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School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816–2362

Email: vpryyma,turgut,lboloni@eecs.ucf.edu

Abstract

Recent progress in energy harvesting technologies made it possible to
build sensor networks with rechargeable nodes which target an indefinitely
long operation. In these networks, the goal of energy management is to
allocate the available energy such that the important performance metrics,
such as the number of detected threats, are maximized. As the harvested
energy is not sufficient for continuous operation, the scheduling of the active
and inactive time is one of the main components of energy management. The
active time scheduling protocols need to maintain the energy equilibrium of
the nodes, while considering the uncertainties of the energy income, which
is strongly influenced by the weather, and the energy expenditures, which
are dependent on the behavior of the targets. In this paper, we describe and
experimentally compare three active time scheduling protocols: (a) static
active time, (b) dynamic active time based on a multi-parameter heuristic
and (c) utility-based uniform sensing. We show that protocols which take into
consideration the probabilistic models of the energy income and expenditure
and can dynamically adapt to changes in the environment, can provide a
significant performance advantage.
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1. Introduction

The deployment model of sensor networks frequently makes access to ex-
ternal energy resources impossible. One of the earliest proposed application
areas of sensor networks was battlefield surveillance: a set of disposable sen-
sor nodes with a finite energy source are deployed randomly over an area. The
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finite lifetime of the network is a given, but seen as a necessary compromise.
Energy management techniques such as energy aware routing and active time
scheduling can be used to extend the useful lifetime of the network.

In recent years, research into techniques of energy scavenging (such as Sri-
vastava et al. [10], Paradiso and Starner [19], and Raghunathan and Chou
[21]) made the development of rechargeable nodes possible. This, however,
does not imply an unlimited energy supply, because the rate of energy con-
sumption is usually greater than the recharging rate. In these settings, the
lifetime of the sensor network can be possibly infinite (although in practice it
will be limited by the lifetime of components). The goal of the energy man-
agement is to maximize the utility of the sensor network in the conditions of
a finite energy harvest.

In this paper, we propose several approaches for active time scheduling
based energy management for rechargeable sensor networks. We will assume
that energy is acquired through a solar cell, thus it is dependent on the
weather (more exactly, the available sunlight). We assume that the goal of
the sensor network is to observe mobile nodes (threats) traversing the sensor
field. The more threats a node detects and the better it observes them, the
higher its utility. If a node runs out of its energy hours before dawn, it might
miss a number of threats. On the other hand, if the node arrives at dawn
with a large energy reserve, it means that it lost utility by either missing
threats during its longer-than-necessary scheduled inactive times, or that it
did not perform a thorough enough observation of the detected threats as it
became inactive while the threat is still in the sensing range.

Nondeterministic factors in the environment add additional challenges to
the problem. The energy harvest depends on the weather (through the avail-
able sunlight), which shows seasonal and day-to-day variation. The energy
consumption might be dependent on the number and temporal distribution
of the threats. Threats might be arriving during day-time or night-time, one-
by-one or clustered in tight groups. The speed and movement path of the
threats affect the amount of time they stay in the sensing range of a given
node.

The rest of this paper is organized as follows. We begin by summarizing
previous work in Section 2. In Section 3, we define our problem, including the
networking and deployment architecture, the energy harvesting model and
the threat model. In Section 4, we present three, progressively more complex
active time scheduling schemes which will be experimentally compared in
Section 5. We conclude in Section 6.
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2. Related Work

The idea of rechargeable sensors has been around for some time. Paradiso
and Starner [19] discuss several energy scavenging technologies for mobile and
wireless electronics. A number of power management issues for energy har-
vesting embedded systems are addressed by Raghunathan and Chou [21] and
Kansal and Srivastava [10]. Jiang et al. [6] describe the hardware aspects
of establishing perpetual environmentally powered sensor networks. Perfor-
mance tasking as well as several power management systems for rechargeable
sensors are presented by Kansal et al. [7, 8, 9].

Byers and Nasser [3] propose a utility-based decision-making process to
maximize the lifespan of a sensor network. This decision-making process
allows the sensor nodes to change their roles over time and dynamically ad-
just the routing paths to balance the energy consumption in the network.
Biand et al. [1] and Padhy et al. [18] show different utility-based mecha-
nisms for managing sensing and communication in large scale multi-agent
sensor networks. Nama et al. [14] propose a framework for cross-layer design
across transport, network, and link layers to find the optimal set of resource
allocation such that network utility and lifetime is maximized.

Kar et al. [11] introduce a dynamic node activation scheme, which is
specifically designed for networks with rechargeable sensors. At any given
time, a rechargeable sensor node is in one of the following states: active
(normal operation), passive (battery recharging), or ready (waiting for job
assignment). The dynamic activation scheme is distributed, requiring only
local state information, and performs close to the global optimum.

The adaptive duty cycling algorithm, introduced by Hsu et al. [5], allows
rechargeable nodes to autonomously adjust their duty cycle based on the en-
ergy availability in the environment. Zhu and Ni [25] propose a probabilistic
wakeup protocol which reduces the duty cycle of individual sensors, while ex-
ploiting the dense deployment of sensor networks. The system ensures that
the delay of detecting an event is statistically bound. A scheduling algorithm
that relies on the battery capacity of the sensors is presented by Moser et al.
[12] and a dynamic reconfiguration scheme for rechargeable sensor networks
is proposed by Nahapetian et al. [13]. Chen and Fleury [4] present a unique
coloring scheme that integrates duty cycling and collision avoidance into a
single schedule of node activities. Zhu et al. [24] focus on energy-efficient
event detection in wireless sensor networks and develop a localized algorithm
to determine sensor wakeups. Additionally, Premkumar and Kumar [20] pro-
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pose a scheduling scheme where only a minimal number of nodes are active
to minimize energy consumption.

Zafar and Corkill [23] propose a two-phase scheme for estimating a solar
energy harvesting model in situated agents. In the pre-deployment phase,
the agents learn as much as possible about their environment patterns. This
greatly reduces the amount of learning that each agent has to perform during
actual deployment. Thus, once in the deployment phase, the agents simply
complete their harvesting model.

3. System Architecture and Environmental Models

In this section, we describe the overall architecture of the considered
system. This includes (a) the sensor network architecture: the types and
roles of the deployed components and the networking protocols used for data
transfer, (b) the energy consumption model of the sensor nodes, (c) the
energy harvesting model, and (d) the threat model.

3.1. Autonomous network organization

The sensor network considered in our work is based on the autonomous
network architecture (ANSWER) proposed by Olariu et al. [15]. ANSWER
consists of a large collection of sensor nodes, whose primary actions include
continuous environment monitoring. The sensors also have low power data
processing and short range wireless communication capabilities. In addition
to the sensor nodes with limited energy, computational and data processing
capabilities, the ANSWER architecture utilizes stationary or mobile Aggre-
gation and Forwarding Nodes (AFN) to organize the sensors in their vicinity.
AFNs have the ability for long range communications, and have an infinite
supply of energy.

Each AFN organizes the neighboring sensor nodes into a dynamic co-
ordinate system centered on the AFN. This coordinate system allows for
dynamic network reconfiguration and provides a simple and low-cost cluster-
ing scheme for organizing the sensor nodes. The dynamic coordinate system
divides the surrounding area into coronas and wedges. Coronas are concen-
tric circles of increasing radii that are centered at the AFN. All coronas have
the same width, which is set to be slightly less than the transmission range
of the sensor nodes. Wedges are equiangular dividers that originate at the
AFN and extend to its full transmission range. The wedges are established
using directional transmission. This coordinate system is dynamic in nature

4



because it can be easily re-established in order to accommodate changes in
network topology.

The ANSWER architecture provides the means for activating selected
subsets of sensor nodes at any given time, so that energy is conserved by
the sensors that do not have to be involved in the current sensing process.
To accomplish this, the individual sensor nodes are activated based on a
coloring scheme. Using the signal strength readings obtained during the
establishment of the network, each node is assigned a specific color. Thus,
the corona segments are further subdivided into a number of color sets. The
color sets are numbered in the same order in each corona, partitioning the
entire network into a set of color graphs, such that all the sensors in any one
graph are represented as vertices with the same color, and any two vertices
within the transmission range of each other are connected by an edge.

Once the network is established, an ANSWER network can be used as an
environmental monitoring system by collecting the data acquired by the AFN
nodes to a sink. In a more interesting application pattern, a trusted mobile
node moving in the sensor instrumented area can improve its environmental
awareness by directly communicating with the AFNs.

This can be used in several potential applications:
Avoiding threats. In this application, we assume a set of mobile threat

nodes which are observed by the network. A trusted mobile node is trying to
move from a source to a destination position while trying to avoid the threat
nodes. In our case, a threat is considered to be an enemy vehicle capable
of destroying the mobile node. The AFNs, in turn, perform task scheduling
for the sensors under their control. If a threat is detected by a sensor, the
threat’s approximate position is first reported to an appropriate AFN, and
then relayed to the mobile node. Based on the information reported by the
AFNs, the mobile node can adjust its path in order to avoid the threats.

Intercepting targets. In this scenario, which corresponds, for instance,
to a border patrol application, the moving trusted node is asking the AFNs
for information which allows it to intercept a moving target. While the
networking architecture remains the same, the flow of information and the
associated active time scheduling challenges are different. In the previous
case, the focus of the network is on the trusted node and its predicted path.
Nodes which are far from the trusted node will not be activated. In the new
setting, the network needs to perform an overall search for possible targets.
Once the trusted node chooses a target, the network needs to follow the
selected target and forward information to the trusted node.
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Figure 1: The ANSWER architecture.

This architecture is illustrated in Figure 1. More details on the ANSWER
architecture and its functionality can be found in [15, 16, 17, 22].

3.2. Energy consumption model

Let Ea(t) represent the available energy of a rechargeable sensor node at
time t (measured in submultiples of joules). Let d(t) represent the energy
consumption (power) at time t, r(t) represent the harvested energy, and
eleak(t) represent the constant energy leak. These values are measured in
(submultiples of) watts (joules/second). We have:

Ea(t) =

∫ T

0

(r(t)− d(t)) dt−
∫ T

0

eleak(t) dt (1)

The energy consumption of a node depends on its current state.

Active state: when the node is actively communicating and sensing it
consumes energy at the rate given by the active power level, Pactive.

6



Obviously, the assumption that the energy consumption during the active
phase is constant is a simplification. The node might have various energy
levels depending on which sensors are turned on, and how frequently they are
sampled. Moreover, the cost of transmission is typically larger than the one
of sensing. The cost of transmission might also depend on the transmission
power, which, in turn, depends on the physical location of the node and the
distance to the neighbors.

Nevertheless, these variations will be amortized over time, unless the node
radically changes its active mode, such as renouncing the use of one of the
sensors or changing its physical location. Thus, Pactive needs to be understood
as an average value.

Inactive state: when the node is in the inactive (standby) mode, it
consumes energy at the rate given by the inactive power level, Pinactive.

Wake-up: the movement from the inactive to the active state requires
a transition which requires a relatively high energy consumption for a short
period of time. The power consumption of the wake-up phase is very high,
but it sums up to a fixed amount of consumed energy, Ewakeup. Thus, the
energy consumption of the active phase has a constant and a phase-variable
component.

3.2.1. Energy harvesting model

As our model assumes nodes which use solar energy for energy harvest-
ing, the amount of energy collected is proportional to the solar radiation
energy falling on the solar panels. This energy has both seasonal and day
to day variations. This information is relatively easy to acquire even before
deployment. The National Solar Radiation Data Base [26] maintains hourly
statistics for all the major airports in the US. Figure 2 shows three repre-
sentative examples of the measured global diffuse solar radiation r(t) at the
Orlando International Airport. Note that this information was obtained at a
horizontal, unobstructed surface. In a practical deployment, the existence of
various obstructions can change the shape of these diagrams. For instance,
a sensor with a solar panel mounted on the east side of a tree would expe-
rience significantly lower afternoon radiation values. On the other hand, a
device which can orient its panel to follow the sun can obtain higher values
than in the specified graph. Naturally, due to the limited energy efficiency of
the solar panels, the actual harvested energy is only percentage of the solar
radiation.

Predicting of the shape of the energy harvest curve can be an important
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Figure 2: Solar radiation values at the Orlando International Airport for a winter day
(January 1st, 2005), and two summer days (July 1, 2005 and July 4 2005) based on the
National Solar Radiation Database.

factor in the decision making process of the sensor nodes. Over the long run,
the node needs to be in a dynamic energy equilibrium. The energy level will
inevitably decrease during night time. It may even be possible for a node to
consume more energy than it produces over a 24 hour period. In the long
run, however, the node needs to equalize its energy consumption and energy
harvest, and it needs to guarantee that the energy never becomes zero (even
temporarily). Note that even for a node which has an overall positive energy
budget, it is possible to run out of energy during the night. Such an extended
inactive period leads to a massive loss of utility.

3.2.2. Observation model

The scenarios we consider assume that the sensors are used to detect rare
events - rather than monitoring continuous phenomena. In the latter case,
for instance, for a sensor which collects temperature or humidity readings,
the sensor has little leverage in managing its energy budget: it needs to
wake up with some regularity to make measurements. In the case of rare
events however, a period in which an event is observed normally comes with
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a larger energy expenditure compared to a quiet period, as the node needs
to communicate additional information.

Another factor in the energy expenditure is the “don’t lose the target”
heuristic. This common sense principle requires that a node will not become
inactive during the tracking of a target in its sensor range even if its active
time scheduling would require it. This is justified by the rarity of target
sightings and the high importance of the targets. All the algorithms we con-
sider in this paper implement this heuristic. As a note, a more sophisticated
system might allow a sensor node tracking the target to become inactive, pro-
vided that one or more sensor nodes have “acquired” the target. However,
our algorithms do not implement these mechanisms.

The additional cost of observations require the active time scheduling
algorithm to take into consideration the number of the observations a node
is likely to make. A node which expects to track 100 targets during the day
needs to budget differently compared to a node which expects to track 10
targets a day.

The observation model is naturally stochastic in nature and can be learned
from historical data as well as a priori considerations. Perimeter control sys-
tems expect most days without intruders. On the other hand, illegal border
crossings in many areas are frequent and subject to relatively predictable
seasonal variations. Battlefield sensing involves a much higher uncertainty,
but even here, certain assumptions can be made about the maximum number
of targets.

4. Three Schemes For Active Time Scheduling

4.1. Static active time approach

In this case, the schedule contains a regular alteration of the active and
inactive intervals for the complete duration of a day. During a day T = 24h,
there will be n such cycles, where n = T/(tinactive + tactive).

The total energy used by the node will be:

D(t) =

∫ T

0

d(t) dt = n · (tinactive · Pinactive + tactive · Pactive + Ewakeup)

The challenge is to determine the tactive and tinactive values. The resulting
schedule needs to satisfy a series of conditions. First, assuming that the
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node starts the day with a certain energy reserve, Eres, we require that the
remaining energy of the node should never be zero:

Eres−k·(tinactive·Pinactive+tactive·Pactive+n·Ewakeup)+

∫ k·(tinactive+tactive)

0

r(t) dt > 0

Note that this can be achieved by a sufficiently high energy reserve at the
beginning of the day. If this condition is not satisfied, the node will reach
a point where it cannot turn itself on. If this happens, a long period of
inactivity will result.

Second, the overall energy budget of the day should be non-negative:

−n · (tinactive · Pinactive + tactive · Pactive + Ewakeup) +

∫ T

0

r(t) dt > 0

If this condition is not satisfied the node will start the next day with a
smaller energy reserve. As the rechargeable sensor network is designed for
infinite operation length, this will eventually lead to the node exhausting
its energy reserve, and thus violating the previous equation, resulting in
unplanned inactive periods.

As a note, in these formulas we assumed that the battery capacity is not
a limiting factor. If a battery is fully charged, the harvest rate r(t) is limited
by the current consumption rate, and the available energy is limited by the
battery capacity.

Everything else being equal, the faster alternation of active and inactive
time increases observation quality. The main goal of the sensing is to detect
targets in the sensing range. A node might miss a target if the target enters
and exits the area during an inactive interval. With a shorter inactive inter-
val, the sensor is more likely to catch at least a part of the target’s presence in
its sensor range. At the same time, a faster alternation of active and inactive
times leads to a higher energy consumption, due to the fixed wake-up costs.

Figure 3 illustrates the static active scheduling over the course of one
day, where three observations are made at 2am, 4am and 10pm (which trig-
ger the “don’t lose the target”). As a note, in Figures 3, 4 and 5, the size
of the inactive time slot was set to 20 minutes to ensure a better readability
of the figure. In a real deployment, the alternation of the active and inac-
tive time slots would be faster, but the relative size of active and inactive
slots will be the same. The three values represented in these graphs have
different dimensionality, thus their absolute values should not be compared
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Figure 3: Static active time schedule over the course of a day (1440 minutes): the evolution
of the energy income and available energy.

against each other. Plotting them on the same axis (time) helps illustrate
the interrelationship between their trends.

4.2. Dynamic active time approach based on a multi-parameter heuristic

We have seen that the lack of dynamic adaptation to unexpected events
is a significant drawback of the static active time approach. The natural
alternative is to make the active time able to dynamically change in response
to events by calculating the length of the next active time slot based on the
sensor node’s knowledge about the world: its energy harvest and consump-
tion models, the observation models, and so on. Many of these models are
probabilistic in nature. Unfortunately, sensor nodes are characterized by low
computational power and memory; they can neither represent nor calculate
overly complex probability distributions. In addition, the cost of such com-
putation can be comparable with the energy consumption savings obtained
by a better schedule.
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To avoid the need for complex computations, we propose a multi-
parameter heuristic, which achieves dynamic scheduling based on a simple,
heuristically determined formula, which takes into account various compo-
nents of the world knowledge of the sensor. These input parameters consist
of the length of the previous active time slot, the amount of currently stored
energy in a node, the probability of encountering a threat, and the number of
one-hop neighbors. The formula for calculating the length of the next active
time slot is:

T new
active = T old

active

rnew(t)

rold(t) + rnew(t)
+

E(t)

α · d(t)
+ Cth + Cn (2)

The recharging rates rnew(t) and rold(t) change with time to reflect the
change in available energy for harvesting in the environment. E(t) is the
amount of available energy at time t, while d(t) is the energy consumption
rate at time t.

The parameter α depends on the available energy, and is a positive con-
stant if the stored energy in a node is above fifty percent of total capacity,
and a negative multiplier otherwise. The parameter Cth depends on the prob-
ability of encountering a threat. It increases gradually each time a threat is
detected and decreases for every time interval during which no threats were
observed. This reflects the intuition that the threats might be coming in
clustered groups or teams. Finally, Cn is a parameter which increases with
the number of one-hop neighbors of the node. Thus, the length of the active
time slot will decrease when the node has little stored energy, and increase
when the node has a lot of stored energy. The modifiers Cth and Cn further
impact the length of the active time slot so that the active period is increased
if the probability of encountering a threat is high, and decreased if there are
many other sensor nodes nearby.

Figure 4 shows an illustration of the dynamic active time slot approach.

4.3. Utility-based active time scheduling

Let us now discuss some of the drawbacks of the previously proposed
approaches. The static active time scheduling has the benefit of a consistent
observation schedule. However, if the number of observations are higher than
expected, the static active time scheduling approach will consume more than
its expected budget, and the node can run out of energy. To avoid this, the
static schedule needs to budget its energy very conservatively assuming the
largest number of observations. As a result, the static schedule will run an
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Figure 4: Dynamic active time schedule over the course of a day (1440 minutes): the
evolution of the energy income and available energy.

energy surplus almost all the time - but it will not provide the best possible
observation ability.

The dynamic active time approach does not suffer from this problem,
because if it overruns its energy budget, it will dynamically reduce the length
of the of the active slot – thus it will not run out of energy. However, if the
original assumptions were bad, it will be necessary to reduce the active time
slot to very small values, which would also reduce the ability of the network
to detect intruders (even if it is better than a complete shutdown).

In the following, we present a utility optimization based approach to ac-
tive time scheduling. In the Uniform Sensing Protocol, the sensor nodes first
calculate their energy budget at the beginning of each day and night cycle.
Once this is accomplished, the length of the active time slot is estimated as

Tactive =

{
min

(
Tmax

active,
E(t)

k(d(t)−2r(t))

)
if d(t) > 2r(t)

Tmax
active otherwise

(3)
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where E(t) represents the amount of currently stored energy in a sensor node,
and d(t) and r(t) are the rates of energy consumption and gain respectively.
The intuition behind the multiplier 2 for the r(t) value is that the energy
harvest happens both during active and inactive periods, while energy is
consumed only during the active periods.

The parameter k represents the number of active and idle slots experi-
enced by a sensor in a single day and night cycle. The number of active slots
in a single cycle increases with increasing value of k. However, the length of
a single active slot decreases with increasing k.

The parameter k has to be chosen a priori and has to satisfy the following
condition:

kTactive ≤ Tcycle (4)

In case of equality, the node will maintain its energy at the end of the day
provided that it never needs to extend its active period due to the presence
of threat nodes. The value of k also depends on the probability that a
sensor node will encounter a certain number of threats. If a sensor has high
probability of encountering only a few threats, then the value of k can be
reduced such that active periods are longer but less frequent. On the other
hand, if a sensor node has a high probability of encountering many threats,
then the value of k can be increased in order to have more active time slots.
We assume that the number of threats the node will probably encounter
is normally distributed around the average value of previous day and night
cycles. We make the assumption that the number of the threats will not
exceed the mean plus four standard deviations, which, if our assumptions
are correct, will provide a 99.993% confidence.

Once the sensor nodes calculate their respective probabilities of encoun-
tering threats, as well as their energy budget, they compute corresponding
Tactive and begin sensing. If a sensor does not encounter any threats, then
its Tactive will remain unchanged throughout the entire day and night cycle.
At the onset of a new cycle, each node will recompute its threat probability
and energy budget, as well as set a new value for Tactive.

However, once a sensor encounters a threat, it will extend the length
of Tactive for as long as it can sense that a threat is present (the “don’t
lose the target” heuristic). Once a threat moves out of the sensing range,
the sensor node will recompute its energy budget, based on the currently
available energy, and adjust the length of Tactive such that uniform sensing
can be continued for the remainder of the current cycle. This is illustrated in
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Figure 5. To illustrate the way in which the Uniform Sensing Protocol adjusts
to the unexpected events, we have added several long sensing sessions during
the middle of the day. We can see that the agent adjusts its active time, and
terminates the day with the same energy reserve it began.

A major advantage of the Uniform Sensing Protocol over the static and
dynamic active time slot approaches is the fact that uniform sensing does not
leave any large openings in the network to be exploited by intruders. In other
words, an intruder always has the same chance of being detected, regardless
of when it attempts to infiltrate into the network area. This does not hold
true for the static and dynamic active period schemes. On the contrary, an
intruder has a much higher chance of passing through the network undetected
towards the end of the cycle, when most of the sensors have run out of energy,
or have drastically reduced their time spent in the active state.

In addition, our protocol is able to adjust to various changes in the en-
vironment. For example, if the amount of energy available for harvesting
changes due to events such as cloud cover or the nightfall, the sensor nodes
will recompute their energy budget taking this into account. Since accurate
intruder tracking is very important, the sensors can extend the length of their
active time slot for as long as they sense the intruder’s presence. However,
once the threat moves out of the sensing range, the sensor nodes involved will
once again adjust their Tactive to provide uniform sensing. This is confirmed
by our simulation results.

5. Simulation Study

In order to compare the proposed active time scheduling approaches, we
have implemented an environment similar to the one described by Olariu
et al. [15] in the YAES simulator [2]. In addition to the networking pro-
tocols, we have also implemented the energy consumption and harvesting
model of the sensor nodes. The energy harvesting model was based on the
assumption of a solar panel based energy harvesting. We implemented the
environmental model based on the solar radiation values measured at the
Orlando Internatinal Airport.

This scenario involves the movement of a trusted mobile node from a start
to an end location. The node uses the information to avoid encounters with
a number of threat nodes which move randomly in the environment. If the
trusted node approaches a threat node closer than the threat’s sensor range,
the mission is considered a failure.

15



0 200 400 600 800 1000 1200 1400
Time of the day (minutes)

 

 
Consumed energy
Energy income
Remaining energy

Figure 5: Utility-based active time schedule over the course of a day (1440 minutes): the
evolution of the energy income and available energy.

As a note, the behavior of the trusted node and the threat nodes is
relatively simplistic in these settings: the threat nodes are following a random
waypoint movement model, and do not actively search for nodes. When
notified of the presence of a threat node, the trusted node takes a simple
evasive maneuver by moving away from the threat.

We do not consider the time to reach the target location as a performance
factor. As the threat node does not pursue the trusted node, virtually all the
failures are due to the trusted node not having sufficient information about
the location of the threat nodes. In effect, thus, this scenario measures the
performance of the active time scheduling.

Table 1 shows a summary of our simulation parameters and their values.
In the following results, whenever we omit the specification of a parameter,
the default value specified in Table 1 is used.
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Table 1: Simulation Parameters
Parameters Value Range

Common
area 900× 600(m2)
number of mobile nodes 1
number of AFNs (sinks) 6
number of threat nodes 10 1-10
mobility of threat nodes 1 (m/s) 1-5
number of sensors 200 100-300
sensor transmission range 50 (m)
sensor sensing range 25 (m)
max battery capacity 1000 (units)
discharge rate 5.0 (units/s)
recharge rate 2.3 (units/s)
single cycle time 3000 (s)

Dynamic active time approach
Cth 10× average threats –
Cn 10× no. of neighbors –
α +4 or -4 –

Utility-based approach
k 50 –

5.1. Simulation results

5.1.1. Average number of failures

In our scenario, the main goal of the network was to avoid node failures,
that is, cases when the trusted mobile node cannot avoid being intercepted
by a threat node. This happens when the node is not aware of the presence
of the threat node (or it is notified too late). In our first series of experiments
we measure the number of failures averaged over 100 runs with random initial
conditions. As we have only one trusted mobile node, which either fails or
not, the failure rate will be a number in the [0, 1] range.

Figure 6 shows the results of the average number of failures versus the
number of sensor nodes for all three approaches. As we expected, the number
of failures are decreasing with the increase in the number of nodes, with a
particularly sharp drop between 150 and 250 nodes. What we see is that
the values are very high, in the 0.75-0.95 range for 100 nodes, while they are
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below 0.1 for all protocols at 300 nodes. As expected, the utility based active
time slot scheduling provides the best result, followed by the the dynamic
active time slot algorithm and the static active time slot approach.

To interpret the graph correctly, we need to emphasize that a properly
working sensor network would not operate in the regime described at the
left part of the graph, thus the differences between the approaches in that
range lack practical importance. For instance, at 150 deployed sensor nodes,
the failure rate for the utility based active time slot scheduling is about 0.5,
while for the static time slot approach is 0.85 – a very big difference, but
largely irrelevant, because even 0.5 is an unacceptably high number. On the
other hand, it is important that at 275 nodes and above, the failure rate
for dynamic active slot and utility based scheduling drops to virtually zero,
while for static active slot remains at around 5%.

Another important factor in the failure rate is the mobility of the threat
nodes. Intuitively, the faster the threat node moves, the harder it is to evade
it, and an earlier notification is necessary for a successful evasive maneuver.

Figure 7 shows the average number of failures as a function of the mobility
of the threat nodes. We see that the utility based active time scheduling
approach provides the best performance and is virtually independent of the
mobility of the threat nodes, while the other two approaches show a gradual
increase.
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Figure 6: Average number of failures versus the number of sensor nodes.
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Figure 7: Average number of failures versus the mobility of the threat nodes.

5.1.2. Mean time to failure

Another way to look at the performance of the sensor network is by
measuring the average time a mobile node can survive in an environment
(the mean time to failure). Figure 8 shows the mean time to failure versus
the number of active nodes. As expected, the rankings of the protocols are
very similar to the ones for the average failures. The utility based active time
slot scheduling provides the best result, followed by the the dynamic active
time slot model and the static active time slot approach.

5.1.3. Detected threats

A related, but different measure of performance is concerned with the
number of threat nodes detected by the network and the percentage of time
when these nodes are kept under observation by at least one sensor node
during their path in the system. In contrast to the previous metrics, this
metric does not depend on the trusted mobile node. A threat might be
entering the network and leaving harmlessly without being detected. Such a
missed target would not affect a failure metric, but it is a potential danger
for the overall system. Figure 9 shows the ratio of the detected threat nodes
versus the threat nodes leaving the system without being detected. Figure 10
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Figure 8: Mean time to failure versus the number of sensor nodes.

shows the average percentage of time the threat nodes were under observation
by at least one sensor node.
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Figure 9: Ratio of detected threats to the number of present threats.
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Figure 10: Percentage of time the threat nodes spent under observation.

5.1.4. Energy consumption

In non-rechargeable sensor nodes the goal of energy management is clear:
we are trying to use as little energy as possible, while maintaining the detec-
tion performance at an acceptable level. For a rechargeable sensor, the goal
is more complicated: the node needs to keep its energy consumption below
the energy harvest, to maintain indefinite operation. At the same time, it
needs to consume as much of the energy harvest as possible to attain the
best performance, without expanding it. This leads to a delicate balancing
act: consuming a share of 0.99 of the energy harvest is better than 0.95, but
1.01 is not acceptable! Naturally, such tight bounds are difficult to achieve.

Figure 11 illustrates the energy consumption of the three approaches as a
function of the number of nodes, while Figure 12 as a function of the mobility
of the threat node. For all the graphs, the energy consumed is expressed as
a fraction of the harvested energy. For all approaches, the utility based
scheduling showed the highest energy consumption, at around 0.9-0.95 of the
harvested energy, followed by the dynamic and static active time scheduling
approaches.

This difference in the consumed energy is the major reason behind the
improved sensing performance of the utility based scheduling. We need to
consider the case of static scheduling: naturally, the energy consumption can
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be set higher or lower by adjusting the constant active period. The energy
budget however, is affected by the observations (through the “don’t lose the
target” heuristics) and the uncertainty of the energy income. The static
scheduling method needs to start out with a more cautious approach than
the other ones because it does not have the ability to adjust to the changing
conditions during the day.
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Figure 11: Average energy consumption versus the number of sensor nodes.

6. Conclusions

In this paper we proposed and compared three active time scheduling
schemes for wireless sensor networks with rechargeable nodes. The simulation
results show that both the multi-heuristic dynamic active time approach
and the utility-based active time scheduling significantly outperforms the
static active period protocol. As the performance strongly depends on the
quality of the probabilistic weather and target models, one direction of future
research involves developing models which can learn in the field the specifics
of their deployment environment. Another direction of our future research
is directed towards distributed algorithms in which nodes can trade their
responsibilities depending on their current and predicted energy budget as
well as the relative importance of their deployment position in the early
detection of threat nodes.
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Figure 12: Average energy consumption versus mobility.
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[2] L. Bölöni and D. Turgut. YAES - a modular simulator for mobile net-
works. In MSWiM ’05: Proceedings of the 8th ACM Symposium on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems, pages
169–173, October 2005.

[3] J. Byers and G. Nasser. Utility-based decision-making in wireless sensor
networks. In MobiHoc ’00: Proceedings of the 1st ACM International
Symposium on Mobile Ad hoc Networking & Computing, pages 143–144,
October 2000.

[4] Y. Chen and E. Fleury. A distributed policy scheduling for wireless sen-
sor networks. In INFOCOM ’07: Proceedings of the 26th IEEE Inter-
national Conference on Computer Communications, pages 1559–1567,
May 2007.

[5] J. Hsu, S. Zahedi, A. Kansal, M. B. Srivastava, and V. Raghunathan.
Adaptive duty cycling for energy harvesting systems. In ISLPED ’06:

23



Proceedings of the 2006 International Symposium on Low Power Elec-
tronics and Design, pages 180–185, October 2006.

[6] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered
sensor networks. In IPSN ’05: Proceedings of the 4th International
Symposium on Information Processing in Sensor Networks, pages 463–
468, April 2005.

[7] A. Kansal, J. Hsu, M. B. Srivastava, and V. Raghunathan. Harvesting
aware power management for sensor networks. In DAC ’06: Proceedings
of the 43rd Annual Conference on Design Automation, pages 651–656,
July 2006.

[8] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management
in energy harvesting sensor networks. ACM Transactions on Embedded
Computing Systems, 6(4):32, September 2007.

[9] A. Kansal, D. Potter, and M. B. Srivastava. Performance aware tasking
for environmentally powered sensor networks. SIGMETRICS Perfor-
mance Evaluation Review, 32(1):223–234, June 2004.

[10] A. Kansal and M. B. Srivastava. Energy harvesting aware power man-
agement. In N. Balusu and S. Jha, editors, Wireless sensor networks:
A systems perspective. Artech House, April 2005.

[11] K. Kar, A. Krishnamurthy, and N. Jaggi. Dynamic node activation in
networks of rechargeable sensors. IEEE/ACM Transactions on Network-
ing, 14(1):15–26, February 2006.

[12] C. Moser, D. Brunelli, L. Thiele, and L. Benini. Lazy scheduling for
energy harvesting sensor nodes. In From Model-Driven Design to Re-
source Management for Distributed Embedded Systems, pages 125–134.
Springer Boston, 2006.

[13] A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini, and M. Sar-
rafzadeh. Dynamic reconfiguration in sensor networks with regenerative
energy sources. In DATE ’07: Proceedings of the 2007 Conference on
Design, Automation and Test in Europe, pages 1054–1059, April 2007.

[14] H. Nama, M. Chiang, and N. Mandayam. Utility-lifetime trade-off in
self-regulating wireless sensor networks: A cross-layer design approach.

24



In ICC ’06: Proceedings of the IEEE International Conference on Com-
munications, pages 3511–3516, June 2006.

[15] S. Olariu, M. Eltoweissy, and M. Younis. ANSWER: AutoNomouS net-
Worked sEnsoR system. Journal of Parallel and Distributed Computing,
67(1):111–124, January 2007.

[16] S. Olariu, A. Wadaa, L. Wilson, and M. Eltoweissy. Wireless sensor
networks: leveraging the virtual infrastructure. In IEEE Network, pages
51–56, July-August 2004.

[17] S. Olariu, Q. Xu, and A. Y. Zomaya. An energy-efficient self-
organization protocol for wireless sensor networks. In ISSNIP’04: Pro-
ceedings of the 2004 Intelligent Sensors, Sensor Networks and Informa-
tion Processing Conference, pages 55–60, December 2004.

[18] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings. A utility-
based sensing and communication model for a glacial sensor network.
In AAMAS ’06: Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 1353–1360, May
2006.

[19] J. A. Paradiso and T. Starner. Energy scavenging for mobile and wire-
less electronics. IEEE Pervasive Computing, 4(1):18–27, January-March
2005.

[20] K. Premkumar and A. Kumar. Optimal sleep-wake scheduling for quick-
est intrusion detection using wireless sensor networks. In INFOCOM
’08: Proceedings of the 27th IEEE International Conference on Com-
puter Communications, pages 1400–1408, April 2008.

[21] V. Raghunathan and P. H. Chou. Design and power management of
energy harvesting embedded systems. In ISLPED ’06: Proceedings of the
2006 International Symposium on Low Power Electronics and Design,
pages 369–374, October 2006.

[22] A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. Training a
wireless sensor network. Mobile Networks and Applications, 10(1-2):151–
168, February 2005.

25



[23] H. Zafar and D. Corkill. Simplifying solar harvesting model-development
in situated agents using pre-deployment learning and information shar-
ing. In ATSN’08: Proceedings of 2nd International Workshop on Agent
Technology for Sensor Networks, pages 41–48, May 2008.

[24] Y. Zhu, Y. Liu, L. Ni, and Z. Zhang. Low-power distributed event
detection in wireless sensor networks. In INFOCOM ’07: Proceedings of
the 26th IEEE International Conference on Computer Communications,
pages 2401–2405, May 2007.

[25] Y. Zhu and L. M. Ni. Probabilistic wakeup: adaptive duty cycling for
energy-efficient event detection. In MSWiM ’07: Proceedings of the 10th
ACM Symposium on Modeling, Analysis, and Simulation of Wireless
and Mobile Systems, pages 360–367, October 2007.

[26] National solar radiation data base. http://rredc.nrel.gov/solar
/old data/nsrdb/.

26


