

. F EX(¥x) = “AX(¢1A .. .A ¢,) {Definitions of E and A}
7. F =EX(¥x) V 2AX(¢p1A .. .A ¢,) {Propositional Reasoning}

oo

. F=(EX(k) A AX(p1A .. .A ¢z)) {Propositional Reasoning}

Ne

. Fo(EX(k) A AX(¢1)A .. .A AX(¢z)) {Propositional Reasoning} &

Lemma 2: If ¢, is inconsistent and (n, m) € B as constructed in the pseudo-BDIé’TL-
tableau then ¢, is inconsistent, where ¢, and ¢, are conjunctions of propositions in node n
and m, respectively.

Proof: Suppose (n, m) € B. By construction, for some formula =BEL(%x) in node n

such that BEL™ (n) = {¢1,...,¢,}, we have, ¢1,..., ¢,,71x in node m.

1. F ¢y = (d2 = (... (¢z = 9x) ...)) {Assumption that ¢, is inconsistent and proposi-
tional reasoning}

2. F BEL(¢1 — (2 = (... (¢z = ¥x) ...))) {Generalization Rule B-Gen}

3. - BEL(¢1 — (¢2 — (... (¢z = %) ...))) = (BEL(¢1) — (BEL(¢2) — (... (BEL(¢2)
— BEL(%x)) ...))) {From Axiom B-K}
4. - BEL(¢1) — (BEL(¢2) — (... (BEL(¢z) — BEL(%x)) ...)) {Propositional Reasoning}

5. F =(BEL(¢1) A BEL(¢2) A ... BEL(¢,) A =BEL(%x)) {Propositional Reasoning} &

Theorem 2: The BDIIS’TL-system is sound and complete (i.e., every valid formula is
provable and vice versa).

Proof: Proving the soundness of the BDI& -system is straightforward. We sketch the
completeness of the BDIE ; -system.

Suppose ¢q is valid. Then —¢q is unsatisfiable. We apply the above tableau-based decision
procedure to —¢g. All nodes whose label includes —¢q will not be marked ‘satisfiable’.

We now show that if a node n is not marked ‘satisfiable’ then - —¢,, or ¢, is inconsistent.
We proceed by induction on the height of a node n (i.e., the length of the longest path from
n to a leaf of the pre-tableau).

Case 1: Node n is a leaf of the tree.

From Step 2 (e) the node is not marked ‘satisfiable’ if and only if L(n) is blatantly
inconsistent. Hence, ¢, is inconsistent.
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Case 2: Node n is an internal node of the tree and is not a fully expanded propositional
CTL tableau.

From Step 2 (e) the node n is not marked ‘satisfiable’ if and only if none of the successors
of n are marked ‘satisfiable’. The successors of n must have been created using either the
« rule or the 8 rule. If ny and ng are the successors of n, then by our induction hypothesis
both n; and ny are not marked ‘satisfiable’. Therefore, ¢,,, and ¢,, are inconsistent or
—¢,, and = —¢,,. By propositional reasoning we can show that = —¢,, A =¢,, = —¢,.
Hence, we have - —¢,,. Similarly, if an « rule is used, we can show that - —¢,,.

Case 3: Node n is an internal node of the tree and is a fully expanded propositional CTL
tableau.

From Step 2 (e) the node n is not marked ‘satisfiable’ if any one of the following conditions

apply:
1. a B, D, Z-successor is not marked ‘satisfiable’;
2. an R-successor is not marked ‘satisfiable’;
3. an eventuality formula is not fulfilled.

If node m is a B-successor of node n and node m is not marked ‘satisfiable’ then it follows
that ¢,, is inconsistent. From Lemma 2 we can conclude that ¢, is inconsistent and hence
will not be marked ‘satisfiable’. Similar, arguments hold for D, and Z-successors of node n.

If node m is an R-successor of node n and node m is not marked ‘satisfiable’ then it
follows that ¢,, is inconsistent. From Lemma 1 we can conclude that ¢,, is inconsistent and
hence will not be marked ‘satisfiable’.

The proof of node n not being marked ‘satisfiable’ when EF% is in n, but EF not being
fulfilled, is identical to the corresponding proof for proving the completeness of the CTL
system [Emerson, 1990]. The proofs of AF1, E(¢ U %), A(¢ U %) can be carried out likewise.
&

Theorem 3: Let ¢o be a BDIgtr, formula of length n. Then we have the following
equivalences:

1. ¢o is (BRPHODRPIED) o1y _satisfiable;

2. ¢o has a model M with finite branching in each world bounded by O(n);
3. ¢o has a finite pseudo-(BEKP¥DRPIRD) o1 tableau of size < exp(n);

4. ¢o has a finite model M of size < exp(n).

Proof: The CTL component of the proof is essentially identical to that of Theorem 1.
For the BDI component we need to make changes to the (b) — (c) part and the (¢) —
(d) part. In particular, for the former we need to show that the class of structures A
satisfies the BDI-consistency rules BC0-BC3; DC0-DC2; and IC0-1C2, for the quotient con-
struction. For the latter, we need to show that the construction of the model from the
pseudo—(BKD45DKDIKD)CTL—tableau leads to a class of structures where B is serial, transi-
tive, and euclidean, and the relations D and Z are serial, i.e., is a M°®*t. In other words,
we need to show the equivalence between M®*t and the BDI-consistency rules. This equiv-
alence follows from the proofs of normal modal logics as given for beliefs by Halpern and
Moses [Halpern and Moses, 1990]. &

Theorem 4: The (BKD45DKDIKD)CTL-3ystem is sound and complete with respect to
Mest_
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Proof: The proof of this theorem is similar to Theorem 2. The CTL-component is
identical. For the BDI-component we need to show the equivalence of the D-axiom for
desires and intentions with the tableau rules DC2 and IC2 and the equivalence of the D, 4,
and 5 axioms for beliefs with the tableau rules BC2 and BC3.

We show that if = DES(¢) O —=DES(—¢) then DC2 is satisfied. If DES(¢) € L(w, s) then
from the above theorem —DES(—¢) € L(w, s). By the quotient construction M?, [w,] E
—DES(—¢). This is equivalent to M?, [ws] = DES(—¢), or there exists v, such that ([w;s],[vs])
€ D? and M1, [vs] £ —¢. This results in Jv such that (w, s, v) € D and ¢ € L(v, s).

The other cases can be proved in a similar manner. &

Theorem 5: Let ¢o be a BDIgtr, formula of length n. Then we have the following
equivalences:

1. ¢o is (BKPHDRDIKD)SL - _satisfiable;

2. ¢o has a model (M) with finite branching in each world bounded by O (n);
3. ¢o has a finite pseudo-(BXPPDEPIRDYIL - _tableau of size < exp(n);

4. b0 has a finite model (M®)S of size < exp(n).

Proof: We show the theorem for i = 1 and 3. The cases are similar.

Case i=1: In this case we prove the equivalence between the constraint ID-SC1 and the
tableau rule ID-ST1.

Given YwVsVv if (w, s, v) € D then 3 v (w, s, v') € T and v J v, we want to prove that
if INTEND(y) € L(w, s) and (w, s, v) € D then vy € L(v,s). If INTEND(y) € L(w, s), M,
[ws] = INTEND(y). From the given condition (w, s, v') € Z and hence from the quotient
construction, we have INTEND™ ([ws]) C [vl]. As INTEND(y) € [ws], we have v € [v!]; and
hence vy € L(v', s). As v O v’ we have from the super-world definition v € L(v, s).

For the reverse direction given, if INTEND(y) € L(w, s) and (w, s, v) € D then vy €
L(v,s), we want to show that YwVsVv if (w, s, v) € D then 3 v' (w, s, v') € 7T and v I v'.
We will assume that Vo', such that v J v/, (w, s, v') € Z and show a contradiction.

If (w, s, v') & Z then INTEND™ ([ws]) € [vi]. From INTEND(y) € L(w, s) and quotient
construction we have v € INTEND™ ([w;]). From the above step, we have v ¢ [vl]. As a
result =y € [vl]; =y € L(v', s). If v J v’ then =y € L(v, s) and v € L(v, s). This contradicts
the given fact that v € L(v, s), hence our assumption is wrong and Vv’ such that v J v" and
(w, s, v") € T.

Case i=3: In this case we prove the equivalence between the constraint ID-SC3 and the
tableau rule TD-ST3.

Given YwVsVv if (w, s, v) € D then (w, s, v) € Z, we want to prove that if INTEND(¢) €
L(w, s) and (w, s, v) € D then ¢ € L(v, s). IFINTEND(¢) € L(w, s), M?, [ws] = INTEND(9).
From the given condition (w, s, v) € Z and hence from the quotient construction, we have
INTEND™ ([ws]) C [vs]. As INTEND(¢) € [ws], we have ¢ € [vs]; and hence ¢ € L(v, s).

For the reverse direction given, if INTEND(¢) € L(w, s) and (w, s, v) € D then ¢ € L(v,
s), we want to show that VwVsYv if (w, s, v) € D then (w, s, v) € Z. We will assume that
(w, s, v) € Z and show a contradiction. If (w, s, v) € Z then INTEND™ ([ws]) € [vs]. From
INTEND(¢) € L(w, s) and quotient construction we have ¢ € INTEND™ ([w;]). From the
above step, we have ¢ ¢ [vs]. As a result =¢ € [v]; ¢ € L(v, s); and ¢ ¢ L(v, s). This
contradicts the given fact that ¢ € L(v, s), hence our assumption is wrong and (w, s, v) €
7. &

Theorem 6: The (BKD45DKDIKD)%iTL-3ystem is sound and complete with respect to
(Mest)si_
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Proof: The proof of this theorem is similar to Theorem 4. We need to show that ID-SAi
and DB-SAi axioms imply ID-STi, IB-STi and DB-STi, and vice versa, for i = 1, 2, or 3.

We prove the theorem for i = 3 and the other cases are very similar. If = INTEND(¢)
D DES(¢) then ID-ST3 is satisfied. If INTEND(¢) € L(w, s) then from the above theorem
DES(¢) € L(w, s). By the quotient construction MY, [w,] = DES(¢) or DES™ ([ws]) C [vs]
or ¢ € [vs] or ¢ € L(w, s). Assuming ID-ST3 and deriving axiom ID-SA3 is trivial.de

Theorem 7: Let ¢o be a BDlgtr, formula of length n. Then we have the following
equivalences;

1. ¢ is (BRPHDEPIRDVWI _satisfiable;

2. ¢o has a model (M=) with finite branching in each world bounded by O(n);
3. ¢o has a finite pseudo-(BKPODRPIKW _tableau of size < exp(n);

4. ¢o has a finite model (M®)¥! of size < exp(n).

Proof: We show the theorem for i = 3. The other cases are similar.

In this case we prove the equivalence between the constraint ID-WC3 and the tableau
rule ID-WT3.

Case a: Given YwVs3v if (w, s, v) € Z then (w, s, v) € D, we want to prove that if
INTEND(¢) € L(w, s) then 3 v such that (w, s, v) € D and ¢ € L(v, s). If INTEND(¢) €
L(w, s), M4, [ws] = INTEND(¢). By seriality of Z, we have YwVs3v such that (w, s, v) €
Z. From the given assumption, we therefore have (w, s, v) € D. Now we have to show that
¢ € L(v, s). From quotient construction, we have INTEND™ ([w;]) C [vs]. As INTEND(¢) €
[w;s], we have ¢ € [vs] and hence ¢ in L(v, s).

Case b: Given if INTEND(¢) € L(w, s) then 3 v such that (w, s, v) € D and ¢ € L(v,
s), we want to prove that if (w, s, v) € Z then (w, s, v) € D. We will assume that (w, s,
v) ¢ D and show a contradiction. If (w, s, v) € D then DES™ ([ws]) € [vs]. In other words,
there exists ¢ such that ¢» € DES™ ([ws]) and 9 & [vs]. As (w, s, v) € Z and INTEND™ ([w;])
C [vs], we have ¥ ¢ INTEND™ ([w;]). This results in =3 € INTEND™ ([w,]) or INTEND (=)
€ L(w, s). By the given statement we have (w, s, v) € D, which contradicts our assumption
that (w, s, v) € D. Hence, (w, s, v) € D. &

Theorem 8: The (BRPODKPIKNYWL _sysiem is sound and complete with respect to
(Mest)wi_

Proof: The proof of this theorem is similar to Theorem 4. We need to show the equiv-
alence of the ID-WAIi, IB-WAi, and DB-WAi axioms with the tableau rules ID-WTia, 1D-
WTib, IB-WTia, IB-WTib, DB-WTia, and DB-WTib.

We show that if = INTEND(¢) O —DES(—¢) then ID-WTAT1 is satisfied. The other cases
are similar.

If INTEND(¢) € L(w, s) then from the above theorem —=DES(—¢) € L(w, s). By the
quotient construction MY, [w,] = “DES(—¢). This is equivalent to M?, [w;] = DES(—¢), or
there exists v, such that ([wg],[vs]) € D? and MY, [vs] = —¢. This results in Jv such that
(w,s,v) € Dand ¢ € L(v,s). &

Theorem 9: The following properties are satisfied by the modal systems:

e BDI-B1 satisfies properties AT2, AT3, AT5, AT6, AT7, and ATS;
e BDI-B2 satisfies properties AT2, AT3, AT5, AT6, AT7, and ATS;
o BDI-S3 satisfies properties AT1, AT3, AT4, AT5, AT6, and AT7;
e BDI-R3 satisfies properties AT1, AT2, AT4, ATH5, AT7, and ATS;
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o BDI-W3 satisfies properties AT1-AT9Y.

Proof: The above theorem can be proved by constructing appropriate tableaus.

Figure 10 shows the various tableaus for the property AT1. The other properties can be
shown in a similar fashion. &

Theorem 8.2: The following properties are satisfied by the modal systems:

e BDI-B1 satisfies properties CC1-CCY;
e BDI-B2 satisfies properties CC1-CC9;
e BDI-53 satisfies properties CC1-CCY;
e BDI-R3 does not satisfy any of the properties CC1-CC9 when the premise is true;

e BDI-W3 satisfies properties CC1-CC9.

Proof: The above theorem can be proved by constructing appropriate tableaus.

Figure 11 shows the BDI-S3 tableau for the property CC1. It shows that the property
CCl1 is satisfiable. We have not expanded all the nodes as we need to find only one satisfiable
path in the pseudo-tableau. Also, we have not shown the marked nodes and the node labels.

Figure 11 also shows how the satisfiable path of the pseudo-tableau for BDI-S3 fails for
BDI-R3. However, to show that the root node is not satisfiable one needs to expand all the
nodes.

The remaining properties for the other modal systems can be shown in a similar fashion.

&
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Name | Semantic Condition | Distinguishing Axiom
BDI-S1 | B Cyup P Coup T INTEND(y) > DES(y) D BEL(y).
BDI-S2 | B Cous P Cows T INTEND(8) > DES(8) D BEL(S).
BDIS3 |BCDCT INTEND(¢) > DES(¢) > BEL(4).
BDIR1 | Z Cuup D Caup B BEL(y) > DES(y) > INTEND(y).
BDI-R2 | T Cou D Cous B BEL(8) D DES(6) D INTEND(S).
BDIR3 |ZCDCB BEL(¢) D DES(¢) D INTEND(g).
BDIW1 | B Nyup D # 0 BEL(8) D —~DES(—);
D Nyup T # 0 DES(6) D —~INTEND(-6);
B Ny T # 0 BEL(6) > —INTEND(-4).
BDI-W2 | B Ny D # 0; BEL(y) D —DES(—);
D Ny T # 0; DES(v) D —INTEND(—);
B Ny T # 0; BEL(y) D —~INTEND(—v).
BDLW3 | BN D # 0 BEL(¢) D —~DES(~¢);
D NI +0; DES(¢) D —~INTEND(=¢);
BT #0; BEL(¢) > ~INTEND(~¢).
BDIN1 | B =4, D =4 T INTEND(y) > DES(y) D BEL(y);
BEL(8) D DES(6) D INTEND(S).
BDIN2 | B =g D = T INTEND(8) > DES(8) D BEL(4);
BEL(y) D DES(y) O INTEND().
BDIN3 |B=D =1 INTEND(¢) = DES(¢) = BEL(g).

Table 6: Uniform BDI Modal Systems
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SAT

n2:

EFp & —BEL(EFp)*
EFp*, =BEL(EFp)

SAT

n0: EFp & —BEL(EFp)
SAT L 4
nl: EFp & —BEL(EFp)*,

EFp, =BEL(EFp)

Model

n3: EFp & —BEL(EFp)*
EFp*, =BEL(EFp)

EXEFp

n6: EFp & —-BEL(EFp)*,
EFp*, “"BEL(EFp) EFp*, -"BEL(EFp)
EXEFp, p EXEFp, —p

n12:EFp & —BEL(EFp)*

1

nll: AG—p*, —p,
AXAG—p

n9: EFp*, EXEFp [

—BEL(EFp)

Figure 9: Pseudo-tableau
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BDI-B1

SAT

BDI-B2

SAT

BDI-W3

n0: INTEND(p) & BEL(—p)

n0: INTEND(p) & BEL(™p)

n0: INTEND(p) & BEL(—p

SAT

SAT

nl: INTEND(p) & BEL(™p)

INTEND(p), BEL(—p)

nl: INTEND(p) & BEL(™p)

INTEND(p), BEL(—p)

nl: INTEND(p) & BEL(™p)

INTEND(p), BEL(—p)

BDI-S3

n0: INTEND(p) & BEL(™p)

n1: INTEND(p) & BET(—p)
INTEND(p), BEL(—p)

Z B

SAT

z B

SAT SAT

n3: T1p,BEL(7p)

BDI-R3

n0: INTEND(p) & BEL(™p)

INTEND(p), BEL(—p)

nl: INTEND(p) & BEL(™p)

Z B

n2: p | n3: ﬁp,p,BEL(p),BEL(_';i) | n2: p,p |

| n3: T1p,BEL(7p)

B
n3: Tp n5:7p,p
BEL(—p) BEL(p)
BEL(~p)
SAT

Figure 10: Pseudo-tableaus for Intention-Belief Inconsistency Property




NoO

INT(p)&BEL(—pVq)& "INT(q)

:

SAT
INT(p),BEL(—pVq),INT(q
p,INT(p) P
BEL(™pVq)
TINT(q)
SAT
p,q,INT(p) e
BEL(7pVq)
TINT(q)
SAT " \
p,71q9,7'pVq
p,q,p& g, ...
INT(p)
BEL(7pVq)

“pVg,BEL(TpVq) p,q
1%

SAT SAT
BEL(7pVaq) BEL(7pVq)
—p,p a,p

SAT

SAT

BDI-R3

—1pVq,BEL(TpVq)

P79, P

P, 9,9

Figure 11: Pseudo-tableaus for Consequential Closure Property
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