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Abstract
We describe a system which, building on previous
team action recognition systems, performs a more
in-depth analysis of an ongoing team action exe-
cuted by a group of embodied agents. The sys-
tem relies on team action states with human un-
derstandable semantics, estimates the current state
and is able to make predictions or identify fringe
cases such as incomplete or incorrectly executed
team actions. The representation of the team action
relies on a dynamic Bayesian network (DBN). We
perform reasoning over the DBN using a sampling-
importance-resampling particle filter. As a method-
ological illustration, we describe the process of
model building for the bounding overwatch team
action. We experimentally test our approach using
data acquired from video recordings, and measure
the system’s ability to recognize a team action and
to estimate the current state.

1 Introduction
Team action recognition is a field with important applications
in training sport and military teams, automatic commentary
systems, and surveillance. The pioneering work done by [In-
tille and Bobick, 2001], as well as [Sukthankar and Sycara,
2005; 2006] has made significant progress in the recogni-
tion of team actions. Our previous contributions have con-
centrated on the automatic learning of the team actions from
representative examples [Luotsinen et al., 2007] and on the
extraction of specific features which approximate the way in
which the team actions are perceived by human observers
[Luotsinen and Bölöni, 2008].

For many applications, however, a simple recognition sys-
tem might not be sufficient. We want our system to analyze
the ongoing team action and extract information beyond its
recognition. For instance, we want our system to be able to:
• identify the internal structure of the action and its inter-

nal phases (which may be repetitive)
• identify the current state of the execution of the action
• use the above to predict the likely evolution of the action
• continuously revise its belief about the likely nature of

the action

• identify fringe cases such as incorrectly or partially exe-
cuted actions (important in training)

In this paper we describe an approach which recognizes
and analyzes team actions of embodied agents. The input to
our system is a video recording (although the tracking of the
agents is not a focus of our research). We start by identifying
the teams and subteams in the scene, followed by the extrac-
tion of high level features. These have been chosen in such
a way that they are semantically meaningful to a human op-
erator and, as much as possible, match the features used by
humans to identify the team actions. Examples of such high
level features are “being under cover” or “being in sight of”.
We represent the team action using a dynamic Bayesian net-
work (DBN) to represent a team action. We use a particle
filter to perform probabilistic reasoning over the DBN.

To illustrate our approach, throughout this paper we will
use the bounding overwatch (BO) team action as a running
example. BO is a well known maneuver, important in military
operations and, despite being relatively simple, poses several
challenges for the recognizer. It can not be recognized from
static configurations; it requires dynamic analysis of move-
ment patterns. In addition, bounding overwatch carries rela-
tively heavy internal semantics: the goal of the maneuver is
for the bounding subteams to provide cover for each other.
This defines the relationship of the subteams to each other as
well as to the environment (e.g., obstacles, enemy positions,
line of sight).

We validate our approach through a series of experiments
on recognizing the BO team action from recorded video data,
and estimating the state of execution for the positive exam-
ples.

2 Related work
Related work in this area has primarily focused on the use
of Hidden Markov Models (HMM) and other graphical mod-
els as a statistical framework on which inference can be per-
formed.

[Intille and Bobick, 2001] used Bayesian networks to fuse
multiple data sources and combine temporal information to
produce an action likelihood for a given multi-agent event.
Experiments were performed on American football play de-
scriptions along with manually acquired play trajectories.
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Figure 1: Two examples of bounding overwatch with the time
each team bounds listed on the transition. (a) Alternating
bounds (b) Successive bounds

[Sukthankar and Sycara, 2005] used a random sample con-
sensus (RANSAC) solution to fit observed spatial trajecto-
ries to those in a known model library by applying geometric
transformations using Military Operations in Urban Terrain
(MOUT) data. In [Sukthankar and Sycara, 2006] they used
HMMs to model agent configurations over time.

[Liu and Chua, 2006] introduced an Observation Decom-
posed Hidden Markov Model (ODHMM) to allow for the use
of an arbitrary number of agents in an HMM which requires
a fixed length input.

[Luotsinen et al., 2007] proposed automatically training
the HMM probabilities using Baum-Welch and K-Means
while experimenting on GPS data of military exercises. Ex-
tending this, role-based recognition and detailed feature dis-
cretization was used [Luotsinen and Bölöni, 2008].

[Hongeng et al., 2004] proposed a multi-agent event recog-
nition system using Bayesian networks to model actions such
as standing and crouching.

One of the aspects of our work is the identification of the
teams and subteams.

[Avrahami-Zilberbrand and Kaminka, 2007] introduce a
representation called Dynamic Hierarchical Group Model to
identify groups of agents with suspicious behavior, in set-
tings where the behavior can be captured only when tracking
agents with respect to a group, not as individuals.

[Takács et al., 2007] adapt the spectral clustering method
from image segmentation to identifying teams of agents. Part
of the challenge is to find an affinity matrix which captures
not only spatial proximity, but also the temporal aspects of
actions as well as the participation of the agents in events.

3 Team action analysis: Bounding Overwatch
While it was demonstrated that a recognizer can be trained
from a small number of representative examples [Luotsinen
et al., 2007], an analyzer of the type we are developing here
requires a careful analysis of the team action. We are inter-
ested not only in the most distinguishing characteristics of the
team action, but also in its variants, preparation stage, fringe
conditions, and ways in which it can fail or transition to other
team actions.

Bounding overwatch is a tactical movement formation used
by the military when enemy contact is expected. The forma-
tion consists of two teams, one of which travels (i.e., bounds)
in a pre-specified direction while the other protects (i.e., over-
watches) the traveling team. After the bounding team has

reached its destination, the teams switch roles. This pro-
cess continues until the previously designated destination is
reached.

We can distinguish two variants of bounding overwatch
(see Fig. 1). In successive bounds BO, one team consistently
leads the other team. In alternate bounds BO, the teams al-
ternatively take the lead position.

The bounding team’s objective is to travel quickly in the
pre-determined travel direction, stay within protective cover
of the overwatch team, and end in a position that provides
natural cover.

The overwatch team’s objective is to maintain a position
that provides natural cover, visually track the bounding team,
and watch for enemies.

Although BO is a relatively simple action, it presents sev-
eral challenges to a recognizer or analyzer. First, there is no
static configuration which would allow us to recognize the
team action. Even for a recognizer taking into account the
dynamic behavior of the agents, we need to consider a time
interval of at least two bounds to be able to conclusively iden-
tify the team action as a BO. Short time sequences in a BO
are indistinguishable from other team actions such as a team
split or team merge. In certain phases of the BO, the seg-
mentation of the teams can be difficult due to close proximity
of the agents. There are two principal states, bounding and
overwatching, with one team assigned to each at a given mo-
ment; however, this idealization fails to properly model the
transient behavior observed in reality where both teams may
be performing the same role for a short period of time. To
model the transient cases it is necessary to add two states af-
ter each bounding state: both teams bounding and both teams
overwatching. While the addition of transient states makes
modeling the true observed behavior more natural, it doesn’t
remove the state detection complexity due to inherent am-
biguities. An example of this is given that both teams are
overwatching it isn’t possible to determine which is next to
bound. As a matter of convention, the overall state defining
the behavior of both teams is labeled based on the team that
has been bounding last if neither is bounding or longest if at
least one team is (e.g., T0B implies T0 is bounding and T1 is
overwatching). The state machine shown in Fig. 2 specifies
both the overall states and the individual roles of each team
in those states. The roles represent what the individual teams
are doing during each state. An example is a team whose role
is OOPB is now overwatching after previously bounding and
they are awaiting the other team to bound. Below is a brief
description of each of the team roles.

B The team is bounding and their motion is directed to-
ward a cover position located within protective cover of the
overwatching team. Their direction of travel advances the
team closer to the final destination.

O The team is overwatching, they are stationary, located
at a cover position, and are guarding the bounding team.

OOPB The team has finished bounding and is preparing
to guard the other team as they start to bound.

OOPO The team is preparing to bound as the other team
has just finished bounding.

BBPB The team is finishing bounding while the other
team has started bounding.



T0B
T0: B
T1: O

T1B
T0: O
T1: B

T1BOO
T0: OOPO
T1: OOPB

T0BOO
T0: OOPB
T1: OOPO

T0BBB
T0: BBPB
T1: BBPO

T1BBB
T0: BBPO
T1: BBPB

Figure 2: State diagram showing primary state transitions
for both participating teams and individual roles within those
states. All states have recurrent links which are omitted for
clarity.

BBPO The team has started bounding as the other team
is finishing bounding.

4 Identification of the subteams
Bounding overwatch is defined in terms of the behavior of ex-
actly two subteams; the representation of the action is based
on teams, rather than the individual agents. Thus, the first
step of data processing is the identification of the two sub-
teams, by labeling the agents with the teams in which they
participate.

A first insight is that while there are moments during the
team action when the teams are clearly separated, this is not
true for every moment in time. As shown in Fig. 1, it of-
ten occurs in successive bounding that the teams are in close
proximity at the end of the trailing team’s bound and are fur-
ther apart at the end of the leading team’s bound; in contrast,
alternating bounds causes the teams to be furthest at the be-
ginning and end of their bounds and closest at the middle.

To ensure that we capture sufficient samples where the
teams are spatially separated, we perform the clustering over
a window of timeW that is at least the period between bound-
ing cycles for a particular team. The team clustering problem
can be formulated as trying to find the two team clusters T0

and T1 that minimize the spatial K-Means error (i.e., spatial
variance) for both teams over all time-slices in the bounding
period W ∑

V =
W∑
t=0

1∑
i=0

∑
xj,t∈Ti

(xj,t − µi,t)2 (1)

where xj,t is an agent’s position at a given instant and µi,t is
the a team’s centroid at a given instant. For a small number
of agents it is reasonable to try all possible clusterings, select-
ing the one that minimizes the

∑
V ; however, the number of

clusters grow O(2n) in the number of agents. A solution to
this problem is to solve the easier spatial K-Means cluster-
ing problem for each time-slice in W , and use the resulting
set of clusterings as candidate solutions to the spatiotempo-
ral problem. The motivation for this is that only one correct

spatial clustering is necessary to solve the overall problem
and the bounding period W ensures that if the team action is
bounding overwatch, the straightforward case will be encoun-
tered (i.e., when the teams are separated). Lloyd’s algorithm
is used to solve the spatial K-Means problem [Lloyd, 1982]
by initially selecting the most distant agents as cluster centers
and updating the cluster centers based on the agents that are
near them; this process is iterated until the clusters stabilize.

5 Feature Extraction

The inputs to the feature extraction process are the teams
produced by the clustering process, each agent’s 2-D
world-plane position and heading, 2-D world-plane marker
positions representing static natural cover (e.g., trees), and
previously estimated states. The features should aid in the
discrimination between the states specified in Fig. 2 and
specification of bounding overwatch overall so that detection
can be performed among other team events. Each feature
must operate on the team level of abstraction to allow the
underlying number of agents between sequences to be
variable; furthermore, they should give similar high level
semantic information about the team as used by humans in
bounding overwatch identification. The prescribed goals
for each team provided by the definition of bounding over-
watch serve as a guide as to what properties are inherent to
bounding overwatch, allowing us to avoiding features that
are incidental to it.

TeamTraveling: Provides a very strong indicator of the
bounding overwatch state as one team should be traveling
while the other is stationary except during transient states.
This is found by thresholding the team’s velocity between
frames.

TeamNearCover: Provided the team isn’t traveling this
is a strong indicator of an overwatching team, as their goal
is to maintain a position near cover; however, if the team is
traveling, this isn’t a strong indicator as a bounding team may
be incidentally passing a cover position. This is computed by
finding the minimum distance from the team’s centroid value
and all cover positions.

TeamWatching: Provides a strong indicator that a team is
overwatching if true and bounding if false. This is computed
as the minimum angle difference between a team’s agents and
another team’s centroid summed over a window of time. Intu-
itively, this value is low when an agent in a team is watching
another team over a period of time. By taking this over a win-
dow of time we prevent the chance coincidence of the agents
heading and its relative angle to another team.

TransientStateTimer: When this is true it is unlikely
that the teams are in a transient state, as the threshold is set
to be greater than the maximum expected time in a transient
state. The duration of time that the current state has been
active is computed online from the previous state information.
While this does place a dependance on time, it only does so
for the transient states; consequently, the major states of the
algorithm are left independent of the execution time.



5.1 Feature Smoothing
As the features output discrete values obtained from continu-
ous data, true values located near the threshold can cause os-
cillations due to the sensor noise causing the observed value
to be on either side of the threshold over a short period of
time. Moreover, if feature changes are to be used to generate
observation events it is essential that the number of false tran-
sitions are reduced to an acceptable value. Since the feature
levels (i.e., areas of constant feature value) are large in du-
ration as compared to the feature edges, we will use median
filtering over a window of time. For instance, the output from
the TeamTraveling feature as a team starts moving can cause
multiple false transitions as the velocity nears the threshold
while only one true transition exists.

6 Modeling team actions with a Dynamic
Bayesian Network

A Dynamic Bayesian Network (DBN) is a temporal proba-
bility model that consists of a semi-infinite collection of hid-
den state variables Xt and evidence variables Et represented
as a two-slice temporal Bayes’ net (2TBN). Specification re-
quires knowledge of the prior state probabilities P(X0), state
transition probabilities P(Xt+1|Xt), and the sensor model
P(Et|Xt) [Murphy, 2002]. It is assumed that all modeled
probability distributions are stationary (i.e., time invariant),
time is represented as a discrete stochastic event, and that
the process is first-order Markovian as enforced by the 2TBN
structure.

A hidden Markov model (HMM) is a popular specializa-
tion of a DBN with a single discrete hidden node and one
evidence node. Using an HMM as opposed to a more gen-
eral DBN has the advantage of a simplified implementation;
however, the reduction in expressivity forces the combination
of otherwise independent hidden or evidence nodes into one
‘meganode’. This process exponentially increases the num-
ber of probabilities that must be represented in the system
resulting in slower inference, more training samples required
to learn the probabilities, and larger storage requirements.

Our implementation uses a relatively simple DBN, which
compared to the equivalent HMM decomposes the observa-
tions, but not the state. As we will see, however, even this
relatively minor decomposition allows us to significantly re-
duce the number of probability values we need to acquire.

6.1 Event Generation
Given a DBN and set of sensor observations, two notable
event generation methods arise: an event for every observa-
tion and an event for every change in observation (i.e., differ-
ing from the previous).

Generating an event for every observation causes the prob-
ability that the current state is maintained to depend on the
sample frequency. For example, as the sampling frequency
increases the probability of maintaining the current state also
increases as there are only a constant number of transitions
to different states in reality compared to the infinite number
of effective transitions to the same state. This property is un-
desirable when multiple sampling rates are used or when the

time a state is maintained doesn’t follow a geometric distri-
bution. As a practical matter, when the probability of main-
taining a state approaches unity as the probability of chang-
ing state approaches zero the overall probabilities will incur
increasing levels of computational error due to limited preci-
sion.

Generating an event for every change in observation causes
the probability that a current state is maintained to become
independent of the sample frequency provided that the fea-
tures used change only when the state does. By making this
assumption of the features, it allows the modeling of events
irrespective of sample rate or the time of their execution. As
the features diverge from this assumption, this method ex-
hibits the same behavior as the previous; consequently, if the
intended result is to have a model that has a reduced depen-
dance on the sample rate, then it is necessary to use features
that change values near true state transitions.

6.2 Proposed DBN
The states in Fig. 2 encode the individual roles of the teams,
yet each role specifies only one sensor model which results
in a symmetry between each of the team’s sensor models.
For example, when in state T0B T0 is bounding and T1 is
overwatching where in T1B the roles switch; however, the
observed behaviors between the bounding and overwatching
teams are defined to be the same as the ordering of the teams
is irrelevant. This property causes the probabilities between
each of the team’s sensor models to be the same when they are
in the same role. As each team’s behavior in bounding over-
watch is specified by its current role, the team’s sensor model
only depends on that role; this property leads to a conditional
independence between the team’s sensor models. Moreover,
as the transient state timer is defined in terms of how long the
current state has been maintained it too is conditionally inde-
pendent of each team’s sensor model given the current state.
These conditional independence assertions are expressed in
Fig. 3

As seen in Fig. 3, the proposed DBN consists of three ev-
idence nodes: one for each team’s features and a transient
state timer. The team features are, in general, dependent. An
example of a dependance between the team features is when-
ever a team is stopped, they are more likely to be near a cover
position as bounding overwatch is only performed when trav-
eling through a region with a high likelihood of enemy con-
tact. The number of probabilities that are needed to specify
P(Et|Xt) using this model are 2S for the timer and S2f for
both of the teams where S is the number of unique states and
f is the number of boolean team features used. As previously
mentioned, both teams share the same sensor model due to
symmetry between roles; consequently, we have to learn half
of the team sensor model probabilities as would otherwise be
required if only the conditional independence between them
was taken into account. The number of boolean team features
in our model is from one to three and the number of unique
states is six (Fig. 2), resulting in the number of sensor model
probabilities for the proposed DBN to be 24, 36, or 60. As a
comparison, the equivalent HMM would have S21+2f prob-
abilities due to the inability to use the conditional indepen-
dence between the sensor model nodes and the symmetry of
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Figure 3: Proposed DBN for bounding overwatch state infer-
ence.

the sensor models for each team, resulting in 48, 192, or 768
sensor model probabilities.

6.3 Probability Computation
Similar to an HMM, our proposed DBN has three types of
probabilities: state priors P(X0), state transition P(Xt+1|Xt),
and sensor model P(Et|Xt). While it may be possible to
use expert knowledge to set every probability, an automated
data driven approach allows for increased accuracy and over-
all flexibility. In total, there are 6 state prior probabilities,
36 state transition probabilities, and 24, 36, or 60 sensor
model probabilities for 1, 2, or 3 boolean features respec-
tively. To compute the probabilities automatically it is nec-
essary to have a dataset of positive bounding overwatch se-
quences with annotated state information for every observa-
tion. State prior and transition probabilities can be computed
immediately from the provided state level ground truth by
creating histograms of all possible values and normalizing
them to produce their probability. In computing the sensor
model probabilities, if one histogram of all possible sensor
observations is maintained for each team role (as opposed to
each state) then two total samples are provided by each obser-
vation (i.e., one per team). This property doubles the number
of samples available and it enforces the equivalence of the
probabilities between the teams. This method of probability
computation allows us to maintain our understanding of the
underlying states as we have assigned them.

7 Particle Filtering
Particle filtering is a method of performing approximate in-
ference on a DBN by maintaining a number of samples
(i.e., particles) that each maintain a current state xt which
is initially sampled from the prior state probability distri-
bution P(Xt) and a weight ω. They are filtered from one
state to the next by sampling the state transition probabil-
ity P(Xt+1|xt) and weighting the particle based on the sen-
sor model P (et+1|xt+1). In an effort to avoid degenerate
cases due to a majority of the particles residing in improb-
able states Sampling Importance Resampling (SIR) is used
(Algorithm 1). The effective number of particles in SIR is
computed on the normalized particle weight vector ωt.

N̂t =
1∑N

i=1 ω
2
i,t

(2)

where t is the current frame and N is the number of particles.

Algorithm 1 Sampling Importance Resampling (SIR) parti-
cle filter with maximum overall probability and state proba-
bility output.
Inputs: et+1: current evidence, N: number of samples, St:

previous sample N-vector, ωt: previous weight N-vector,
Wt: previous overall weight N-vector, P(X0): prior,
P(Xt+1|Xt): transition model, P(Et+1|Xt+1): sensor
model, Te: minimum effective particle threshold

Outputs: St+1: next sample N-vector, ωt+1: next
weight N-vector, Wt+1: next overall weight N-vector,
P(Xt+1|e1:t+1): state probabilities given evidence
if St == ∅ then
St ← sample from P(X0)
ωt ← N-vector of ones
Wt ← for each st in St: P (st)

5: end if
for i = 1 to N do
St+1[i]← sample from P(Xt+1|St[i])
ωt+1[i]← ωt[i]× P (et+1|St+1[i])
Wt+1[i]←Wt[i]×P (et+1|St+1[i])×P (St+1[i]|St[i])

10: end for
ωt+1 ← normalize-weights(ωt+1)
P(Xt+1|e1:t+1)← state-probabilities(St+1, ωt+1)
if effective-num-particles(ωt+1) < Te then

Local: rstates: holds the resampled states
15: rstates← weighted-sample(St+1, ωt+1, N )

Wt+1 ← max-state-prob(rstates, St+1,Wt+1, N)
St+1 ← rstates
ωt+1 ← N-vector of ones

end if

7.1 State Estimation
The particles represent a potential path through the DBN from
initialization up some time period t provided the evidence
e1:t. The state probability can be found by finding the pro-
portion of the particles in each state at time t by defining
N(xt|e1:t) as the number of particles in state xt

P (xt|e1:t) ≈
N(xt|e1:t)

N
(3)

where N is the number of particles in total and as N → ∞
then this converges to P (xt|e1:t).

7.2 Overall BO Probability
In order to perform identification of bounding overwatch
among other common team actions, it is necessary to pro-
duce a measure of confidence from the system that expresses
the likelihood that the sequence is bounding overwatch. In
Algorithm 1, we compute the overall probability vectorWt+1

for each particle. For each particle j this value represents its
probability through the filtering process.

Wt,j = P (x1)
t∏

i=1

P (xi+1|xi)P (ei+1|xi+1) (4)

The overall BO probability is found as

max(Wt)−(t+1) (5)



where t is the number of observations. By choosing the max-
imum value for this, we are finding the likelihood of the most
probable explanation for the observations given our model.
Since resampling the particles erases their state history, we
can set it to that of the most probable particle currently in that
state (Algorithm 7.3). As the probability of a particle tran-
sitioning from one state to another is only dependent on the
current state (i.e., the markov property), it ensures that select-
ing the maximum overall probability for each state will lead
to the true maximum overall probability. Taking the maxi-
mum overall probability to the −(t + 1) power is equivalent
to taking the geometric mean of the most likely path’s proba-
bilities of each time period including the prior, resulting in a
value that is invariant to the number of observations.

7.3 Temporal Segmentation
As the events are not assumed to be perfectly segmented, a
method is needed to ensure that transient observations on ei-
ther side of the true event have as little of an impact as possi-
ble. Without temporal segmentation, transient data can cause
the probabilities to go toward zero which will negatively im-
pact the results from then on. The proposed solution is to
reinitialize the particle filter whenever the overall BO proba-
bility has gone below a predetermined limit near zero. This
allows for arbitrary placement of the event in the observa-
tion sequence and the particle filter will continually reinitial-
ize until observations are encountered that fit the proposed
model. With this addition we are now able to generate a list
of subsequences present in the original sequence and produce
a confidence measure that each is bounding overwatch.

Now that there may be significantly less observations con-
sidered than present in the sequence, there needs to be a way
to ensure that the overall BO probability is taken from a sig-
nificant sample size. One solution would be to only consider
the overall probability to be valid if it has been computed with
a minimum number of observations; however, this method is
tightly coupled with event duration which our system up to
this point has been largely invariant to. As an example, a hu-
man observer of bounding overwatch needs less observations
from teams performing the event quickly (i.e., they are spread
across the action) than teams performing it slowly due to the
need to observe the entire process to ensure that the common
ambiguities (e.g., Team Split) are eliminated. The proposed
solution is to define the appropriate minimum number of sam-
ples in terms of BO state transitions, thus ensuring that the
data is from more than one observed state, that the system
will remain insensitive to the execution time of the event, and
that common ambiguities can be confidently eliminated from
consideration.

8 Data collection
The dataset used consists of various team actions captured on
video taken from two scenes and several camera angles. The
video has been manually annotated to capture both the agent’s
position and heading. The position is specified by one point
on the ground plane between the agent’s feet while the head-
ing is specified by placing an additional point on the ground
plane in the direction the agent is facing. For each camera po-
sition, a 3x3 homography matrix H is computed between the

Algorithm 2 max-state-prob(R, S, W, N)
Inputs: N: number of samples, R: resampled state N-vector,

S: current state N-vector, W: overall weight N-vector
Local: out: maximum overall weight N-vector that corre-
sponds to R
for i = 1 to N do

Local: x0: temp max weight index whose state is S[i]
x0 ← {x — ∀y : W [y] ≤W [x] ∧ S[i] = S[x]}
out[i]←W [x0]

end for
return out

Act# Activity Sequences Sample
Time (sec.)

1 Random (w/o cover) 6 343
2 Random (w/ cover) 5 297
3 Walking Line 4 234
4 Meeting 3 192
5 Following 2 135
6 VIP Guarding 2 133
7 Both Travel/Watch 7 129

B.O. Positive
8 Alternating Bounds 11 286
9 Successive Bounds 10 328

10 No Progress 2 101
11 Off Cover 1 34

Figure 4: Number of sequences and total sample time for each
team action in the dataset.

image plane and the metric ground plane by placing targets
on the ground plane and measuring their relative locations.
The 4-point homography algorithm and RANSAC [Hartley
and Zisserman, 2003] were used to compute the homogra-
phy and reject measurement outliers respectively. Redundant
measurements were made to allow for validation of this pro-
cess with a maximum observed error of ±6 inches. To find
the 3x1 homogeneous world position x′ use

x′ = Hx (6)

where x is a 3x1 homogeneous image position and H is 3x3
image to world coordinate projective homography. To com-
pute the agent’s heading (i.e., relative to the world plane x-
axis), both the position and heading points are warped onto
the ground plane coordinate system using (6), the vector dif-
ference is taken between the 2x1 Euclidean (i.e., inhomoge-
neous) heading and position points, and finally the heading
angle is computed as arctan(y/x). As the distance between
the position and heading points is unused, they are spread
out as far as possible to increase the accuracy of each agent’s
heading.

8.1 Recorded team actions
As shown in Fig. 4, the dataset features positive variants of
the bounding overwatch team action along with several other
common team actions to serve as negative classification ex-
amples. The specified team action for each video is located
in the middle of the sequence with minor setup time before



Figure 5: Sample pictures from the dataset used. The markers
on the ground are used as bounding overwatch cover positions
as well as for homography computation.

and after. By leaving a few seconds of neutral movement
on either side of the action it ensures that the algorithm be-
ing evaluated is able to perform temporal segmentation of the
event and that it is taking into account the entire sequence as
opposed to some initial period. Below is a brief description
of each team action.

Random: The agents move around without purpose.
Walking Line: The agents form a tight vertical line and

move around the scene, finely mimicking the leading agent’s
path.

Meeting: The agents come together at a central point and
stop for a period of time.

Following: One agent is followed from a distance by the
other agents, coarsely mimicking the leading agent’s path.

VIP Guarding: One agent is followed closely by guards
from slightly behind and to the side.

Both Travel/Watch: Similar to bounding overwatch but
both teams travel and watch at the same time, thus eliminating
the protection bounding overwatch provides.

B.O. Alternating Bounds: Bounding overwatch per-
formed using alternating bounds (i.e., the bounding team
passes the overwatching team). Bounding is terminated at
cover positions as denoted by markers on the ground plane.

B.O. Successive Bounds: Bounding overwatch performed
using successive bounds (i.e., one team is consistently in
front, regardless if they are bounding or overwatching).
Bounding is terminated at cover positions as denoted by
markers on the ground plane.

B.O. No Progress: Bounding overwatch as far as state
transitions are concerned; however, this is counter-productive
in that motion is not directed in an overall direction (e.g., re-
turning to previous locations). Combinations of alternating
and successive are not defined as no overall travel direction is
defined.

B.O. Off Cover: Bounding overwatch performed while
avoiding cover positions.

9 Results
9.1 Team action recognition
The first set of results concern the use of the system as a rec-
ognizer. We consider the system as a binary classifier sepa-
rating the positive examples of BO in the data set from the
negative ones. Naturally, this binary classifier can be used as
a building block for multi-class classifiers

Fig. 6 shows a precision-recall graph of the bounding over-
watch classification of the dataset. Using TeamTraveling,
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Figure 6: Bounding overwatch classification results using all
three team features and the timer (3F1T ), all three team
features without the timer (3F0T ), and one team feature
(TeamTraveling) and the timer (1F1T ).

TeamNearCover, and TeamWatching as the team features
along with the TransientStateTimer achieves the best per-
formance over all operating values with a maximum F1 mea-
sure (i.e., harmonic mean of recall and precision) of .91 with
an associated precision of 92% while achieving an 89% re-
call. Using the same three team features and removing the
TransientStateTimer performs the next best over all oper-
ating values with a maximum F1 measure of .89 with an as-
sociated precision of 86% and a recall of 92%. By only us-
ing TeamTraveling and the TransientStateTimer the results
are fair considering that it uses significantly less information
while receiving a maximum F1 measure of .83 with an as-
sociated precision of 75% and a recall of 92%. As seen in
Fig. 7, a few of the sequence #7 (Both Travel/Watch) videos
provided the greatest classification challenge because as both
teams moved together, the system would predict that they are
bounding as a transient state but not for a long enough dura-
tion to be penalized by the transient event timer.

9.2 State estimation
Our second set of results concern the system as an analyzer
of the bounding overwatch action. Once the action has been
identified as bounding overwatch, the challenge is to estimate
the state of the system in the state diagram shown in Fig. 2.
As a note, once the state is estimated, the probabilities of this
graph can be used for state prediction.

Fig. 8 shows the state estimation results performed on
the positive bounding overwatch samples present in the
dataset. This was performed using TeamTraveling, Team-
NearCover, and TeamWatching as the team features along
with the TransientStateTimer. The highest number of errors
occurred when the true state was T0BOO as it was confused
with T1BOO due to the ambiguous sensor values between
them. When both teams are overwatching it is likely that they
are both stopped, near targets, and facing away from each
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Figure 7: Bounding overwatch classification results using all
three team features and the timer (3F1T ) shown for each ac-
tivity as specified in Fig. 4. This includes both negatives [1-7]
and positives [8-11]. The majority of the negative sequences
generated a zero probability due to behavior not witnessed in
bounding overwatch. These are the maximum probabilities
from each sequence that also met the minimum number of
BO state transitions as specified in Section 7.3.

GT/Pred. T0B T0BBB T0BOO T1B T1BBB T1BOO
T0B 278 1 0 0 0 0

T0BBB 1 42 0 0 3 0
T0BOO 0 0 84 1 0 4

T1B 1 1 1 321 0 3
T1BBB 1 0 0 0 38 0
T1BOO 3 0 1 0 0 76

Figure 8: Confusion matrix between bounding overwatch
states as specified in Fig. 2. While the team numbering is
irrelevant, it is important to have both sets of states so that
errors occurring where the predicted state is the complement
of the true state can be expressed.

other; consequently, the only way to correctly detect this state
is to use previous state information which occurred the ma-
jority of the time. The least ambiguous combination of states
is T0B and T1B which received nearly zero confusions due
to the distinct differences between the teams in this situation.

10 Conclusion
In this paper we described a system which analyzes an ongo-
ing team action, identifies its current state and has the abil-
ity to make predictions and identify fringe cases (incomplete
or incorrectly executed actions). We have used the bound-
ing overwatch team action, with its successive and alternative
bounds variants, to describe the proposed method. Our ap-
proach relies on representing the team action with a DBN,
which was found to simplify the model-building, by reduc-
ing the number of probabilities which need to be considered
compared with an equivalent HMM. We performed reasoning
over the DBN using a SIR particle filter.

Acknowledgments
This work was partially funded by NSF Information and In-
telligent Systems division under award 0712869.

References
[Avrahami-Zilberbrand and Kaminka, 2007] D. Avrahami-

Zilberbrand and G. Kaminka. Towards dynamic tracking
of multi-agents teams: An initial report. In Proceedings of
Workshop on Plan, Activity, and Intent Recognition (PAIR
2007), 2007.

[Hartley and Zisserman, 2003] R Hartley and A Zisserman.
Multiple View Geometry in Computer Vision. Cambridge
University Press: Cambridge, UK, 2003.

[Hongeng et al., 2004] S Hongeng, R Nevatia, and F Bre-
mond. Video-based event recognition: activity represen-
tation and probabilistic recognition methods. Computer
Vision and Image Understanding, 96(2):129–162, 2004.

[Intille and Bobick, 2001] S. S. Intille and A. Bobick. Rec-
ognizing planned, multi-person action. Computer Vision
and Image Understanding, 81(3):414–445, March 2001.

[Liu and Chua, 2006] Xiaohui Liu and Chin-Seng Chua.
Multi-agent activity recognition using observation decom-
posedhidden markov models. Image and Vision Comput-
ing, 24(2):166 – 175, 2006.

[Lloyd, 1982] S Lloyd. Least squares quantization in PCM.
Information Theory, 28(2):129–137, 1982.
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Role-based teamwork activity recognition in observations
of embodied agent actions. In The Seventh Intl. Joint Conf.
on Autonomous Agents and Multi-Agent Systems (AAMAS
08), pages 567–574, 2008.

[Luotsinen et al., 2007] L. J. Luotsinen, H. Fernlund, and
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