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Abstract

Mobile robots moving in a crowd need to conform to the same
social standards as the human participants. Imitating human
behavior is a natural choice in these situations - however, not
every human behaves in the same way. On the other hand, it is
known that humans tend to behave in a consistent way, with
their behavior predictable by their social status.
In this paper we consider a marketplace where humans per-
form purposeful movement. With many people moving on in-
tersecting trajectories, the participants occasionally encounter
micro-conflicts, where they need to balance their desire to
move towards their destination (their mission) with the re-
quirements of the social norms of not bumping into strangers
or violating their personal space. We model micro-conflicts
by a series of two-player games.
We show that if all humans are using consistent strategies
which are aware of their own social status and can infer the
social status of their opponent, the overall social costs will
be lower compared to scenarios where the humans perform
inconsistent strategies (even if those strategies are adaptive).
We argue that robots acting in social environments should
also adopt consistent strategies and align themselves with the
ongoing social structure.

Introduction
Robots interacting with humans in social settings must obey
the social rules of the specific culture in which they operate.
At the same time, the robots have a specific goal or mission
to achieve. There is often a conflict between obeying the so-
cial rules and the most efficient way to achieve their mission.
The only exception is the very specific case where the only
goal of the robot is to behave in a socially acceptable way.

We are tempted to think that making a robot behave in a
socially acceptable way is equivalent for the robot to mimic
“human behavior”. However, if we observe human social
settings, we find that not all humans behave in the same way
in all social encounters. First, human social behavior has
a certain randomness even for seemingly identical settings.
Second, humans vary their behavior in function of the oppo-
nent and the circumstances of the encounter. And finally, not
every human choose to obey the social rules. On the other
hand, it is a well known fact of psychology that the overall
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functioning of the social life depends on the consistency of
behavior. One of the principal requirements of human so-
cial interaction is that the participants form a theory of mind
of each other (Adolphs 2003). This allows them to predict
the beliefs, goals and actions of the interaction partner. This
allows for a significant variance on allowed behavior. How-
ever, a certain consistency in the behavior is required, as we
cannot model or predict the mind of an erratically behaving
interaction partner. The agents need to take this into consid-
eration about their human interaction partners; furthermore
they need to act such that the humans can form a predictive
model of them. Research show that humans are willing to
treat agents as social actors (Nass, Steuer, and Tauber 1994)
although in some situations they will treat humans differ-
ently from agents or robots (Sanfey et al. 2003). In most
social settings, it is not the individuals pursuing aggressive
or defensive strategies who are causing the most social dis-
turbance but the ones who are erratically switching between
the two.

The objective of this paper is to develop models of human
behavior in a specific social setting (movement in a market-
place). We develop models of the mission cost and social
cost of movement, and introduce a framework where hu-
mans need to balance between the two in social encounters
called micro-conflicts. The micro-conflicts are modeled as a
series of two-player games, in which the participants must
deploy specific strategies. The consistency of the behavior
does not mean that every human deploys the exact same
strategy every time (in fact, such an overly uniform strat-
egy creates problems in which symmetrical strategies can
be broken only by one party abandoning the game). Rather,
a consistent behavior means that the behavior in the micro-
conflict can be predicted from observable attributes of the
participant.

The scenario considered in this paper is as follows. In a
busy marketplace a number of customers perform a purpose-
ful movement. They visit various landmarks such as stores
and stalls where they spend a certain amount of time, then
they move to other landmarks. We assume that agent move-
ments are independent, i.e., group movement patterns aren’t
under consideration for this particular paper. The movement
of the humans between the landmarks follow planned trajec-
tories, which avoid obstacles, but try to get from one land-
mark to the other in the shortest amount of time. Reaching



their destination in the planned time is the mission of the in-
dividual human. Delays represent mission costs, which the
agent tries to minimize. At the same time, the humans need
to obey social norms, which require them not to bump into
other humans, violate their personal space or block their
movement. If they violate these norms, humans incur social
costs. If two humans are about to collide with each other,
they need to take actions to avoid this by one or both of
them changing their speed and or trajectory. We call such an
encounter a micro-conflict. The strategies of the two agents
in a micro-conflict must balance mission costs and social
costs. We use the term “micro” to illustrate the fact that such
conflicts are normally resolved very quickly (in matter of
seconds).

The objective of this paper is to study different types of
strategies which humans might deploy in such scenarios.
We are particularly interested in how a consistent strategy
would look like in this setting, and how a robot might em-
ulate this. One of the important insights is that as important
as it might seem to obey all the social rules, in a sufficiently
dense crowd it is impossible to completely avoid incurring
any social cost.

A multidimensional cost model

One way to quantify the decision making process of humans
in social settings is by taking into consideration the costs
and benefits of certain actions. While we can theoretically
construct an integrated cost/benefit function in the form of a
single scalar which captures the decisions of an agent, this
function will have a complex and opaque expression which
changes from agent to agent. In practice it is more conve-
nient to consider a vector of costs, each of them being tied
to a well-defined social norm, physical measurement or sat-
isfaction level of a certain mission. These values are often
traded off against each other, but they can not, in general
converted into each other in an arbitrary and linear way. Sim-
ilar multidimensional cost models have been used to model
social scenarios (Bhatia, Khan, and Bölöni 2012). The pecu-
liarity of the scenario we are considering is that the agents
must consider a combination of social and mission costs.
As the scenario we are considering considers only physical
movement of the humans and the robot, ignoring, for the
time being, gestures and verbal communication, all the costs
are expressible through geometric models.

We will assume that humans and the robots use the same
set of costs. For humans, the social costs are rooted in the
psychology and social conditioning. While robots, naturally,
do not have these factors, in order to be accepted by humans
as natural participants in the crowd, they need to emulate the
human behavior as closely as possible (Nakauchi and Sim-
mons 2002; Walters et al. 2005; Pacchierotti, Christensen,
and Jensfelt 2005).

The various cost dimensions can be grouped into two
large categories: social costs depend on the social norms
governing the environment and the participants while mis-
sion costs depend on the specific goals of the human or
robot.

Modeling the social costs of moving in crowd

We will model the social costs of moving in the crowd by
a number of geometrical zones associated with the oppo-
nent agents. An agent incurs costs whenever it enters into
one of these zones. The zones are not necessarily circular,
they move and change orientation with the agents. The costs
associated with these zones are justified by psychological
models of human perception, and they must be calibrated
for the individuals as well as for the culture.

For the work in this paper we consider three zones:
Physical contact zone: represented by the actual physical
size and shape of the human or robot agent. Violating this
zone means physical contact and carries a large social cost.
Personal space: is the spatial region which a person (and
by extension, a robot) regards as psychologically his (Hall
and Hall 1969). Within the personal space, we model the
personal distance (1-1.5 ft) and the social distance (3-4 ft).
The cost decreases towards the outside of the area, becoming
zero outside the social distance perimeter.
Movement cone: the movement cone represents the space
where the human or the robot made public its intention to
move. For the purpose of this paper, we consider the move-
ment cone as circular pie extending from the agent in the cur-
rent direction of movement, for a radius equal of 3 seconds
movement with the current speed. The movement cone is
only relevant for a mobile agent. By violating the movement
cone, the opponent forces the agent to change its movement,
unless it accepts a high social cost by violating the personal
space or even the physical space.

We are using a model where the social costs are additive
across the cost types and for the multiple agents. For in-
stance, if the agent violates more than one agent’s personal
space, it will occur the sum of the costs. On the other hand
we retain only the maximum social cost for each micro-
conflict.

Modeling mission costs

We assume that the participants in the crowd have tasks
to accomplish, thus any delay caused by a micro-conflict
comes with a mission cost.

For a non-urgent mission, the mission can still be
achieved at an arbitrarily later time - thus the mission cost
of a delay is proportional with the delay. For urgent mis-
sions, the delay reduces the probability of mission success,
thus the cost of the delay escalates in time.

For the purpose of this study we assume that the human
participants have non-urgent missions. The mission of the
robot is to follow its owner in the crowd. Repeated delays in
the resolution of a micro-conflict make the robot fall more
and more behind, modeled with a mission cost which for
every new second of delay considers the full amount of time
the robot is behind its owner. On the other hand, the robot
is able to catch up with its owner between micro-conflicts
(or equivalently, the owner will wait for the robot to catch
up). Other assumptions are, of course, possible, but they are
beyond the scope of this paper.



Figure 1: A moment in the scenario of the robot navigating a crowd of people on the market. The screenshot shows the
visualization of the scenario in the simulator at time t = 21sec.

Figure 2: The diagram shows the cummulative social cost
at that particular moment. The goal of the robot can be inter-
preted as an attempt to move while keeping to the “valleys”
of this constantly changing surface.

Modeling of human strategies
Let us now discuss the strategies used by humans in resolv-
ing micro-conflicts. As we have discussed in the introduc-
tion, humans use a variety of strategies, and even the in-
dividual humans use different strategies from encounter to
encounter. Nevertheless, human behavior must be consistent
and predictable, erratic behavior is considered socially un-
desirable. To model these observations, we will make the
assumption that humans classify their opponents into rec-
ognizable types, and then adapt different strategies against
the various classes. We divide the population into six classes
based on gender (male and female) and age (children, youth
and elder).

The consistent behavior of humans, means that a person of
a certain class (e.g. a young man) will deploy consistent be-
havior towards other classes (e.g. old man or young woman).
Figure 3 describes the behavior.

Robot’s strategy for humans in social context
The intent of an agent is not physically observable unless ob-
servations are made from past experience of micro-conflicts.
The motivation behind the robot’s strategy is to be consistent
with its behavior during its interaction with different types of
agents in social context. The robot’s strategy uses a two-fold
approach: there is a passive phase and an active phase. In the
passive phase the robot classifies the intent of the agent and
in the active phase it selects the best strategy (aligned with
the social context). The term “passive” refers to the offline
learning, i.e., the robot is trained with various examples of
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Figure 3: The social interaction between males belonging
different age groups

human-agents. In the modeled system, some of the physical
features of the human agents partially overlap. Hence, this
fuzziness in the physical attributes of humans helps in intro-
ducing noise to the robot’s identification system.

Humans tend to undergo erratic behavior in chaotic situ-
ations, e.g., humans have hysterical behavior patterns under
panicking situations (Pelechano, Allbeck, and Badler 2007).
In our model, the robot is trained to adapt with human be-
havior at micro-level (which is further linked with social-
context at macro-level). Hence, for learning strategies to
counter the heterogeneity in human behavior, the robot trains
itself under the social context of the micro-conflict. For our
work, we consider the micro-conflicts between humans and
robot in dense crowds with regular human patterns. There-
fore, the limited scope of this paper makes the passive strat-
egy conditionally independent of the social context, i.e., the
Naı̈ve Bayes classifier takes the form

p(X = xi | Y = yj , Z = zk) = p(X = xi | Y = yj)(1)

where xi is the category of the human-agent, yi is the set of
physical attributes and zk is the social-context.

In this paper, the strategies of human agents, as shown in
Table 1, are modeled assuming the social setting of routine
life behaviors. The robot, after classifying the human-agent,
further classifies the opponents’ strategy using Table 1. The
active part of the robot’s strategy is to select an appropriate
counter strategy contemplating the urgency of its mission.
For example, for urgent missions the robot would try its best
to minimize time-cost whereas for normal missions it would
try to minimize the social-costs. For experimental analysis,
we modeled the following strategies for the robot:
• Respectful: (Maximal cooperate) When an agent A is

respectful to agent B, it means that it will give space wide
enough to agent B to avoid any social cost. Therefore,
agent A will cooperate over the time with agent B. This
strategy is adopted by the robot when the urgency of mis-
sion cost is low.

• Bump: (Maximal defect) The agent A would minimize
its mission costs and would not consider any social costs.
The assumed response of agent B is that it will cooperate
in any case. The strategy is adopted by the robot when the
urgency of mission cost is high.

• Consistent: (Naı̈ve Bayes) The agent A would classify
agent B based on its social status. Therefore the assumed
intent of either to cooperate or defect is based on social
traits. The strategy is adopted by the robot for its consis-
tent behavior within human interaction.

Experimental Setup
In the following we describe the results of a series of ex-
periments involving the behavior of a robot in a crowd. The
experimental scenario involves a marketplace in a Middle-
Eastern country. The area is a narrow space surrounded with
shops whose entrances serve as landmarks, as well as in-
ternal obstacles. A number of shoppers perform purposeful
movement, which involves visiting shops for a shorter or
longer times. The path chosen by the individuals balances
the shortness of the path with the avoidance of the obsta-
cles and large groups of people. Micro-conflicts are resolved
through a succession of games using two different set of ex-
periments as discussed afterwards.

In this baseline scenario we consider the presence of
a patrol of peacekeeping soldiers traversing the market
while being accompanied by a Boston Dynamics Big Dog
robot (Raibert et al. 2008). The mission of the robot is to
follow the soldiers through the crowd as closely as possible
with consistent behavior towards the population. The sol-
diers can change their movement at any time, triggering fre-
quent path re-plannings, for which we use the D*-lite al-
gorithm (Koenig and Likhachev 2005). The robot partici-
pates in micro-conflicts in the same way as the human par-
ticipants. Naturally, the robot’s personal space and physical
space is different from that of a human (a Big Dog robot is
larger than a human).

We consider two different set of experiment for the the
behavioral simulation of the robot. In the first set of ex-
periments we evaluate different set of populations against
consistent strategy of the robot. In other other set of experi-
ments, we evaluated different strategies of robot against sin-
gle population set of the humans. In both of the scenario, we
humans agents play consistent sets of strategies against each
other based on their social status.

Experiment Set I: Varying Population Density and
Social Status
We consider three different sets of population each dom-
inated by a particular social status. For each set we con-
sider dense male population: the population is uniformly dis-
tributed with 70% males. For modeling various sets of pop-
ulation we consider three different times of the day. There-
fore, the first phase of the day consists of majority of the
agents belonging to the old age group, the second phase of
the day (that is the evening time) is mostly populated by the
children and in the last phase of the day the population is



Physical Features ImmediateStrategy ClassificationChin-type Height (ft)
Square, Pointed 1 - 4 Pass-front Child (Male, Female)
Square 4 - 7 Pass-behind Young Man
Pointed 4 - 7 Respectful Young Woman
Square, Pointed 4 - 6 Bump Old (Man, Woman)

Table 1: Modeled attributes of human agents for middle eastern social context

concentrated with young people. The distribution statistics
for each time of the day is as follows

• Morning-Time - 10% Children, 20% Young

• Evening-Time - 30% Old, 30% Young

• Night-Time - 70% of Young, 10% Children

Experiment Set II: Varying strategies with same
population distribution

In these sets of experiment, we vary different strategies of
the robot for its micro-conflicts with the agent. The robot
would either be very polite, bully or would play a strategy
against another agent based on the social status of the op-
ponent. The age group dynamics for the population in this
particular experiment were 70% males, 40% young and 30%
children.

Training the classifier of the robot

The robot uses a Naı̈ve Bayes classifier which has been
trained with a set of hundred examples using the data-set
generated from Table 1. The height attributes of training set
used for Naı̈ve Bayes training set has the following statistics:
After classification of the social status of the human, the
robot selects the strategy using the social graph as shown
in Figure 4.
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Figure 4: Social Behavior Graph for the robot

Results
For the first set of experimental results as given in Figure 5
we observe that on average the highest social cost was in-
curred by the robot when it was maneuvering for its mis-
sion during the night time. This is due to the fact that the
robot defects for both gender types of the young people as
given in Figure 4. Similarly, minimal social costs occur dur-
ing the daytime and during the evening when the population
consists mainly of the children and elderly people. Hence in
this case the robot has minimal penalty for social costs when
cooperates and others defect. This is direct reflection of the
robots consistent cooperative policy of interaction with the
children and elderly people (see Figure 4).
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Figure 5: Experimental Results I. Sum of the maximum so-
cial costs / micro-conflict.

From Figure 6, we observe that the most expensive mis-
sions were the ones that took place during the daytime and
the evening. The trend of high mission costs is associated
with those duration most of the population was constituted
of children and elderly people (above 70% in this case).

For the next experimental setup (see Experiment set II
in Section ), we had modeled the population using major-
ity of agents as defectors: they will defect when they will
face the micro-conflict with the robot. In this scenario more
than 60% of agents are defectors (against robot strategy of
cooperation) and hence, we see an increasing trend mission
costs (see Figure 7).

From Figure 7 we can see that if our robot knew before-



Attribute Class-Type
Male Child Female Child Young Man Young Woman Old Man Old Woman

Height (mean) 2.49 2.48 6.06 5.96 5.06 5.01
Height (std. dev.) 1.063 1.0722 0.7851 0.8237 0.8224 0.8426

Table 2: Height attribute from the training-set for the human classes
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Figure 6: Experimental Results I: Sum of the mission costs.

hand to be polite during all of the micro-conflicts, then the
conflicts with those opponents whom defect would result
in lower mission cost. This trend can be observed for the
“respectful” strategy, where the mission cost still remains
low as compared to the “classification strategy”. The reason
behind this low cost using “respectful” strategy arises due
to the fact that no-collision whatsoever may take place as
the robot would be cooperative during all of those micro-
conflicts.
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Figure 7: Experimental Results II: Sum of the mission costs.

Related work
The works described in this section are related to the con-
tributions which consider similar or related scenarios as
of ours. agent in HiDAC (Pelechano, Allbeck, and Badler
2007) is modeled individually with unique behavior without
the need of a modeling using a common centralized con-
troller. The authors use two-tier model where the high-level
contributes to the performance of agent behavior such as
navigation, learning, decision-making and communication.
The low-level module incorporates the perceptions required
to model the reactive behavior of agent for collision avoid-
ance. In (Guy et al. 2011) the authors present a unique way to
generate heterogeneous crowd behavior using the personal-
ity trait theory. Their model was constructed by performing
statistical analysis of humans-behavior’s collected through
user study. For the indexing of human-behavior, the partic-
ipants were shown the baseline video which was used in
comparison with another human-behavior simulated video.
Afterwards the participants were asked to describe the dif-
ferences in behavior as being more or less “Aggressive”,
“Shy”, “Assertive”, “Tense”, “Impulsive” and “Active”. Us-
ing this data they mapped the crowd simulation parame-
ters to the perceived behavior’s of agents in their simula-
tions. In (Mehran, Oyama, and Shah 2009) the authors use a
computer vision technique to analyze the social force model
for detection of abnormal behavior in crowd scenes. There
unique approach technique was also able to capture the dy-
namics of the crowd behavior without tracking individual
behavior.

An interesting class of game theoretic approaches govern-
ing encounters between mobile agents are based on model-
ing the human adversaries using Stackelberg games. Most
of these approaches consider a patrolling strategy, where
the goal is not the avoidance of a collision, rather a fa-
cilitation of patrolling, where opponent agents actively try
to avoid the patrol (Basilico, Gatti, and Amigoni 2009;
Amigoni, Gatti, and Ippedico 2008; Paruchuri et al. 2008).
This hide and seek game can be modeled as the zero-sum
strategic game where the hider selects the cell from the grid,
and the seeker seeks (selects) the cell chosen by the hider.
Modeling in terms of Stackelberg game with repeated in-
teractions, the strategy selection by follower (hider) is as-
sumed to be optimal based on the leader’s (seeker) strategy.
The possibility for hider to observe the seeker’s strategy be-
fore committing its own strategy radically influences the out-
come of the game. But as humans deviate from optimal se-
lection due to irrational behavior, its necessary for the leader
to incorporate such irrational behavior in its strategic model.
In (Pita et al. 2009) three such algorithms are introduced,
based on mixed integer linear programming which effec-



tively handles the uncertainties due to bounded rationality
and limited observations of adversary. Some of these algo-
rithms are currently being actively deployed (GUARDS(Pita
et al. 2011), PROTECT(Shieh et al. 2012)).

Conclusion
In this paper we developed a model for the behavior of an
autonomous robot in a social setting where certain types of
behaviors incur social costs. While pursuing their own goals
or missions, the social agent will occasionally encounter
micro-conflicts, where a suitable balance between social and
mission costs must be found for each agent. We argued that
the right approach for a robot is not a strategy to avoid all
of social costs. Instead, the robot must present a consistent
strategy against specific types of human interaction partners.
This would allow the humans to form a mental model of
the robots behavior (a “theory of the robot mind”) and ad-
just their own behavior accordingly. Our future work will be
directed in applying the proposed model in more complex
interaction scenarios and validate them through various ex-
perimental, simulation and survey-based methods.
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