
System ArchitectureSystem Architecture

History of Operating SystemsHistory of Operating Systems

1© 2008 Universität Karlsruhe (TH), System Architecture Group

Some slides from A. D. Joseph, University of Berkeley

See also:
www.osdata.com/kind/history.htm
www.armory.com/~spectre/tech.html
courses.cs.vt.edu/~cs1104/VirtualMachines/OS.1.html
en.wikipedia.org/wiki/History_of_operating_systems

Moore’s Law Drives OS Change

100 0001TB10MB

32,7684GB128KB

1,280
6—40

3200x4
0.25—0.5

10
3—10

Factor20061981

Disk capacity

DRAM capacity

CPU MHz,
Cycles/inst

© 2008 Universität Karlsruhe (TH), System Architecture Group 2

Typical academic computer 1981 vs 2006

0.2$4,000$25,000

 0.1 110

23216

110,0001 Gb/s9600 b/s

100,0001TB10MB

Price

#users/machine

addr bits

Net bandwidth

Disk capacity

Moore’s Law Effects

 Nothing like this in any other area of business

 Transportation in over 200 years:
 Only 2 orders of magnitude from horseback @10mph to

Concorde @1000mph
 Computers do this every decade

© 2008 Universität Karlsruhe (TH), System Architecture Group 3

 What does this mean for us?
 Techniques have to vary over time to adapt to changing

tradeoffs

 Let’s place a lot more emphasis on principles
 The key concepts underlying computer systems
 Less emphasis on facts that are likely to change over the

next few years…

 Let’s examine the way changes in $/MIP has
radically changed how OS’s work

Dawn of Time ENIAC: (1945-55)

© 2008 Universität Karlsruhe (TH), System Architecture Group 4

 “The machine designed by Eckert and Mauchly was a
monstrosity. When it was finished, the ENIAC filled
an entire room, weighed 30 tons, and consumed
200 kilowatts of power.”

 http://ei.cs.vt.edu/~history/ENIAC.Richey.HTML

History Phase 1: 1948History Phase 1: 1948--7070

5© 2008 Universität Karlsruhe (TH), System Architecture Group

Expensive Hardware
Cheap Humans

OS

Hardware

History OS: Evolution Step 0

History of Systems

APP

© 2008 Universität Karlsruhe (TH), System Architecture Group 6

 Simple OS: One program, one user, one machine:
 examples: early computers, early PCs,
 embedded controllers such as Nintendo, cars, elevators
 OS just a library of standard services, e.g. standard device drivers,

interrupt handlers, I/O

 Non-problems: No malicious people. No bad programs
 A minimum of complex interactions

 Problem: poor utilization, expensive

History of Systems

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 7

 Early batch system
 bring cards to 1401
 read cards to tape
 put tape on 7094 which does computing
 put tape on 1401 which prints output

History Phase 1
 When computers cost millions of $’s, optimize for

more efficient use of the hardware
 Lack of interaction between user and computer

 User at console: one user at a time

© 2008 Universität Karlsruhe (TH), System Architecture Group 8

 Batch monitor: load program, run, print

 Optimize to better use hardware
 When user thinking at console, computer idle very bad
 Feed computer batches and make users wait

 No protection: what if batch program was buggy?

Core Memories (1950s & 60s)

The first magnetic core
memory, from the IBM 405
Alphabetical Accounting
Machine.

© 2008 Universität Karlsruhe (TH), System Architecture Group 9

 Core Memory stored data as magnetization in iron rings

 Iron “cores” woven into a 2-dimensional mesh of wires

 Origin of the term “Dump Core”

 Rumor that IBM consulted Life Saver company

 http://www.columbia.edu/acis/history/core.html

Late 60s - Early 70s

 Data channels, Interrupts: overlap I/O and compute
 DMA – Direct Memory Access for I/O devices

 I/O can be completed asynchronously

 Multiprogramming: n>1 programs run simultaneously

© 2008 Universität Karlsruhe (TH), System Architecture Group 10

p g g p g y
 Small jobs not delayed by large jobs

 More overlap between I/O and CPU

 Need memory protection between programs and/or OS

Late 60s - Early 70s

 Complexity starts to get out of hand:
 Multics: announced in 1963, ran in 1969

 1777 people “contributed to MIT’s Multics” (30-40 core dev)

 Turing award lecture from Fernando Corbató (key researcher):
“On building systems that will fail”

© 2008 Universität Karlsruhe (TH), System Architecture Group 11

O bu d g syste s t at a

 OS 360: released with 1000 known bugs
 “Anomalous Program Activity Report”

 OS finally becomes an important science:
 How to deal with complexity?

 Result: UNIX based on Multics, but vastly simplified

The Multics System (~ 1976)

© 2008 Universität Karlsruhe (TH), System Architecture Group 12

 The 6180 at MIT IPC, skin doors open, circa 1976:
 “We usually ran the machine with doors open so the

operators could see the AQ register display, which gave you
an idea of the machine load, and for convenient access to
the EXECUTE button, which the operator would push to
enter BOS if the machine crashed.”

 http://www.multicians.org/multics-stories.html

Ritchie & Thompson at PDP 11

Unix needed 16 KB*

ld l t 8 KB

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 13

users could only get 8 KB
for their application

*at that time a mini-OS

History OS: Evolution Step 1

 Simple OS is inefficient:
 a waiting process blocks everything else on the machine

 (Seemingly) Simple hack:
 run more than one process at once
 when one process blocks, switch to another

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 14

gcc emacs

OS
Hardware

 A couple of problems: what if a program
 does infinite loops or
 starts randomly scribbling on memory?

 OS adds protection
 Interposition
 Preemption
 Privilege

History OS: Evolution Step 2
 Simple OS is too expensive:

 one user = one computer

 (Seemingly) simple hack:
 Allow more than one user at once
 Does machine now run n times slower? Usually not
 Key observation: users are active in bursts

History of Systems

© 2008 Universität Karlsruhe (TH), System Architecture Group 15

OS
hardware

gcc

foo

emacs

bar

ey obse at o use s a e act e bu sts
 If idle, give resources to others

 Problems: what if
 users are greedy
 evil
 or just too numerous?

 OS adds protection
 (notice: as we try to utilize

resources, complexity grows)

Early Disk History

© 2008 Universität Karlsruhe (TH), System Architecture Group 16

1973:
1. 7 Mbit/sq. in
140 MBytes

1979:
7. 7 Mbit/sq. in
2300 MBytes

source: New York Times, 2/23/98, page C3,
“Makers of disk drives crowd even more data into even smaller spaces”

History Phase 2: 70 History Phase 2: 70 -- 8585

17© 2008 Universität Karlsruhe (TH), System Architecture Group

Cheaper HW
More Expensive Humans

History Phase 2

 Computers available for tens of thousands of dollars instead of
millions

 OS Technology maturing/stabilizing

 Interactive timesharing:
 Use cheap terminals (~$1000) to let multiple users interact

© 2008 Universität Karlsruhe (TH), System Architecture Group 18

p ($) p
with the system at the same time

 Sacrifice CPU time to get better response time
 Users do debugging, editing, and email online

 Problem: Thrashing
 Performance very non-linear

response with load
 Thrashing caused by many

factors including
 Swapping
 Inefficient queuing Users

Response
tim

e

History Phase 3: 81 History Phase 3: 81 -- 8989

19© 2008 Universität Karlsruhe (TH), System Architecture Group

Very Cheap HW
Very Expensive Humans

History Phase 3 (1981—)

 Computer costs $1K, Programmer costs $100K/year
 If you can make someone 1% more efficient by giving

them a computer, it’s worth it
 Use computers to make people more efficient

 Personal computing:
 Computers cheap, so give everyone a PC

© 2008 Universität Karlsruhe (TH), System Architecture Group 20

Computers cheap, so give everyone a PC

 Limited Hardware Resources Initially:
 OS becomes a subroutine library
 One application at a time (MSDOS, CP/M, …)

 Eventually PCs become powerful:
 OS regains all the complexity of a “big” OS
 multiprogramming, memory protection, etc (NT,OS/2)

 Question: As HW gets cheaper, does the need for OS
research go away?

Graphical User Interfaces

 CS160 All about GUIs

 Xerox Star: 1981
 Originally a research

project (Alto)
 First “mice”, “windows”

 Apple Lisa/Machintosh: 1984

X
erox Star

© 2008 Universität Karlsruhe (TH), System Architecture Group 21

pp /
 “Look and Feel” suit 1988

 Microsoft Windows:
 Win 1.0 (1985)
 Win 3.1 (1990)
 Win 95 (1995)

 Win NT (1993)

 Win 2000 (2000)
 Win XP (2001)

W
indows 3.1

Single
Level

HAL/Protection

No HAL/
Full Prot

