
Launch Commit Criteria Monitoring Agent

Glenn S. Semmel
SPS Branch, YA-D8

NASA
KSC, FL 32899

Glenn.S.Semmel@nasa.gov

Steven R. Davis
SPS Branch, YA-D8

NASA
KSC, FL 32899

Steve.Davis@nasa.gov

Kurt W. Leucht
SPS Branch, YA-D8

NASA
KSC, FL 32899

Kurt.Leucht@nasa.gov

Dan A. Rowe
SPS Branch, YA-D8

NASA
KSC, FL 32899

Daniel.A.Rowe@nasa.gov

Andrew O. Kelly
PH-G2
NASA

KSC, FL 32899
Andrew.O.Kelly@nasa.gov

Ladislau Bölöni
Dept. Elec. and Comp. Eng.
University of Central Florida

Orlando, FL 32816
lboloni@cpe.ucf.edu

ABSTRACT
The Spaceport Processing Systems Branch at NASA Kennedy
Space Center has developed and deployed a software agent to mon-
itor the Space Shuttle’s ground processing telemetry stream. The
application, the Launch Commit Criteria Monitoring Agent, in-
creases situational awareness for system and hardware engineers
during Shuttle launch countdown. The agent provides autonomous
monitoring of the telemetry stream, automatically alerts system en-
gineers when predefined criteria have been met, identifies limit
warnings and violations of launch commit criteria, aids Shuttle
engineers through troubleshooting procedures, and provides ad-
ditional insight to verify appropriate troubleshooting of problems
by contractors. The agent has successfully detected launch com-
mit criteria warnings and violations on a simulated playback data
stream. Efficiency and safety are improved through increased au-
tomation.

Categories and Subject Descriptors
I.2.1 [Applications and Expert Systems]: Industrial automation;
I.4 [Pattern Recognition]: Applications

General Terms
design

Keywords
agent, expert system, rule-based programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-150-2/05/0007 ...$5.00.

Launch
Processing
System

Commands

Measurements

Hardware
Interface
Modules

Ground
Support
Equipment

Non-critical,
Monitor Only
Applications

Monitor

Control and Monitor

Shuttle Data Stream
Measurements

Figure 1: Ground Control and Monitoring at NASA KSC

1. INTRODUCTION
This paper describes a software agent 1 that is used for process-

ing Space Shuttle telemetry data and notifying system engineers
of warnings and violations. After describing the problem and ob-
jectives, the environment, interfaces, application description, and
extension of the agent for future uses will be presented.

1.1 Background
NASA Kennedy Space Center (KSC) is responsible for pre-

launch ground checkout of the Space Shuttle. The Launch Pro-
cessing System (LPS) at KSC provides facilities for NASA Shut-
tle system engineers, contractors, and test conductors to command,
control, and monitor space vehicle systems from the start of Shuttle
interface testing through various phases including terminal count-
down, launch, abort, safing, and scrub turnaround.

LPS continually monitors the Shuttle and its ground equipment
including environmental controls and hardware that loads propel-
lants. Consoles with vehicle responsibilities communicate infor-
mation directly to and from the Shuttle computer systems. Con-
soles with ground support equipment responsibility communicate
information to and from the hardware interface modules which are
connected to the numerous ground support systems. See Figure 1.
Each module is capable of interfacing to approximately 240 sensors
or controls. Overall, some 50,000 temperatures, pressures, flow
rates, liquid levels, turbine speeds, voltages, currents, valve posi-
tions, switch positions, and many other parameters must be con-
trolled and monitored.

For over 25 years, engineers have used LPS to verify Space Shut-
tle flight readiness and to control launch countdown. LPS has per-
formed superbly well. Recently, much of the LPS hardware was
1A demonstration of this system will be available to be shown at
the conference.

Subsystem Number LCCs Number Measurements
APU/HYD 50 252

ECLSS 29 136
PRSD 15 113
OMS 18 434

Table 1: Number of Measurements for Various Shuttle Subsys-
tems

upgraded assuring its continuance for many more years. However,
the system architecture was not changed and the software remains
basically the same. As a result, the level of situational awareness
has not increased proportionally to what would otherwise be possi-
ble with more modern software technologies.

After the Shuttle Columbia disaster on February 1, 2003, the
Columbia Accident Investigation Board [15] proposed recommen-
dations to improve safety from both an organizational and technical
perspective. The Board indicated the need to “[adopt] and maintain
a Shuttle flight schedule that is consistent with available resources.”
Also, both management and engineering support staff must main-
tain an awareness of anomalies and those must not be lost “as en-
gineering risk analyses [move] through the process.” Given two
tragic losses of a crew and Shuttle, today NASA engineers have an
even greater pressure to be more vigilant in identifying problems.
Anomalies must be detected and reported to prevent problems with
Shuttle subsystems, countdown, and launch. The aging LPS hard-
ware has limited resources and precludes the level of automation
and notification warranted by this domain.

1.2 Problem Description
During launch countdown, NASA Shuttle engineers are required

to monitor shuttle data for violations of the launch commit criteria
(LCC) and to verify that the contractors troubleshoot problems cor-
rectly. When a violation is recognized by the system engineers it
is reported to the NASA Test Director. The problem report, or call,
includes a description of the problem, the criticality, whether a hold
is requested, and whether a preplanned troubleshooting procedure
exists.

The Shuttle is composed of many subsystems (e.g. Main Propul-
sion, Hydraulics). Each of those subsystems has a team of engi-
neers responsible for troubleshooting problems for that respective
system during a launch countdown. Many systems have a large
number of measurements with associated LCC limits and a large
number of LCC requirements. Table 1 shows four representative
Shuttle subsystems and their corresponding number of LCCs and
measurements. As illustrated, hundreds of measurements must be
monitored just for this small set of subsystems.

Shuttle Engineers must monitor for many types of limit viola-
tions ranging from simple high and low limit boundaries to much
more complex first order logic expressions. Each team has its own
tools for identifying LCC violations. Many of these tools use the
LPS software and simply change the color of the displayed data
and/or present a text message to the user or set off an audible alarm.
Troubleshooting may require other displays such as plots and trou-
bleshooting flowcharts. Valuable time is spent locating these pro-
cedures and locating the data that supports them.

Given the complexity of the logical expressions that specify limit
violations, the large number of limits, and the need to find support-
ing data quickly, Shuttle engineers sought an advisory tool to pro-
vide more insight and situational awareness during launch count-
down. In the latter half of 2003, a software tool was proposed
to address these needs during launch countdown. The tool, called

the Launch Commit Criteria Monitoring Agent (LCCMA), com-
plements LPS and is capable of autonomously and continuously
monitoring Shuttle telemetry data. LCCMA automatically alerts
NASA Shuttle engineers when predefined criteria (e.g. limit vio-
lations, warnings) have been met and guides the engineers through
troubleshooting procedures.

1.3 Objectives
LCCMA acts as a software agent for the NASA engineer. For

this discussion, an agent is defined as rule-based, autonomous soft-
ware that reacts to its environment and communicates results to a
human, a NASA engineer in this usage. Agents have been exten-
sively researched [24, 21]. Agents standards [10] and frameworks
[1, 16] have also been developed.

The primary objectives for LCCMA include:

• Monitor Space Shuttle telemetry ground data.

• Allow a NASA engineer to specify rules to be applied to
Space Shuttle telemetry ground data.

• Display a visual indication of violated LCCs.

• Display a text message of the LCC violation call.

• Display troubleshooting steps from preplanned procedures.

LCCMA does not send any commands and is used for advisory
purposes only. A future release of LCCMA will include an interac-
tive troubleshooting display that reads the data stream and accepts
user inputs to direct diagnostic troubleshooting.

2. ENVIRONMENT AND INTERFACES

2.1 Shuttle Data Stream
Data processed by LPS is distributed on a local area network.

As shown in Figure 1, the distributed data is known as the Shuttle
Data Stream (SDS) [17] and contains real-time vehicle and ground
processing data. Thousands of telemetry measurements are pub-
lished in the SDS and are used by monitor-only applications such
as LCCMA. The SDS contains multiple types and subtypes of mea-
surements including discretes (i.e. boolean measurements), analogs
(i.e. floating point measurements), and digital patterns (i.e. integer
measurements).

2.2 LCCMA Context Diagram
Figure 2 shows the context diagram for LCCMA. The agent

process, represented in the middle circle, communicates with var-
ious sources and data stores. A measurement database is used
to decode the SDS into usable measurements. The SDS source
broadcasts measurements as data packets over local area networks.
LCCMA monitors this stream for measurement violations and
warnings specified by the Shuttle engineers. The Troubleshooting
Procedures source represents html or pdf files containing the trou-
bleshooting steps, often in flowchart format. LCCMA sends limit
violations to the NASA Engineer via the Status Board Display. The
Rules data store represents the scripts and knowledge base that de-
fines the rules for the limit violations.

Rules

0.0
LCCMA

Shuttle
Data

Stream

Measurement
Database

Limit violationMeasurement

Data Format

Troubleshooting
Procedures

OMI Sequence

Log

Message

Rule

Rule

NASA Engineer

Internet
Enabled
Client

Status

Rule Creation

Figure 2: LCCMA Context Diagram

3. APPLICATION DESCRIPTION

3.1 Languages and Agent Tools Used in
Application

The Java Expert System Shell (Jess) [13] was selected as the
agent’s rule engine. Jess was developed and supported by another
government agency, Sandia National Labs. As such, our develop-
ment team and customer have full usage of the tool via govern-
ment licensing without any fees. This includes access to all the
Jess source code.

Jess’ forward chaining reasoning system was modeled after pro-
duction systems such as OPS5 [3] and CLIPS [25]. It contains
highly efficient and sophisticated pattern matching based on the
Rete algorithm [12]. This enables its inference engine to pro-
cess many rules and data rapidly. The engine repeatedly processes
through a match-select-act cycle. As a production system, its con-
sequents can be actions. A conflict resolution strategy determines
the precedence of rule firings.

Jess’ predicate logic lends itself to capturing and specifying
the heuristics and engineering rules of this spaceport domain.
The declarative paradigm of this rule-based agent application also
makes it highly modular and scalable to span multiple subsystems
of the Shuttle. Jess also includes a fourth generation scripting lan-
guage and interactive command line which are very conducive for
prototyping and testing.

Jess is written entirely in Java and has access to the full Java ap-
plication programming interface within its scripting language. It
provides standard control flow constructs and supports variables,
strings, objects, and function calls. Jess automatically converts be-
tween its own types and Java types insulating the developer from
manually performing the conversions. Its use as a Java library made
Jess’ selection more appealing since Java supports multiple plat-
forms with its “write once, run anywhere” paradigm. Beyond that,
the need for LCCMA to support web enabled clients also made
Java a natural fit given its origins and strong support for developing
Internet based applications.

3.2 Design
Java classes were developed to parse and decode the data stream

and represent measurements as facts in Jess’ working memory. To
interface Jess’ rule engine with the SDS, each data measurement is
modeled and implemented as a Java bean [23]. Java beans provide
a component architecture to enable easier integration of applica-
tions. A property change notification mechanism is supported that
allows one object to become a registered listener of another ob-
ject. The listener object will then automatically receive changes
from the source object. This is also known as a publish-subscribe
or observer pattern [14]. Within Jess, each Java bean corresponds
to what is known as a shadow fact. A Jess shadow fact is a mirror
image of a Java bean, such as a pressure measurement, within Jess’
working memory. All shadow facts are registered listeners of their
Java bean counterparts. Thus, whenever a measurement changes in
the data stream, a property change event is automatically generated
for the given measurement and its sibling shadow fact is updated in
Jess’ working memory. Figure 3 illustrates this path.

After a shadow fact is updated, the Jess pattern matcher will de-
termine if the premises of any rules match the new or modified
facts. Rules are compared to working memory to identify premises
that are matched by the data in working memory. For LCCMA,
this data represents measurements from the SDS and rules repre-
sent data monitoring criteria submitted by NASA Shuttle system
engineers. Rules with matching premises are activated and placed
onto an agenda. Next, the agenda is ordered according to Jess’ de-
fault conflict resolution strategy. The highest priority rule is then
fired and executed. This match-select-act cycle repeats until no
more rules are available to fire. An action handler class was devel-
oped and is used to build and send the notification message to the
Shuttle engineer whenever a rule fires.

3.3 Graphical User Interface
A graphical user interface currently exists for LCCMA called the

Status Board Display. It is being upgraded and Figure 4 shows a
storyboard representative of that future interface. The Status Board
Display shows the health of the network connection, data stream
status, countdown time, and other relevant information.

Shuttle Data Stream Shuttle Data Stream Reader Jess Shadow FactPropertyChangeSupport

firePropertyChange()

Measurement (JavaBean)

setValue()

getNextPacket()

propertyChange()

Figure 3: Sequence Diagram Illustrating Update to Jess Working Memory from Shuttle Data Stream

When LCC limits are violated, the LCC call is displayed in the
text box. The user reads the text and, if there is an associated
troubleshooting file, clicks the file button next to the text. This
brings up a Troubleshooting Display for that particular LCC and
limit. The LCC text remains bold until the Acknowledge button
is pressed. Message text can be displayed with one of three icons
representing a violation, warning, or informational cue.

The text messages can be read over the Operational Intercom-
munication System as LCC calls during the countdown. Calls
will change based on what limit is violated (e.g. warning, LCC,
high/low limit), the time criticality of the call, and LCC effectivity.
The application aids the NASA engineer in making a Go/No-Go
decision.

3.4 Execution
At startup, LCCMA connects to a single data stream based on

user input and reads a rules file containing LCC violations and
warning limits. Table 2 shows the conditions and actions associ-
ated with an LCC warning and violation for a hydrogen (H2) tank
in the Power Reactant Storage and Distribution (PRSD) subsystem.
For instance, if either of the H2 tank 1 pressures are above an up-
per limit, the agent should notify the NASA engineer by displaying
the violation in red font and provide a link to the corresponding
troubleshooting file (i.e. PRSD06Hi.pdf) for that violation. The
troubleshooting file shows the steps necessary to be taken by the
engineer when the specified limits of a given subsystem are vio-
lated.

3.5 Performance Requirements and Testing

3.5.1 Performance Characteristics of Shuttle Data
Stream

At application startup, LCCMA connects to a datastream se-
lected by the user. The datastream includes all measurements at
their respective change rates. No data changes will be missing from
this stream. For this discussion, only this data stream, known as
FIFO, will be presented as it is the stream of choice for the cus-
tomer.

The datastream averages 5 to 10 packets per second and peaks
around 50 packets per second at launch. Each SDS data packet can
hold up to 360 measurement changes before rolling over to another
packet. This calculates to an average of 1,800 changes per sec-
ond for the FIFO stream nominally, and 18,000 changes per second
peak at launch. During peak data loads, the SDS is throttled at
the source and does not maintain true real time updates. It may
lag up to 1 minute or so, but all measurement changes are buffered
and none is ever dropped from the data stream. Throttling of the
data typically begins at T+1 second, that is, just after launch. Even
though it is the hypothetical peak limit, 18,000 changes per second

is the performance load that LCCMA is expected to meet to avoid
missing a measurement change. This is referring strictly to up-
dating 18,000 facts per second and not indicating how many rules
might fire. In fact, only a small percentage of those facts is ex-
pected to result in a small percentage of the total rules to fire at any
given time, even during the peak launch data rates.

The measurement data in the stream is refreshed every three min-
utes regardless as to whether or not it has changed. Since the stream
is based on User Datagram Protocol (UDP), this results in an un-
reliable datagram packet service. When a packet is dropped on the
network, all measurements are marked invalid and the measure-
ments change back to valid one by one as refresh data is received
until the completion of a three minute refresh cycle.

3.5.2 Performance Testing
Performance testing occurred on an Intel Pentium 4, 1.7 GHz

desktop workstation with 768 MB of RAM running Microsoft Win-
dows XP Professional. The SDS reader class in LCCMA parses the
data stream and updates facts in Jess’ working memory. To test the
reader class, 12 high speed analog measurements were selected and
instantiated as shadow facts. In the range of 18,000 (nominal) to
36,000 (peak at launch) data changes occurred every second in the
test-enhanced data stream and were processed by the SDS reader
class. This included various types of measurements such as dis-
cretes and analogs. 12,000 analog data changes per second were
being processed into current values and updated in Jess’ working
memory by a property change event handler.

Rules were written for 6 of the high speed analog measurements.
The other 6 measurements were still relevant to stress the SDS
reader class and updating of facts. 5 of the 6 rules fired once ev-
ery minute. The 6th rule fired once for every single measurement
change (1,000 per sec) for two full seconds sustained out of ev-
ery minute. Thus, a total of 2005 rules fired every minute, with
2000 of them firing within a 2 second period. Analog measure-
ments have considerably more processing overhead than the dis-
crete measurements so it was not possible to sustain thousands of
rules containing analogs to fire every second without causing CPU
starvation. However, the “fair test” was considered to have only a
very small percentage of the measurements that are in the stream
actually causing rules to fire. It was considered fair to have short
bursts of high rate rule firings but not long term sustained high rate
rule firings. LCCMA is not intended for users to write rules to no-
tify them via the Status Board Display hundreds or thousands of
times each second for a long and sustained period of time.

To summarize, the agent sustained the above scenario for many
cycles on the test-enhanced playback file without CPU starvation
and without reporting any packet losses. The CPU utilization on the
development workstation was about 90% prior to launch and higher
than that after T-0. It was heavily loaded, but the agent maintained

Figure 4: LCCMA Status Board Display

the pace. The agent performed well considering that the data stream
was stuffed with between 1 and 2 times the hypothetical peak load
of measurement changes for the performance test. The “long pole”
in the process appeared to be the number of rules that actually fired
every second sustained. However, even under launch conditions
when a heavy data change load exists, there is not expected to be
many thousands of rules firing every second. Even several hundred
rules firing per minute is considered unrealistically high, but this
performace test suggests the agent, LCCMA, could readily handle
that load.

3.6 Deployment
LCCMA was delivered to the customer and has successfully de-

tected LCC warnings and violations on an SDS recorded playback.

It has not been used during an actual launch countdown yet since
NASA has not returned to flight subsequent to the Columbia disas-
ter. However, LCCMA’s potential was already recognized by other
projects at NASA KSC and it is in the process of being integrated
into a larger monitoring application. For that one, thousands of
NASA engineers and contractors will use LCCMA to enter not just
LCC monitoring criteria, but many other types of simple and com-
plex measurement constraints.

Condition Description Message Action
(V45P2110A > 270 H2 Tank 1 Pressure Heater Control Pressure Reading Display [Description],

OR V45P2100A > 270) AND Warning High [V45P2110A], [Message] in Yellow
V45P2110A <= 298 AND Tank Pressure Reading

V45P2100A <= 294 [V45P2100A]
(V45P2110A > 298 OR H2 Tank 1 Pressure Heater Control Pressure Reading Display [Description],

V45P2100A > 294) Violation High [V45P2110A], [Message] in Red.
Tank Pressure Reading Open file

[V45P2100A] PRSD06Hi.pdf

Table 2: Example LCC Conditions and Actions for PRSD H2 Tank 1

3.7 Knowledge Representation
This is an actual LCCMA rule written in the Jess scripting lan-

guage:

(defrule orbiter-cabin-o2-pressure-anomaly-rule
"ECL-06 Emergency Condition Yellow Orbiter Cabin O2 Pressure Anomaly"

?activation-fact <- (activate-orbiter-cabin-o2-pressure-anomaly-rule)
(AnalogFd (fdName "V61P2511A1") (value ?V61P2511A1_val))
(AnalogFd (fdName "V61P2513A1") (value ?V61P2513A1_val))
(AnalogFd (fdName "V61P2515A1") (value ?V61P2515A1_val))

(test
(or
(> (abs(- ?V61P2511A1_val ?V61P2513A1_val)) 0.15)
(> (abs(- ?V61P2513A1_val ?V61P2515A1_val)) 0.15)
(> (abs(- ?V61P2511A1_val ?V61P2515A1_val)) 0.15)
(> (abs(- ?V61P2511A1_val 3.1)) 0.3)
(> (abs(- ?V61P2513A1_val 3.1)) 0.3)
(> (abs(- ?V61P2515A1_val 3.1)) 0.3)

)
)

=>

(retract ?activation-fact)
(assert(orbiter-cabin-o2-pressure-anomaly-rule-reactivation-activate))
(notifyActionHandler
(create$
"http://xb70.ksc.nasa.gov/ECL/ECL_Home/Launch.html"
"http://xb70.ksc.nasa.gov/ECL/ECL_Home/Cabin_Leak.html"
)
(get-member LccmaColor message_violation)
(create$ V61R2401A1 V61P2405A1 V61T2552A1)

)
)

For this rule, the following three analog measurements are mon-
itored: V61P2511A1, V61P2513A1, and V61P2515A1. The ab-
solute value of the difference among pairs of these analog mea-
surements must not exceed a given quantity. If anyone of them
is exceeded, the rule will fire indicating an anomaly in the cabin
oxygen pressure. Once fired, the right hand side of the rule exe-
cutes. The notifyActionHandler call has three arguments.
The first one contains two troubleshooting web page links that are
made available to the NASA engineer. The second argument spec-
ifies the color of the message, a violation in this case. Finally, the
third argument species the three measurements that may be plotted
to investigate the anomaly further.

4. FUTURE EXPLORATION AGENTS
As indicated in the national Vision for Space Exploration [19,

20], an increased human and robotic presence will be cultivated
in space, on lunar and Martian surfaces, and other destinations.
Spaceports will now span from the Earth to the Moon and beyond.
A new set of challenges is presented by this Exploration Vision. In
particular, the need for autonomy significantly increases as people
and payloads are sent greater distances from Earth.

Agents for these future applications will demand much higher
degrees of autonomy than today’s Shuttle agents. Few or no human
experts will reside at remote lunar or Martian sites to correct prob-
lems in a timely manner. More automation will be required along

with advanced diagnostics and prognostics. This requires higher
levels of reasoning.

Today on Earth, system and hardware engineers along with tech-
nicians leverage multiple skills when monitoring, diagnosing, and
prognosticating problems in Shuttle ground support equipment. For
the Exploration Vision, the need for extending these skills to sup-
port other vehicles at remote locations from the Earth to Mars be-
comes essential. These skills include being rational, collaborative,
goal driven, and the ability to reason over time and uncertainty.
The agent discussed earlier in the paper, LCCMA, is capable of
shallowing reasoning of short inference chains within the Shuttle
domain. However, this existing agent can be endowed with higher
levels of rationality enabling a deeper reasoning. We are investi-
gating how to mature LCCMA into a Spaceport Exploration Agent
(SEA) in support of the Exploration Vision.

SEAs will need to communicate and collaborate along multiple
and lengthy logistics chains. This does not simply include agents
monitoring pre-flight checkout of vehicles at a terrestrial spaceport
(e.g. LCCMA monitoring Shuttle activities). Rather, SEAs will re-
side in multiple locations at great distances. Logistics, scheduling,
and planning are just some of the activities that these agents will
manage.

Within this virtual collaborative management chain, SEAs will
be inundated with massive amounts of data that must be sorted and
processed. It becomes necessary for them to revise their sets of
beliefs as new data arrives. It is simply not enough to revise singu-
lar data points within an agent’s working memory and to have an
agent blindly react to those changes. Rather, an agent must possess
the ability to revise previously concluded assertions based on what
may be now stale data. This activity is called truth maintenance
[7, 4, 11], also known as belief revision, and is particularly impor-
tant when deep reasoning of long inferences is necessary. An as-
sumption based truth maintenance system (ATMS) can reason over
many contexts simultaneously. By capturing, maintaining, and de-
ploying spaceport expertise within ATMS-enabled SEAs, the costs
and manpower required to meet the Exploration Vision are reduced
while safety, reliability, and availability are increased.

4.1 Benefits of Endowing Spaceport
Exploration Agents with Belief Revision

SEAs enabled with belief revision will provide the following:

• SEAs will continuously monitor spaceport telemetry streams
for expected and anomalous conditions during operations and
launch countdowns. SEAs will analyze data from networks
of sensors and draw inferences over time to deduce further
action. Results are provided to humans, agents, and other
subsystems which may compose an integrated health man-
agement function.

• SEAs provide an automated explanation generation facility
and diagnostic capabilities. The inferences and facts that lead

to a conclusion will be available to the human expert and
other agents for further processing.

• SEAs provide prognostics to predict where and when fail-
ures may occur in support equipment and what if scenarios
to assess chains of events.

• If a human expert leaves the program or moves onto other
opportunities, SEAs remain and can virtually mentor the hu-
man replacement leveraging its knowledge base.

4.2 Extending LCCMA with Truth
Maintenance

As indicated earlier, LCCMA uses Jess as its inference engine.
Jess implements a lightweight version of truth maintenance that is
much simpler than a full blown ATMS. Jess’ logical conditional
element keeps track of the “here and now” for specified premises.
Other rule based systems, such as Clips and Lisa [26], implement a
similar level of truth maintenance.

Premises on the left hand side of a rule can be tied to assertions
of facts on the right hand side via the logical keyword. A depen-
dency is created between the facts of the premise and the fact of
the conclusion. After the rule fires and the consequent’s fact(s) is
asserted, if the premise ever becomes false, the consequent’s facts
will be automatically retracted assuming other logical support does
not exist for those facts. In contrast to Jess’ version of truth mainte-
nance, an ATMS dependency network offers a full history of depen-
dencies using an efficient labeling algorithm. It offers a history of
everything that has happened contrasted to just the “here and now”
as provided by Jess’ logical keyword. Dependency tracking and
proof histories have been researched [4, 11, 9] and implemented in
other rule based expert system shells such as MIKE [8].

4.3 ATMS Background
Using de Kleer’s model [4, 5, 6], an ATMS is composed of a

set of nodes, n1, n2, . . . , nn, where each node is a propositional
variable. A proposition represents either a premise, contradiction,
or assumption. A premise is a node that is always true. A con-
tradiction is a node that is always false. An assumption is a node
whose values may be changed by the inference engine during rule
firings. The inference engine incrementally transmits these propo-
sitions (i.e. nodes) to the ATMS.

When the inference engine fires a rule that results in a new or
modified fact, a justification is transmitted to the ATMS. A justifi-
cation is a tuple consisting of the rule’s antecedent and consequent
forming the inference. Suggesting an “if-then” type of implication,
a justification may only contain positive literals and be represented
as a horn clause.

An ATMS node has a datum, justification, and label associated
with it. The datum represents a rule or fact within the inference
engine. The justification is composed of an antecedent, consequent,
and informant. The antecedent represents facts on the left hand side
of the rule that caused the rule’s premises to be true and resulted
in an activation and firing. The consequent represents facts that
were asserted on the right hand side of the rule upon firing. The
informant describes the type of deduction and is never used in any
ATMS computations. It may be supplied to the inference engine to
provide textual cues for explanation generation.

4.3.1 Interfacing an ATMS to the Jess Rule Engine
Interfacing an ATMS to a production rule system has been previ-

ously investigated by Morgue and Chehire [18]. In their study, two
levels of coupling were described with respect to the match-select-
act cycle of an inference engine. When an ATMS is loosely cou-

pled with an inference engine, the select and act steps are modified
to enable integration. This is a simple form of interaction between
the ATMS and inference engine and is more prone to becoming
intractable than a tight coupling approach. In tight coupling, the
match step is modified. This requires changes to the engine’s Rete
algorithm.

To extend LCCMA with full dependency tracking via an ATMS,
Jess offers sophisticated event handling that will readily enable
communication between the Jess inference engine and the ATMS.
Event handlers will be supplied and invoked when, for example,
a fact is asserted, retracted, or modified. In conjunction with an
ATMS facility, these handlers could build and maintain a complete
history and dependency network.

Inspired from the Lisp interface definition of Forbus and de
Kleer [11], an object oriented model of an Atms class has been
designed. Java method signatures for an Atms interface were
developed and are analogous to the Lisp functions. The Atms
class depends upon an AtmsInterface and will thus implement
the interface’s methods. An InferenceEngine class realizes
the AtmsInterface. A createNode and justifyNode
method of the Atms class are called after the Atms object re-
ceives a message from the inference engine indicating that a new
fact was created or a fact was modified by a rule firing resulting in
an ACTIVATION event.

5. CONCLUSION AND FUTURE WORK
An agent that monitors Space Shuttle ground telemetry data was

presented. LCCMA provides an increased insight for NASA sys-
tem and hardware engineers. LCCMA has successfully detected
launch commit criteria warnings and violations on a simulated play-
back data stream. We are investigating extending this agent with
truth maintenance capabilities to support advanced diagnostics and
prognostics.

Other future work includes incorporating probabilities of occur-
rence of faults within support equipment. In terms of the ATMS,
this translates into the probabilities of a fact being derivable and
the context within which it would appear. Previous research has
shown the utility of Bayesian networks and their applicability for
constructing probability distributions from an ATMS [22].

Brachman and Levesque [2] propose description logics to imple-
ment a production system, act as the working memory, or provide
some other service to such a system. In this paper, the subsump-
tive power of description logics might be leveraged by the label
update algorithms of the truth maintenance system. Further, the
agent and Jess itself are implemented in Java, an object oriented
language. Description logic taxonomies might be constructed to
naturally mirror the object oriented models of the agents.

6. REFERENCES
[1] L. Bölöni and D. C. Marinescu. An Object-Oriented

Framework for Building Collaborative Network Agents. In
H. Teodorescu, D. Mlynek, A. Kandel, and H.-J.
Zimmerman, editors, Intelligent Systems and Interfaces,
International Series in Intelligent Technologies, chapter 3,
pages 31–64. Kluwer Publising House, 2000.

[2] R. Brachman and H. Levesque. Knowledge representation
and reasoning. Morgan Kaufmann, May 2004.

[3] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5: An Introduction to
Rule-Based Programming. Addison-Wesley, Reading, MA,
1986.

[4] J. de Kleer. An assumption-based TMS. Artificial
Intelligence, 28(2):127–162, Mar. 1986.

[5] J. de Kleer. Extending the ATMS. Artificial Intelligence,
28(2):163–196, Mar. 1986.

[6] J. de Kleer. Problem solving with the ATMS. Artificial
Intelligence, 28(2):197–224, Mar. 1986.

[7] J. Doyle. A truth maintenance system. Artificial Intelligence,
12(3):231–272, November 1979.

[8] M. Eisenstadt and M. Brayshaw. Build your own knowledge
engineering toolkit. Technical report, Human Cognition
Research Laboratory, The Open University, UK, June 1990.

[9] R. Filman. Reasoning with worlds and truth maintenance in a
knowledge-based programming environment.
Communications of the ACM, 31(4):382–401, Jan 3-6 1988.

[10] FIPA. Foundation for intelligent physical agents abstract
architecture specification, Dec. 2002.

[11] K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT
Press, Cambridge, MA, 1993.

[12] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem. In Artificial
Intelligence, volume 19(1), pages 17–37, 1982.

[13] E. Friedman-Hill. Java Expert System Shell. Manning
Publications, Greenwich, CT, 2003.

[14] E. Gamma, R. Helm, E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Greenwich, CT, 1995.

[15] H. Gehman, S. Turcotte, J. Barry, K. Hess, J. Hallock,
S. Wallace, D. Deal, S. Hubbard, R. Tetrault, S. Widnall,
D. Osheroff, S. Ride, and J. Logsdon. Columbia Accident
Investigation Board (CAIB), Volume 1. NASA, Washington
D.C., August 2003.

[16] JADE. Java agent development framework.
http://jade.tilab.com/, 2004.

[17] Lockheed. Pcgoal requirements document. Technical Report
KSCL-1100-0804, Lockheed Space Operations Company,
Oct. 1991.

[18] G. Morgue and T. Chehire. Efficiency of production systems
when coupled with an assumption based truth maintenance
system. In Proc. of AAAI-91, pages 268–274, Anaheim, CA,
1991.

[19] NASA. The vision for space exploration. Technical Report
NP-2004-01-334-HQ, NASA, Feb 2004.

[20] NASA. The new age of exploration: Nasa’s direction for
2005 and beyond. Technical Report NP-2005-01-397-HQ,
NASA, Feb 2005.

[21] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[22] S. Srinivas. A probabilistic atms. Technical Report KSL
94-13, Knowledge Systems Laboratory, Stanford University,
Feb. 1994.

[23] Sun. Java bean specification. http://java.sun.com/, 2004.
[24] M. Wooldridge. Reasoning about Rational Agents. The MIT

Press, Cambridge, Massachusetts, 2000.
[25] R. M. Wygant. Clips: A powerful development and delivery

expert system. In Computers and Industrial Engineering,
volume 17, pages 546–549, Anaheim, CA, 1989.

[26] D. E. Young. Lisa - intelligent software agents for common
lisp. http://lisa.sourceforge.net, 2004.

