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Florida, those words also represented the culmination of
hundreds of thousands of ground processing person-hours
that precede every shuttle launch. 

The Space Shuttle system is among the most complex
machinery ever built and maintained by humans. Just prior
to launch, 4.5 million pounds of combined weight—orbiter,
external tank, solid rocket boosters, and propellants—sit on
the launch pad (see figure 1). Eight and a half minutes later,
the orbiter is cruising at 17,440 mph, 59 nautical miles
above Earth and still hurtling on its upward climb to orbit.

To ensure that all shuttle systems are ready for launch,
KSC engineers monitor tens of thousands of telemetry
measurements. This intense data monitoring occurs con-
stantly during ground processing, peaking in the weeks
leading up to launch. KSC engineers developed and de-
ployed a software agent—the NASA Engineering Shuttle
Telemetry Agent—to assist in this around-the-clock
monitoring. NESTA operates 24 hours a day, 7 days a
week, sniffing out predefined data patterns of interest
and instantly notifying shuttle engineers via email or
wireless page.

Prelaunch ground checkout
NASA KSC is responsible for the Space Shuttle’s

prelaunch ground checkout. KSC’s Launch Processing
System provides facilities for shuttle system engineers,
contractors, and test conductors to command, control, and
monitor space vehicle systems from the start of shuttle
interface testing through various phases including termi-
nal countdown and launch.

LPS continuously monitors the shuttle and its ground-
support equipment such as the hardware that loads pro-
pellants. Subsystems with vehicle responsibilities com-
municate information directly to and from the shuttle
computer systems. Subsystems with ground-support
equipment responsibilities communicate through hard-
ware interface modules that connect to the numerous
ground-support systems. Each module can interface to
approximately 240 sensors or controls. Overall, some
50,000 temperatures, pressures, flow rates, liquid levels,
turbine speeds, voltages, currents, valve positions,
switch positions, and many other parameters must be
monitored and controlled. Figures 2 and 3 provide
glimpses of the ground communication infrastructure
necessary for this extensive instrumentation.

Using LPS, NASA engineers and contractors at KSC
certify that the Space Shuttle’s ground checkout meets
program specifications. For over 25 years, engineers have
used LPS to verify Space Shuttle flight readiness and con-

3…2…1…and liftoff of Space Shuttle Discovery!”

Those few words signaled the shuttle’s return to flight

after two and a half years’hiatus. For engineers and

technicians at NASA’s Kennedy Space Center in 
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trol launch countdown. It has performed
superbly, and recent upgrades ensure its
continuance for many more years. How-
ever, the system architecture was not
changed, so the system and display soft-
ware remains basically the same. As a
result, the level of situational awareness
has not kept pace with more modern soft-
ware technologies. 

Day-to-day shuttle operations, checkout,
and maintenance are contracted out, so con-
tractors are LPS’s primary users. NASA
shuttle engineers are civil service employees
who oversee the contractors. Given LPS
limitations and resource scarcity, those engi-
neers needed a tool to provide more insight
to and situational awareness of the contrac-
tors’ work. They needed a tool to comple-
ment LPS that could autonomously and con-
tinuously monitor shuttle telemetry data and
automatically alert them when predefined
criteria had been met. In the latter half of
2003, the NESTA software tool emerged to
improve insight into shuttle ground process-
ing and increase situational awareness.

NESTA objectives
Figure 4 shows how LPS-processed mea-

surements are distributed on a LAN as the
Shuttle Data Stream,1 providing real-time
telemetry from shuttle ground-processing
and launch operations. Various monitor-
only applications that require shuttle engi-
neers’ full attention use this data stream to
observe events and detect anomalies. NESTA’s
primary objective is to continuously and au-
tonomously monitor this telemetry stream,
automatically alerting NASA engineers in
near real time when the data meet prede-
fined criteria. Types of monitoring criteria
include expected operational events or
milestones (such as vehicle power-up) as
well as unexpected events or failures (such
as large differences between redundant sen-
sor values).

NESTA acts as a software agent for the
NASA engineer. For this discussion, we
define an agent as rule-based, autonomous
software that reacts to its environment and
communicates results to a human—the
NASA engineer. NESTA’s primary objec-
tives include the following:

• Apply engineer-specified rules to mea-
surements published in the telemetry
stream. 

• When engineers’ rules are satisfied, gen-
erate near-real-time notifications and

alerts in the form of emails or wireless
pages. Notifications might include a text
message and measurement values, and
they might go out to multiple users. 

• Monitor up to four separate telemetry
sources simultaneously, including four
control rooms used for checkout and

launch of the shuttle and its components.
• Process multiple types and subtypes of

measurements and read-only commands
including discretes (Boolean measure-
ments), analogs (floating-point measure-
ments), and digital patterns (integer
measurements).
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Figure 1. Space Shuttle Discovery leaving the launch pad for STS-114’s “Return to
Flight” mission.

Figure 2. During a rollback, workers demate the fittings between the pad and the
mobile launcher platform, allowing the MLP to return with Space Shuttle Discovery to
the vehicle assembly building to have its external tank replaced. The fittings provide
ground electrical power and connections for vehicle data and communications.



• Let users create and modify multiple mon-
itoring requests without restarting NESTA.

High-level agent design 
Figure 5 shows the context diagram for

NESTA. The middle circle represents the
agent process. NESTA communicates with
various sources and data stores. A mea-
surement database decodes the telemetry
stream into usable data formats. The tele-
metry source broadcasts measurements as
data packets over LANs. NESTA monitors
the data stream for patterns specified by
the shuttle engineers. The rules data store
represents the scripts and knowledge base
that define the monitoring criteria. If a pat-
tern is matched, NESTA sends a notification
as an email or wireless page. It also logs
all messages and relevant agent activities
locally.

We selected the Java Expert System
Shell2 as NESTA’s rule engine. Because 
Jess was developed and supported at San-
dia National Labs, another US government
agency, the development team and cust-

omer have full use of the tool via govern-
ment licensing without fees, including
access to all of the Jess source code.

Jess modeled its forward-chaining rea-
soning system after production systems such
as Clips and OPS5.3,4 It contains highly effi-
cient, sophisticated pattern matching based
on the Rete algorithm,5 enabling its infer-
ence engine to process many rules and data
rapidly. The engine repeatedly processes
through a match-select-act cycle. With
NESTA, the consequent actions include send-
ing notifications to shuttle engineers when
the engine finds matches for predefined
monitoring criteria. Jess also includes a
fourth-generation scripting language and
interactive command line that facilitate pro-
totyping and testing.

Written entirely in Java, as is all of NESTA,
Jess has access to the full Java API from the
scripting language. The Jess API provides
standard control flow constructs and sup-
ports variables, strings, objects, and function
calls. Jess automatically converts between
its own types and Java types, insulating the
developer from performing the conversions
manually. Used as a Java library, Jess sup-
ports multiple platforms through Java’s
“write once, run anywhere” paradigm. Be-
yond that, Java was a natural fit for NESTA,
which has to support Web-enabled clients.

Agent deployment and payoff
NESTA is a peripheral advisory tool to

LPS’s real-time control system. NESTA’s infu-
sion of state-of-the-art AI technologies and
engineering within the legacy launch system
is particularly notable given the failures of
several preceding attempts to modernize the
ground-control system at KSC (see the “Why
an AI Solution?” sidebar). Those failed proj-
ects had little to no spin-offs within the LPS
community. In contrast, launch team mem-
bers are accepting and internalizing NESTA.
From a business vantage point, NESTA’s great-
est asset is its development and marketing as
a value-added product. That helps pave its
path to wider acceptance and use.

By December 2005, NESTA had been in use
for two years, during which NASA engineers
have written hundreds of rules and NESTA had
generated thousands of notifications to mul-
tiple users at KSC and other remote sites.
Because the customer is a NASA engineer
responsible for oversight of contractors, the
notifications act as an extra set of eyes that fur-
ther assure the quality of government oversight.

NESTA’s payoff has come in helping shut-
tle engineers meet their responsibilities,
which include

• understanding their system and support-
ing equipment;
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Figure 3. Inside the vehicle assembly 
building, NASA technicians lower the orbiter
Discovery in front of the solid rocket booster
and external tank already stacked on the
top of the mobile launcher platform.  After
Discovery has been mated to the external
tank and solid rocket booster assembly on
the MLP and all umbilicals have been 
connected, workers will electrically and
mechanically verify the mated interfaces 
to ensure all critical vehicle connections. 
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• knowing how their systems are tested
and processed;

• realizing when their systems are acti-
vated, tested, or in use;

• analyzing performance and data retrievals
from any use of a system; and

• answering questions about their systems
such as when was it tested, how did test-
ing proceed, how did the data look, and
is it ready to fly?

Let’s look at three typical success stories.

Increased situational awareness
In one case, a shuttle avionics system pow-

ered up over a weekend. The shuttle engineer
responsible for that system wouldn’t have
known that the system had powered up
except for receiving a NESTA notification. In
this case, the avionics user wasn’t part of the
engineer’s immediate organization, so the
engineer didn’t receive any communiqués
regarding the system’s weekend usage.
Because of NESTA, the Shuttle engineer was
better prepared to address questions about
his system’s usage were they to arise.

This hasn’t been an uncommon occur-
rence. NESTA users began realizing that
some of the systems under their control
were utilized much more than previously
thought. This exemplifies the situational
awareness that NESTA supports.

Increased efficiency
Some shuttle ground operations span 24

hours and include dozens of asynchronous
events that are broadcast on the data stream.
For example, checkout of flight control
hardware in the orbiter processing facility
occurred four to six times within the past
year. The checkout included long hydraulic
operations, powering up different parts of
avionics, pressurizing and depressurizing
the orbiter, and other work.

During a recent checkout, the NESTA no-
tifications supplied exact times of events of
interest to the shuttle engineer, providing a
timestamped milestone history—a virtual
roadmap—of lengthy testing operations
that occurred while the engineer was per-
forming other work. Before NESTA, the en-
gineer had to glean the testing history by

questioning various personnel or reviewing
as-run test procedures and then guessing
the time spans for retrieving selected mea-
surement data. The research required to
find the time parameters to enter into the
data retrieval wasn’t trivial, and the larger
the time span on a data retrieval, the longer
it took to retrieve it.

Just this one instance saved an hour of
labor, letting the engineer focus on other
concerns within this demanding real-time
environment. The time-stamped roadmap
eliminated the research time completely,
and the individual retrievals were faster and
smoother because the engineer knew the
correct retrieval parameters immediately
without having to guess.

Customer testimonial
Excerpts of an email received from a

NESTA customer in April 2005 show how
NESTA notified a NASA engineer of a hard-
ware inspection that was not previously
known to occur during a shuttle integrated
test. We perform numerous tasks during
this integrated test such as verifying the
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After the Shuttle Columbia disaster on 1 February 2003, the
Columbia Accident Investigation Board proposed recommen-
dations to improve safety from both organizational and tech-
nical perspectives.1 The Board indicated the need to adopt
“and maintain a shuttle flight schedule that is consistent with
available resources.” Also, both management and engineering
support staff must maintain an awareness of anomalies and
those must not be lost “as engineering risk analyses [move]
through the process.”

Given two tragic losses of a crew and shuttle, NASA engineers
today are under greater pressure to be more vigilant in identify-
ing problems. At the Kennedy Space Center, thousands of
employees, both contractors and civil servants, perform shuttle
ground processing. Anomalies must be detected and reported
to prevent problems with shuttle subsystems, countdown, and
launch. The aging Launch Processing System hardware has lim-
ited resources and precludes the level of automation and notifi-
cation warranted by this domain.

NESTA leverages various AI technologies within a rule-based
paradigm including forward chaining, fast pattern matching,
declarative programming, and predicate logic. AI was a natural
fit for monitoring shuttle ground-processing telemetry, as pat-
tern recognition and analysis are the primary needs. Although
regular expression libraries within various procedural and ob-
ject-oriented languages can identify patterns, they aren’t
specifically intended for this type of application and have less
efficient matching algorithms. The pattern-matching algo-

rithms of rule-based expert system shells are highly specialized
and tuned. Also, AI—particularly rule-based languages—lends
itself better to this domain because pattern recognition wrap-
ped within a premise-action construct closely mirrors the level
of abstraction at which the domain experts work.

The type of data signatures sought by shuttle engineers
requires the derivation of rules that are of the same granularity
as those typically used in rule-based languages. Fortunately, shut-
tle engineers were already accustomed to representing knowl-
edge at a fine-grained level. The engineers are adept at either
constructing the rules themselves or expressing the knowledge in
pseudocode that lends itself to translation directly into declara-
tive rules. Many of the rules are either standalone or work in
conjunction with several other rules. This suggests a highly mod-
ular system with a rule being a suitably sized working block.

The infusion of AI technologies, particularly rule-based li-
braries, has proved very fruitful. Interfacing and integrating
these modern AI tools within a legacy launch system demon-
strates the scalability and applicability of the tools and para-
digm. The knowledge patterns that are evolving within NESTA

will make it easier to train new users and also allow faster cre-
ation of rules.

Reference
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Why an AI Solution?



interaction between the orbiter’s avionics
and the solid rocket booster’s electro-
hydraulic thrust vector control actuators.

One of our NASA engineers came in for third
shift Sunday to cover the testing. One impor-
tant NASA function during this time period
was star tracker light shade inspection. What
happens in this test is that the star trackers are
powered ON, the star tracker doors are opened,
and then [the contractor] and NASA engineers

inspect the inside of the star tracker—a cavity
called a light shade which is a large cone
coated with a black nonreflective coating and
several baffles. The design of the light shade
is to eliminate any and all extraneous light
sources and reflections except for the star in
view which the star tracker is trying to get a
fix on. The inspection is made to make sure
there is no foreign object debris. For example,
a flake of paper could cause a reflection and
lead to an erroneous star tracker star fix. If
debris is found, special equipment is available

to vacuum out the inside of the light shade.
After this procedure, the star tracker is pow-
ered OFF and the star tracker door is closed
for the last time at KSC.

Now here’s where NESTA paid off. During this
third shift operation yesterday, [the contractor]
and NASA were all on center waiting on the
word from the S0008 test conductors to per-
form the star tracker light shade inspection. 
For whatever reason, our NASA engineer was
never notified when the checkout was to begin.
[The contractor] began the checkout without
attempting to notify NASA. The first indica-
tion the NASA engineer had was when NESTA

sent an email to the engineer announcing that
the star tracker was powered ON. At this point,
the NASA engineer contacted the test conduc-
tor and directed him to keep the doors open
until he could witness the internal cavity in-
spection. Without NESTA, NASA would have
missed the star tracker inspection. And this
would have led to an uncomfortable discussion
about whether the test would have to be repeated
or whether NASA could rely solely on the eyes
of the [contractor] engineers.”

As is apparent, this testimonial demon-
strates how NESTA helps track the complexity
of an enormous number of testing events and
their dependencies.  The NESTA notification
provided an increased awareness and might
have prevented a further delay in testing of
shuttle components. Humans might still
“connect the dots” without the automated
and reliable notifications coming from NESTA,
but with NESTA, significant events are much
less likely to be missed.

Monitoring launch commit
criteria

NASA KSC has also used Jess to de-
velop the Launch Commit Criteria Moni-
toring Agent.6 In contrast to NESTA, which
is used for day-to-day operations, LCCMA

targets launch countdown activities. 
During countdown, NASA shuttle engi-

neers must monitor shuttle telemetry data for
violations of launch commit criteria (LCC)
and to verify that contractors troubleshoot
problems correctly. When system engineers
recognize a violation, they report it to the
NASA test director. The report includes a
description of the problem, the criticality,
whether a hold is requested, and whether a
preplanned troubleshooting procedure exists. 

Shuttle engineers must monitor for many
types of limit violations, ranging from sim-
ple high- and low-limit boundaries to much
more complex first-order logic expressions.
Each team has its own tools for identifying
LCC violations. Many of these tools use the
LPS software and simply change the dis-
played data’s color or present a text message
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As indicated within the high-level design and context diagram (see figure 5 in the
main article), NESTA (NASA Engineering Shuttle Telemetry Agent) operates in a highly
distributed environment: telemetry sources broadcast measurements as data packets
over networks, notifications are generated by NESTA and sent to remote locations via
a network, and so forth. This distributed intensive domain poses several technical
challenges that must be addressed so that NESTA will not succumb to them.

Data validity
Because the shuttle data stream is published using the User Datagram Protocol,

the connection is not always reliable and the network can drop packets. This poses
problems when rules are waiting for data to arrive. Data health and validity be-
come questionable. If the data stream connection gets lost entirely or the data be-
comes stale for lack of updates, false negatives or false positives can result, meaning
that notifications of hardware events might never be sent or be sent in error.

To partially address this data validity issue, additional measurements are included
in the rules to check for the stream’s validity. Measurements are now marked invalid
for dropped packets or when the source of the measurement becomes untrustwor-
thy. There is still a larger problem of false negatives and never receiving an email if
the data stream drops packets while a monitored event occurred. Aside from notify-
ing the shuttle engineer of a data loss when it happens, we have not yet identified a
mechanism that guarantees all notifications since the data stream is unreliable. 

Measurement database changes
Multiple data streams and control rooms exist. Often, operations change the mea-

surement database used to decode the Shuttle Data Stream. When that happens,
decoding measurements becomes impossible and facts can no longer be updated in
Jess’s working memory. A short-term fix to this problem was to simply notify the
NESTA system administrator when the stream changes. We added a measurement data-
base Java bean, which is used within a user rule as a fact. When the measurement
database changes, the administrator automatically gets an email and can restart NESTA

accordingly. Longer-term, automatic restarts of the agent will be provided.

Email floods
If an end user incorrectly writes a rule, NESTA could flood the network and servers

with hundreds or even thousands of notifications. To prevent that, we provided
multiple safeguards, such as user-defined limits, to filter emails after NESTA has gen-
erated a given number for a particular email account.

Beyond that possibility of user error, a separate need exists to queue and merge
multiple emails that might be related to some sequence. Queuing provides a
mechanism for grouping multiple messages expected to occur within a short time
period before emailing them in bulk. For example, four flight-control avionics
boxes are often powered up in a short time period. Rather than a user receiving
four separate and possibly interrelated flight control emails, we provided a queu-
ing mechanism that lets a user tie related emails to the same queue and receive
one bulk email compilation, rather than multiple emails. The end user can config-
ure both the queue time and queue length.

NESTA Technical Challenges



to the user or set off an audible alarm. Trou-
bleshooting might require other displays
such as plots and troubleshooting flowcharts.
Valuable time goes to locating these proce-
dures and the data that supports them. 

When LCCMA detects a launch commit
criteria violation, it notifies the shuttle
engineer through a workstation status dis-
play. Relevant troubleshooting procedures
appear automatically on the display, ame-
liorating the need for the shuttle engineer
to search for the correct procedure map-
ping to a given violation.

Beyond “Return to Flight”
The STS-114 “Return to Flight” collected

unprecedented data on an orbiter’s condition
during ascent and in space. The mission
tested new equipment, such as high-resolu-
tion cameras, and new procedures and con-
ducted a first-of-its-kind spacewalking re-
pair as well. Prior to the test flight, NASA
put forward a significant effort to fix the
foam problem that destroyed the Columbia
orbiter and its crew. Unfortunately, the ex-
ternal tank again shed foam and NASA is
once again tackling the problem. Shuttle
flights are currently in stand-down mode
until the problem is resolved.

The shuttle demands rigorous engineer-
ing to fix, maintain, and process its subsys-
tems. The need to be forever diligent in
managing its complexity continues, whether
by redesigning shuttle subsystems or im-
proving insight into ground-processing
events. How to manage complexity and mit-
igate its adverse effects will also be empha-
sized in the engineering trade-offs
conducted for future space vehicles as con-
ceptualized within the Vision for Space
Exploration.7 These new space vehicles will
represent best-of-breed engineering, a com-
bination of carefully selected shuttle-derived
components, and other proven technologies
from space flight experience.

The “Technical Challenges” sidebar
describes three hurdles that NESTA must
surmount.

VSE presents new challenges. In particu-
lar, the need for autonomy significantly in-
creases as people and payloads travel greater
distances from Earth. Agents for these future
applications will demand much higher de-
grees of autonomy than today’s shuttle
agents. Few or no human experts will reside
at remote orbiting, lunar, or Martian sites to
correct problems in a timely manner. 

Today on Earth, system and hardware
engineers along with technicians leverage
multiple skills when monitoring, diagnosing,
and predicting problems in the Space Shuttle
and its ground-support equipment. For VSE,
the need for extending these skills to support
other vehicles and payloads at remote space-
ports ranging from the Earth to Mars be-
comes essential. These skills include the
cognitive skills of being rational, collabora-
tive, and goal driven, along with the ability to
reason over time and uncertainty.

We are investigating extending NESTA to
address some of the new VSE challenges.
For example, an agent will need the ability
to revise previously concluded assertions
based on what now might be stale data. Also
known as belief revision, this truth mainte-
nance is particularly important when deep
reasoning and extended inferencing is nec-
essary.8 An assumption-based truth mainte-
nance system can reason over many contexts
simultaneously. By capturing, maintaining,
and deploying spaceport expertise within
ATMS-enabled agents, we might reduce the
costs and manpower required to meet the
VSE goals, while increasing safety, reliabil-
ity, and availability.
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