
Analyzing Team Actions with Cascading HMM

Brandyn White, Nate Blaylock and Ladislau Bölöni
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816–2450

{bwhite,lboloni}@eecs.ucf.edu, blaylock@ihmc.us

Abstract

While team action recognition has a relatively extended lit-
erature, less attention has been given to the detailed realtime
analysis of the internal structure of the team actions. This in-
cludes recognizing the current state of the action, predicting
the next state, recognizing deviations from the standard ac-
tion model, and handling ambiguous cases. The underlying
probabilistic reasoning model has a major impact on the type
of data it can extract, its accuracy, and the computational cost
of the reasoning process. In this paper we are using Cascad-
ing Hidden Markov Models (CHMM) to analyze Bounding
Overwatch, an important team action in military tactics.
The team action is represented in the CHMM as a plan tree.
Starting from real-world recorded data, we identify the sub-
teams through clustering and extract team oriented discrete
features. In an experimental study, we investigate whether
the better scalability and the more structured information pro-
vided by the CHMM comes with an unacceptable cost in
accuracy. We find that a properly parametrized CHMM es-
timating the current goal chain of the Bounding Overwatch
plan tree comes very close to a flat HMM estimating only the
overall Bounding Overwatch state (a subset of the goal chain)
at a respective overall state accuracy of 95% vs 98%, making
the CHMM a good candidate for deployed systems.

Introduction
The field of team action recognition has important applica-
tions related to automated sports commentary, surveillance,
team training, and military purposes.

Previous work in this area has primarily focused on the
use of Hidden Markov Models (HMM) and other graphical
models as a statistical framework on which inference can be
performed. Intille and Bobick used Bayesian networks to
fuse multiple data sources and combine temporal informa-
tion to produce an action likelihood for a given multi-agent
event (Intille and Bobick 2001). Experiments were per-
formed on American football play descriptions along with
manually acquired play trajectories.

Sukthankar and Sycara used a random sample consen-
sus (RANSAC) solution to fit observed spatial trajectories
to those in a known model library by applying geomet-
ric transformations using Military Operations in Urban Ter-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rain (MOUT) data (Sukthankar and Sycara 2005). In (Suk-
thankar and Sycara 2006) they used HMMs to model agent
configurations over time.

Luotsinen et al. proposed automatically training the
HMM probabilities using Baum-Welch and K-Means while
experimenting on GPS data of military exercises (Luotsi-
nen, Fernlund, and Bölöni 2007). Extending this, role-based
recognition and detailed feature discretization was used (Lu-
otsinen and Bölöni 2008). Liu proposed the use of a Ob-
servation Decomposed Hidden Markov Model (ODHMM)
to allow for the use of an arbitrary number of agents in
an HMM which requires a fixed length input. Hongeng et
al. proposed a multi-agent event recognition system using
Bayesian networks to model actions such as standing and
crouching (Hongeng, Nevatia, and Bremond 2004).

Beyond the simple recognition problem, there is an in-
creasing effort for a more comprehensive real-time analysis
of the team action, including recognizing the current state
of the action, predicting the next state, recognizing devia-
tions from the standard action model (such as errors in the
execution), as well has handling ambiguous cases.

In this paper, we analyze Bounding Overwatch, a team
action important for military tactics, using Cascading Hid-
den Markov Models, a multilayer probabilistic reasoning
model originally proposed in (Blaylock and Allen 2006).
Such structured probabilistic reasoning models inevitably
lose some accuracy compared to fully connected models
such as traditional HMMs. However, they are easier to train
due to the much lower number of transition probabilities
which need to be calculated, they can be faster (important
for real time operation), and they present their output in a
semantically meaningful structured form (a plan tree in the
case of CHMM). The main question is whether the desirable
properties come with an unacceptable penalty in accuracy, a
question which can be decided only through experimenta-
tion with real world data.

Team action analysis: Bounding Overwatch
In the following we describe an action analysis process that
precedes the representation of the team action. This is a
knowledge engineering process which needs to be done for
every team action we want to include in our analysis. While
it was demonstrated that a recognizer can be trained from a
small number of representative examples (Luotsinen, Fern-



Time: 0

Time: 1

Time: 2
Time: 3

(a)

Time: 0

Time: 1

Time: 2

Time: 3

(b)

Figure 1: Two examples of bounding overwatch with the
time each team bounds listed on the transition. (a) Alternat-
ing bounds (b) Successive bounds

lund, and Bölöni 2007), an analyzer of the type we are
developing here requires a careful analysis of the team ac-
tion. We are interested not only in the most distinguishing
characteristics of the team action, but also in its variants,
preparation stage, fringe conditions, and ways in which it
can fail or transition to other team actions. We will demon-
strate the analyzer on the bounding overwatch team action.
In our analysis we start with agent trajectory data, cluster
the agents into teams, and perform feature extraction on the
teams. We show how bounding overwatch can be modeled
as a plan tree, infer the goals for each time-step provided the
computed features, and finally we compare the results to a
baseline HMM.

Let us now proceed with the analysis of bounding over-
watch. Bounding overwatch is a tactical movement forma-
tion used by the military when enemy contact is expected.
This movement model is secure but slow to execute. The
formation consists of two teams, one of which travels (i.e.,
bounds) in a pre-specified direction while the other protects
(i.e., overwatches) the traveling team. After the bounding
team has reached its destination, the roles switch and the
team previously protecting will travel while the traveling
team protects. This process continues until the previously
designated destination is reached.

The bounding team’s objective is to travel quickly in the
pre-determined travel direction, stay within protective cover
of the overwatch team, and end in a position that provides
natural cover. Two bounding variants are commonly used,
when one team consistently leads the other team it is referred
to as successive bounds; however, when the teams alternate
lead positions it is referred to as alternating bounds as shown
in Figure 1.

The overwatch team’s objective is to maintain a posi-
tion that provides natural cover, visually track the bounding
team, and watch for enemies.

The inherently stateful nature of bounding overwatch
presents several challenges when it comes to detection by
an observer. It can be identified only after multiple obser-
vations, during role transitions the sensor data may be am-
biguous, and due to the fact that the teams are often in close
proximity, team segmentation can be difficult. There are two
principle states, bounding and overwatching, with one team
assigned to each at a given moment; however, this idealiza-
tion fails to properly model the transient behavior observed
in reality where both teams may be performing the same role
for a short period of time. To model the transient cases it is

T0B
T0: Bound
T1: Watch

T1B
T0: Watch
T1: Bound

T1BOO
T0: Watch
T1: Watch

T0BOO
T0: Watch
T1: Watch

T0BBB
T0: Bound
T1: Bound

T1BBB
T0: Bound
T1: Bound

Figure 2: State diagram showing primary state transitions
for both participating teams and individual roles within those
states. All states have recurrent links which are omitted for
clarity.

necessary to add two states after each bounding state: both
teams bounding and both teams overwatching. While the ad-
dition of transient states makes modeling the true observed
behavior more natural, it doesn’t remove the state detection
complexity due to inherent ambiguities. An example of this
is given that both teams are overwatching it isn’t possible to
determine which is next to bound. As a matter of conven-
tion, the overall state defining the behavior of both teams is
labeled based on the team that has been bounding last if nei-
ther is bounding or the one bounding for the longest time if
at least one team is bounding (e.g., T0B implies T0 is bound-
ing and T1 is overwatching). The state machine shown in
Figure 2 specifies both the overall states and the individual
activity of each team in those states.

Clustering subteams
As bounding overwatch is defined in terms of team behavior
as opposed to individual agents, the agent-centric coordi-
nate data must be clustered into subteams before feature ex-
traction can be performed. By definition exactly two teams
participate in the bounding overwatch, the teams are con-
sistent throughout the sequence, and it is assumed that all
agents present in the data are participating. As shown in Fig-
ure 1, it often occurs in successive bounding that the teams
are in close proximity at the end of the trailing team’s bound
and are further apart at the end of the leading team’s bound;
in contrast, alternating bounds causes the teams to be fur-
thest at the beginning and end of their bounds and closest
at the middle. Despite their different positioning, they both
have portions of their state cycle that dramatically change
the complexity of the clustering problem. This property can
be exploited by performing the clustering over a window of
time W that is at least the period between bounding cycles
for a particular team. The team clustering problem can be
formulated as trying to find the two team clusters T0 and T1
that minimize the spatial K-Means error (i.e., spatial vari-
ance) for both teams over all time-slices in the bounding pe-
riod W ∑

V =

W∑
t=0

1∑
i=0

∑
xj,t∈Ti

(xj,t − µi,t)2 (1)



where xj,t is an agent’s position at a given instant and µi,t is
the team’s centroid at a given instant. For a small number of
agents it is reasonable to try all possible clusterings, select-
ing the one that minimizes the

∑
V ; however, the number of

clusters grow O(2n) in the number of agents. A solution to
this problem is to solve the easier spatial K-Means clustering
problem for each time-slice inW , and use the resulting set of
clusterings as candidate solutions to the greater spatiotempo-
ral problem. The motivation for this is that only one correct
spatial clustering is necessary to solve the overall problem
and the bounding period W ensures that if the team action
is bounding overwatch, the straightforward case will be en-
countered (i.e., when the teams are separated). Lloyd’s algo-
rithm is used to solve the spatial K-Means problem (Lloyd
1982) by initially selecting the most distant agents as cluster
centers and updating the cluster centers based on the agents
that are near them; this process is iterated until the clusters
stabilize.

Discrete Feature Extraction
Many previous efforts in team action recognition have found
that using new agent observation data as an input to the
probabilistic reasoner, while feasible in some cases, makes
the recognizer sensitive to minor perturbations in the input.
It was found that extracting appropriate discrete features in
a preprocessing step can yield more robust recognition and
analysis systems. In this work, we will extract team-oriented
discrete features, that is, the features are defined at the sub-
team rather than the individual agent level.

In addition, the discrete features will also define our event
model. We choose to create an event every time there is a
change in the discrete features (not in the underlying raw
data). This model has the advantage to reduce the number
of self-transitions and make the transition probabilities inde-
pendent of the sampling rate.

The inputs to the feature extraction process are the teams
produced by the clustering process, each agent’s 2-D world-
plane position and heading, and 2-D world-plane marker
positions representing static natural cover (e.g., trees).
The features should aid in the discrimination between the
states specified in Figure 2 and specification of bounding
overwatch overall so that detection can be performed among
other team events. Each feature must operate on the team
level of abstraction to allow the underlying number of
agents between sequences to be variable; furthermore,
they should give similar high level semantic information
about the team as used by humans in bounding overwatch
identification. The prescribed goals for each team provided
by the definition of bounding overwatch serve as a guide
as to what properties are inherent to bounding overwatch,
allowing us to avoid features that are incidental to it.

TeamTraveling: Provides a very strong indicator of the
bounding overwatch state as one team should be traveling
while the other is stationary except during transient states.
This is found by thresholding the team’s velocity between
frames.

TeamWatching: Provides a strong indicator that a team
is overwatching if true and bounding if false. This is com-

BO

T0B

T1W T0T

T1S T1FT T0FD T0M

T1B_
BB

T1B_
OO

T0T

T0M

T1W

T1S

Figure 3: A plan tree for modeling the bounding overwatch
team action. Note that half of overall states are omitted to
reduce clutter (i.e., T0BBB , T1B, and T0BOO) as they
are symmetric to those shown with T0 and T1 switched for
every node. Also omitted are the evidence nodes (i.e., ob-
served features) connected to each leaf.

puted as the minimum angle difference between a team’s
agents and another team’s centroid summed over a window
of time. Intuitively, this value is low when an agent in a team
is watching another team over a period of time. By taking
this over a window of time we prevent the chance coinci-
dence of the agents heading and its relative angle to another
team.

Feature Smoothing
As the features output discrete values obtained from continu-
ous data, true values located near the threshold can cause os-
cillations due to the sensor noise causing the observed value
to be on either side of the threshold over a short period of
time. Moreover, if feature changes are to be used to gen-
erate observation events it is essential that the number of
false transitions are reduced to an acceptable value. Since
the feature levels (i.e., areas of constant feature value) are
large in duration as compared to the feature edges, we will
use median filtering over a window of time. For instance,
the output from the TeamTraveling feature as a team starts
moving can cause multiple false transitions as the velocity
nears the threshold while only one true transition exists.

Modeling a Team Action as a Plan Tree
The overall bounding overwatch states shown in Figure 2
specify whether a team is bounding or overwatching and
which is next to bound; however, this neglects much of the
low-level state information present in bounding overwatch
execution. For example, as a team transitions from over-
watching to bounding it must first turn away from the team
it was previously guarding towards the target destination and
after this it will move. Similarly, when a team stops bound-
ing and begins overwatching it will first stop its motion at
a location providing natural cover and then turn towards the
team that was previously bounding. This extra state infor-
mation is not only useful for higher level reasoning but it
can also provide improved overall state prediction results.

An example application is one used by a military officer
where they would like to quantify how efficiently the sol-



1

1
0

0

T=0
T=4

T=1

T=2

T=3

T=5

T=7

T=6

BO

T0B

T0T

T0FD

BO

T0B

T0T

T0M

BO

T0B_
OO

T0W

T0S

BO

T1B

T0W

T0FT

BO

T1B

T1T

T1FD

T=0 T=1 T=2 T=3 T=4

(a) (b)

Figure 4: An example scenario (a) and the associated goal
chains (b) for the first 5 time periods using the plan tree in
Figure 3.

diers under their command are performing an order (in this
case bounding overwatch). If one were to define the bound-
ing overwatch travel efficiency as the percent of time spent
transitioning between bounding and overwatching out of the
time spent bounding, then this can be computed immediately
provided estimated overall states corresponding to those in
Figure 2. While this would give an officer notice that there
is a problem with the execution it wouldn’t state which of
the teams is at fault. However, provided an estimate as to
when each team is facing the correct position, whether they
are near cover, and if they are traveling can allow for more
specific assertions to be made and at a greater confidence.

Figure 3 shows the proposed plan tree for this model
created through knowledge engineering from the bounding
overwatch team action definition. The top goal in our prob-
lem domain is always BO representing bounding overwatch
and its subgoals correspond to the overall team states spec-
ified in Figure 2. The next subgoals represent which team
is performing the current goal and whether they are travel-
ing (e.g., T0T) or watching the other team (e.g., T0W). The
lowest subgoals represent the current team action being per-
formed which is one of moving (e.g., T0M), stopping (e.g.,
T0S), facing other team (e.g., T0FT), or facing destination
(e.g., T0FD). Each timestep one goal chain is active which
consists of a path from the BO top level goal to a leaf node
representing the current goal being satisfied by an individ-
ual team. An example of this is presented in Figure 4 where
one potential team bounding to overwatching sequence is
shown. Starting at T = 0, team 0 faces their destination,
moves, stops, and faces team 1 after which team 1 performs
the same sequence of actions.

Cascading Hidden Markov Model
As our aim is to estimate the goal chain for each timestep
(i.e., find the active subgoal for each goal tree level) the form
of the desired solution is an algorithm that can model the
evolution of the subgoals over time. A Cascading Hidden
Markov Model (CHMM) (Blaylock and Allen 2006) allows
for modeling goal trees by representing the subgoal at each
level as the hidden state of an HMM and relating its output
state to the hidden state of the one lower in the chain than it

X1,2

XD,2

O2

X1,n

XD,n

On

X1,1

XD,1

O1

Figure 5: Cascading Hidden Markov Model (CHMM) show-
ing hidden states values Xd,t ∈ σd.

is. This continues until the lowest HMM is reached where
its output state is the observable output. The benefit of us-
ing this solution over a Hierarchical Hidden Markov Model
(HHMM) is that filtering (i.e., estimating the next state in-
formation given the current and all evidence until this point)
can be done on the order of O(DS2

m) where D is the goal
chain depth and Sm is the maximum number of subgoals on
any of the levels compared to exponential time inference in
Sm when using an HHMM (Murphy 2002).

A CHMM consists of D stacked HMMs (i.e., H1:D) with
each HMM Hd being defined as a 5 tuple (σd, κd, Πd, Ad,
Bd). Where σd is the set of potential hidden state values,
κd is the set of potential output (i.e., emission) state values,
Πd = {πd,i : i ∈ σd} is the distribution of state priors
(i.e., P(σd,0)), Ad = {ad,ij : i, j ∈ σd} is the hidden state
transition model (i.e., P(σd,t+1|σd,t)), and Bd = {bd,ik :
i ∈ σd ∧ k ∈ κd} is the sensor model (i.e., P(κd,t|σd,t))
(Blaylock and Allen 2006).

As seen in Figure 5, the output state for HMM Hd where
d ∈ {1, 2, ..., D − 1} is the hidden state for Hd+1 and the
output state for HMM HD at time t is the observed output
Ot ∈ κD,t. The bottom HMM HD is a standard HMM with
an observable output; however, the output state for the other
HMMs is equal to the hidden state of the HMM lower than
it. In the special case where D = 1 the CHMM reduces to a
standard HMM.

Forward Probability Computation
The forward probability for each level d is P(σd,t|κd,1:t)
which is computed from one timestep to the next (i.e., filter-
ing). For HD this process is identical to the forward proba-
bility computation for a standard HMM.

αj,t = bjOt

∑
i∈σ

aijαi,t−1 (2)

However, for HMM Hd where d ∈ {1, 2, ..., D−1} the out-
put state is not known with certainty and is instead marginal-
ized (Blaylock and Allen 2006).

αd,j,t =
∑

k∈σd+1

bd,jkαd+1,k,t

∑
i∈σd

aijαd,i,t−1 (3)

The nodes further from the observation node will receive
less specific information due to the consideration of all pos-
sible observation state values in (3). This smoothing effect



Activity Sequences Total Time (sec.)
Random (w/o cover) 6 343
Random (w/ cover) 5 297

Walking Line 4 234
Meeting 3 192

Following 2 135
VIP Guarding 2 133

Both Travel/Watch 7 129
B.O. Positive

Alternating Bounds 11 286
Successive Bounds 10 328

No Progress 2 101
Off Cover 1 34

Figure 6: Number of sequences and total sample time given
in seconds for each team action in the dataset.

is reduced by including the current observation in both the
transition probability (i.e., P(σd,t+1|σd,t, Ot)) and the emis-
sion probability (i.e., P(κd,t|σd,t, Ot)) which is referred to
as a unigram.

Overall Event Probability Computation
When performing high level inference, it is essential to not
only specify the probability of a given state but also the over-
all probability of the team action itself occurring. For exam-
ple, bounding overwatch is composed of several states, and
each of which could be considered a team action. When
performing state inference a model for bounding overwatch
may estimate that a certain state is occurring that is similar
to one present in our model; however, this may be the only
similarity to our model and it would be incorrect to use this
information as if it had come from bounding overwatch.

In the previous section we showed how the hidden state
probability αd,j,t can be calculated for level d, hidden state
value j, and time t. By finding the product of each level’s
probabilities we can compute the overall probability of ob-
serving this goal chain given all of the evidence up until this
point (i.e., P (σ1:D,t|O1:t)).

βt =

D∏
m=1

max
n∈σm

αm,n,t (4)

Dataset
The dataset used consists of various team actions captured
on video taken from two scenes and several camera angles.
The video has been manually annotated to capture both the
agent’s position and heading. The position is specified by
one point on the ground plane between the agent’s feet while
the heading is specified by placing an additional point on
the ground plane in the direction the agent is facing. For
each camera position, a 3x3 homography matrix H is com-
puted between the image plane and the metric ground plane
by placing targets on the ground plane and measuring their
relative locations. The 4-point homography algorithm and
RANSAC (Hartley and Zisserman 2003) were used to com-
pute the homography and reject measurement outliers re-
spectively. Redundant measurements were made to allow for

Figure 7: Sample pictures from the dataset used. The mark-
ers on the ground are used as bounding overwatch cover po-
sitions as well as for homography computation.

validation of this process with a maximum observed error of
±6 inches. To find the 3x1 homogeneous world position x′
use

x′ = Hx (5)
where x is a 3x1 homogeneous image position and H is 3x3
image to world coordinate projective homography. To com-
pute the agent’s heading (i.e., relative to the world plane x-
axis), both the position and heading points are warped onto
the ground plane coordinate system using (5), the vector dif-
ference is taken between the 2x1 Euclidean (i.e., inhomoge-
neous) heading and position points, and finally the heading
angle is computed as arctan(y/x). As the distance between
the position and heading points is unused, they are spread
out as far as possible to increase the accuracy of each agent’s
heading.

Sequences
As shown in Figure 6, the dataset features positive variants
of the bounding overwatch team action along with several
other common team actions to serve as negative classifica-
tion examples. The specified team action for each video is
located in the middle of the sequence with minor setup time
before and after.

Results
In the following we present the results of a set of experi-
ments testing the accuracy of the state estimation. For all
the experiments, 2-fold cross validation was used. We com-
pare the results of the CHMM (which estimates the entire
plan tree in Figure 3) vs. a “flat” HMM (which estimates
only the overall bounding overwatch states defined in Fig-
ure 2). Figure 8 shows the resulting confusion matrices.
Figure 8(a) shows the results for the HMM while Figure 8(b)
for the CHMM overall state estimation accuracy (i.e., plan
tree level 2). These values are directly comparable and show
that the HMM is slightly more accurate than the CHMM.
Both CHMM and HMM have the greatest difficulty in distin-
guishing between T0BOO and T1BOO as both teams would
likely be stopped with only the previous state information
available to differentiate between them. Nevertheless, the
recognition accuracy is quite high for both approaches. In
addition, the CHMM is also estimating the third and fourth
levels in Figure 3, with the accuracy shown in Figure 8(c)
and Figure 8(d), respectively.

Conclusion
In this work we have proposed a method for estimating
the current goal chain for a plan tree modeling the Bound-



GT/Pred. T0B T0BBB T0BOO T1B T1BBB T1BOO

T0B 260 1 0 1 0 1
T0BBB 0 53 0 0 1 0
T0BOO 0 0 97 0 0 5
T1B 0 0 1 261 1 0

T1BBB 0 1 0 0 53 0
T1BOO 0 0 5 0 0 97

(a)

GT/Pred. T0B T0BBB T0BOO T1B T1BBB T1BOO

T0B 252 1 0 0 0 10
T0BBB 4 50 0 0 0 0
T0BOO 0 0 91 0 0 11
T1B 0 0 10 251 1 1

T1BBB 0 0 0 4 50 0
T1BOO 0 0 1 0 0 101

(b)

GT/Pred. T0T T0W T1T T1W

T0T 179 0 6 21
T0W 0 174 27 12
T1T 7 35 164 0
T1W 28 1 0 184

(c)

GT/Pred. T0FD T0M T0S T0FT T1FD T1M T1S T1FT

T0FD 29 9 0 0 0 0 5 0
T0M 1 152 0 0 0 4 5 1
T0S 0 0 155 1 7 0 5 0
T0FT 0 0 3 21 3 18 0 0
T1FD 0 0 5 0 29 9 0 0
T1M 0 6 7 1 0 149 0 0
T1S 3 0 10 0 0 0 154 1
T1FT 2 21 0 0 0 0 2 20

(d)

Figure 8: Confusion matrices showing the detection results
of the hidden states defined by the plan tree in Figure 3: (a)
Flat HMM estimating level d=2 (baseline), (b) CHMM plan
tree level d=2, (c) CHMM plan tree level d=3, (d) CHMM
plan tree level d=4.

ing Overwatch team action and classifying it among other
team actions by using a Cascading HMM. The proposed
method is invariant to action execution time and sampling
rate due to the use of sampling events only when the fea-
tures change. A team clustering algorithm was proposed
that exploits the property of bounding overwatch that cer-
tain states produce an easier clustering problem than others
through the optimization of a spatiotemporal K-Means ob-
jective function. By using a CHMM instead of a densely
connected HMM, we dramatically reduced the number of
probabilities required to represent the model. By using the
forward algorithm to estimate the CHMM hidden state prob-
abilities between time-steps, inference can be performed in
O(DS2

m) where D is the goal chain depth and Sm is the
maximum number of subgoals on any of the levels compared
to a Hierarchical HMM where it is exponential in Sm. Ex-
perimental results performed on real world video of actors
performing common team actions showed that the CHMM

approach yields accuracy close to the one of a flat HMM,
while requiring lower number of individual probabilities and
providing more information by tracking the evolution of the
plan tree.

Acknowledgments
This work was partially funded by NSF Information and In-
telligent Systems division under award 0712869.

The research was sponsored in part by the Army Re-
search Laboratory and was accomplished under Coopera-
tive Agreement Number W911NF-06-2-0041. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion heron.

References
Blaylock, N., and Allen, J. 2006. Fast hierarchical goal
schema recognition. In Proceedings of the National Con-
ference on Artificial Intelligence, volume 21, 796–801.
Hartley, R., and Zisserman, A. 2003. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press:
Cambridge, UK.
Hongeng, S.; Nevatia, R.; and Bremond, F. 2004. Video-
based event recognition: activity representation and proba-
bilistic recognition methods. Computer Vision and Image
Understanding 96(2):129–162.
Intille, S. S., and Bobick, A. 2001. Recognizing planned,
multi-person action. Computer Vision and Image Under-
standing 81(3):414–445.
Lloyd, S. 1982. Least squares quantization in PCM. Infor-
mation Theory 28(2):129–137.
Luotsinen, L., and Bölöni, L. 2008. Role-based teamwork
activity recognition in observations of embodied agent ac-
tions. In The Seventh Intl. Joint Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS 08), 567–574.
Luotsinen, L. J.; Fernlund, H.; and Bölöni, L. 2007. Au-
tomatic annotation of team actions in observations of em-
bodied agents. In The Sixth Intl. Joint Conf. on Autonomous
Agents and Multi-Agent Systems (AAMAS 07), 32–34.
Murphy, K. 2002. Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. Ph.D. Dissertation, UC
Berkeley, Computer Science Division.
Sukthankar, G., and Sycara, K. 2005. Identifying physical
team behaviors from spatial relationships. In Proceedings
of 2005 Conference on Behavior Representation in Model-
ing and Simulation (BRIMS), 638–645.
Sukthankar, G., and Sycara, K. 2006. Robust recogni-
tion of physical team behaviors using spatio-temporal mod-
els. In Proceedings of Fifth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
638–645.


