EEL 4851 - Homework 1

Due February 27, 2007

Problem 1 (Maximum subsequence sum - 30 pts):

Trace the linear algorithm for the maximum subsequence sum problem for the following list of numbers:
$\begin{array}{lllllllll}10 & -12 & 5 & 6 & -3 & 4 & -10 & 8 & -20 \\ 30 & 12\end{array}$

Show the maximum sum and the corresponding subsequence.

Problem 2 (Double linked lists - $\mathbf{3 0}$ pts):

Double linked lists are just like linked lists, except that there is a reference to both a next and a previous item. Accordingly, the list has both a head and a tail node.

(a) Consider the operation "insert at the beginning". Is it more expensive for a single linked list or for a double linked list? What is the computational complexity (the big O number) for these operations?
(b) Consider the operation "append at the end". Is it more expensive for a single linked list or for a double linked list? What is the computational complexity?
(c) What about the operation "insert at a given position k "?
(d) Double linked lists are frequently used to implement queues? Why?

Problem 3 (Trees - 40 pts):

Consider the tree in the figure. Trace the following algorithms and show the output:
(a) Depth first, pre-order traversal.
(b) Depth first, in-order traversal
(c) Breadth first traversal.
(d) Show the evolution of the queue for each step of the breadth first traversal.

