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Abstract

In the convoy formation problem, two embodied agents are negotiating the synchronization
of their movement for a portion of the path from their respective sources to destinations. As
equilibrium strategies are not practically possible, we are interested in strategies with bounded
rationality, which achieve good performance in a wide range of practical negotiation scenarios.
Naturally, the performance of a strategy is dependent on the strategy of the opponent and the
characteristics of the scenario. The goal of this paper is to develop a collaborativeness metric

of the negotiation scenario which formalizes our intuition of collaborative scenarios (where the
agents’ interests are closely aligned) versus competitive scenarios (where the gain of the utility
for one agent is paid off with a loss of utility for the other agent).

We are using the Children in the Rectangular Forest (CRF) game as a canonical model of
convoy formation, assume zero initial knowledge and a negotiation protocol requiring manda-
tory, but non-binding evaluations of the opponents offer. We also assume that the negotiation
happens in physical time. We describe two negotiation strategies: the comparatively simple
Internal Negotiation Deadline (IND) strategy and the computationally more expensive Uniform
Concession (UC) strategy. Then, we describe how these strategies can be augmented by collabo-
rativeness analysis: we approximate the collaborativeness metric in the first several negotiation
rounds, and use the result to cut short the negotiation when the estimated collaborativeness is
lower than a threshold. Through an experimental study, we show that augmenting the strategies
with collaborativeness analysis significantly improves their performance for low collaborativeness
scenarios, with only a minimal penalty in high collaborativeness scenarios.

1 Introduction

Collaboration between embodied agents often requires the temporal and spatial collocation of the
agents. Agents need to coordinate their movements, agree on meeting points, time, common path and
speed, as well as locations where they split and start moving on independent trajectories. Such convoy
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formation problems appear as sub-problems in many practical applications such as transportation
and disaster rescue.

The evaluation (and creation) of offers in convoy formation problems is computationally expensive,
as it often involves path planning. As the negotiation happens in real physical time, agents can
not afford to evaluate a large number of offers for feasibility and utility. As equilibrium strategies
are not practically possible, we are interested in developing strategies with bounded rationality,
which achieve good performance in a wide range of practical negotiation scenarios. Naturally, the
performance of a strategy is dependent on the strategy of the opponent and the characteristics
of the scenario. The utility of a deal alone for a particular agent is not a good measure of the
quality of the negotiation strategy; we also need to consider whether better deals were overlooked
or whether the agent had “outsmarted” the opponent, by convincing it to accept a lesser deal. We
also have an intuition of collaborative scenarios (where the agents interests are closely aligned) versus
competitive scenarios (where the gain of the utility for one agent is paid of with a loss of utility for the
other agent). Empirical observations of negotiation traces show that certain negotiation strategies
perform better in collaborative scenarios while others in competitive scenarios. Thus, if we know the
collaborativeness of a scenario, we can predict the performance of a negotiation strategy, and choose
strategies accordingly. To accomplish this, we need a metric of the collaborativeness of a scenario.

To show the intuition behind collaborativeness in a negotiation scenario, let us first consider
the split the pie game, frequently used to model worth oriented negotiations. Here two agents are
negotiating over how to partition a pie into two disjoint pieces by making partitioning offers in each
turn which can be accepted or declined by the opponent. As the parts allocated to one agent are
lost for the other agent, the single pie game is fully competitive. A fully collaborative game would
be one in which there would be a solution where both agents get the full pie.

In a multiple-pie game the agents are partitioning multiple pies over which they have different
valuations. As long as the valuations are all positive, the game remains fully competitive. Note that
although all zero-sum games are fully competitive, not all fully competitive games are zero sum1.
For instance, a “split multiple pies” game where the agents value the different pies with different,
positive values, is still fully competitive, but not zero sum. On the other hand, a fully cooperative
game is one where there is a possible agreement which is individually optimal for both agents. An
example of a fully collaborative game is a split the multiple pie game with two pies P1 and P2, where
agent A values P1 positively and P2 negatively, while agent B values them the other way around. In
this case the agents can easily agree on a partitioning where agent A gets the pie P1, while agent B
gets the pie P2.

Similar considerations apply to the convoy negotiation, but the expressions of collaborativeness
are more complex because the utility of an offer is a non-linear function of the issues and not all
offers are feasible. The first goal of this paper is to develop a collaborativeness metric which matches
well with our intuition of collaborativeness as outlined above.

To illustrate the ways in which the proposed metric can improve negotiation performance, we
consider the practical negotiation setting of the Children in the Rectangular Forest (CRF) model, a

1Some game theory texts, such as [11] equate fully competitive with zero sum, by making the assumption that the
utility function is just a convenient expression of the preference ordering. In convoy formation, however, the utility
has the dimensionality of time, and it can not be arbitrarily scaled. There is a difference between a scenario where
a 1 second utility decrease from one agent gives 1 second utility gain to the other agent, and the scenario where 1
second utility decrease gives 100 seconds utility gain for the opponent. In our terminology the first scenario is fully
competitive and zero sum, while the second scenario is fully competitive but not zero sum.
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convoy formation setting in which the convoy advantage is the ability to traverse a region inaccessible
to individual agents. We consider that the negotiation happens in physical time, each negotiation
round taking a fixed amount of time tr. If the negotiation breaks down after a number of rounds,
the time to reach the destination will be larger than the conflict deal; thus negative utility values
are possible. We assume a zero knowledge starting point: all the information the agents have about
each other needs to be acquired during the negotiation. We assume the negotiation protocol to be
exchange of binding offers with mandatory, non-binding evaluations. The negotiation strategies for
the convoy formation problem need to simultaneously solve the problem of managing their concession
rate and search the offer space for solutions beneficial to both agents. We describe two negotiation
strategies: the Internal Negotiation Deadline (IND) adapts its spatial concession pace to a preestab-
lished deadline, while the Uniform Concession (UC) strategy pre-calculates pools of potential offers
for various concession levels, then selects its own offer at various concession levels based on the sim-
ilarity to the opponents’ offer. As we will see in the experimental study, UC in general outperforms
IND, at the cost of a much higher computational and memory requirements. Plotting the negotiation
results function of the collaborativeness of the scenario, we find that both strategies perform badly
for low collaborativeness scenarios, the utility dipping significantly below zero.

The next step is to identify how the collaborativeness metric can be used to improve negotiation
performance. The collaborativeness depends on both agents, thus, it can be accurately calculated
only by a full-knowledge supervisor. We describe an approach for approximating the collaborative-
ness in a zero-knowledge setting through the information acquired in the first several negotiation
rounds. We augment the two proposed strategies with collaborativeness analysis based on this ap-
proximation. The augmented strategies IND+CA and UC+CA approximate the collaborativeness of
the current scenario early in the negotiation, and, if the collaborativeness is lower than a threshold,
bring the negotiation to the quick positive or negative conclusion. The experimental studies show that
the augmented strategies significantly outperform the original strategies for difficult scenarios with
low collaborativeness, while performing only minimally worse in favorable, high collaborativeness
scenarios.

The remainder of this paper is organized as follows. Related work is discussed in Section 2.
Section 3 describes a formal model of the convoy formation problem and introduces the proposed
collaborativeness metric. Section 4 introduces the IND and UC negotiation strategies and describes
their versions augmented with collaborativeness analysis (IND+CA and UC+CA). An experimental
study comparing the performance of various negotiation strategies for scenarios of various levels of
competitiveness is described in Section 5. We conclude in Section 6.

2 Related work

While automated negotiation [8] generated a lot of interest in recent years, negotiation about spatio-
temporal issues in embodied agents has received relatively little attention. Nevertheless, many re-
search results in multi-issue negotiation or collaborative robotics have relevance to our work.

Sandholm and Vulkan [13] analyze the problem of negotiating with internal deadlines where the
deadlines are private information of the agents. The negotation problem is a “split a single pie”,
zero-sum negotation. They find that for rational agents, the sequential equilibrium is a strategy
which requires agents to wait until their deadline, and at that moment, the agent with the earliest
deadline concedes the whole cake.
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Fatima, Wooldridge and Jennings [3, 4] extensively study the problem of multi-issue negotation
under deadlines. The problem considered is the split multiple pie problem where the pie is assumed
to shrink after every negotiation round, under both complete information and incomplete informa-
tion assumptions. The authors compare three negotiation procedures: the package deal procedure
where all the issues are discussed together, the simultaneous procedure where issues are discussed
independently but simultaneously, and the sequential procedure where issues are discussed one after
another. The authors show that the package deal is the optimal procedure for both agents.

Ito, Klein and Hattori [7] consider negotiations in real world settings where the utility values are
non-linear. For instance, the value of the tires and the value of the engines can not be simply added
up when designing a car, as the issues constrain each other. The authors propose an auction-based
multi-issue negotiation protocol for negotiating among agents with a non-linear utility settings. The
protocol also includes a mediator, which is responsible to choose the deal with the largest social
utility from the deals made possible by the bids of the agents.

Golfarelli et al. [5] considers the case of robotic agents which are assigned a set of tasks which
are attached to physical locations. The tasks carry precedence constraints (execute one specific task
earlier than the other) and object constraints (fetch the object in order to execute the task). Agents
need to determine, on a network of places and routes, a sequence of places to be visited in order to
carry out a set of tasks. Through swapping tasks based on announcement-bid-award mechanism, the
agents can decrease their tasks execution costs in the map. An extended version of this work [6],
allows the agents to exchange clusters of tasks to avoid being stuck in local minima. To cluster similar
tasks, the authors calculate spatial distance and temporal distance of tasks, and apply thresholds to
differentiate between near and far tasks.

Saha and Sen [12] discuss the problem of negotiating efficient outcomes in a multi-issue negotiation
where some of the parameters of the agent are not common knowledge. The “distributive” and
“integrative” scenarios proposed by them are the equivalents of the “competitive” and “collaborative”
scenarios we define for the spatio-temporal negotiation problem.

Crawford and Veloso [2] applied the “experts” algorithm to solve the multi-agent scheduling
problem. In this algorithm the agent is helped by a number of “experts”, but it needs to decide
which experts’ advice it should follow. The learning agent can dynamically change its strategy
according to its opponents’ behavior. The performance of each algorithm is measured in terms of
total utility achieved over each of the trials.

3 Collaborativeness in the convoy formation problem

3.1 The general convoy formation problem

Let us start by defining the convoy formation problem for embodied agents. Two agents A and B
move from their source positions SA and SB to their destinations DA and DB. We assume that the
agents move along the paths given by the function Pa(t) → L, which we read by saying that agent a
is at the location L at time t.

At the initial timepoint t0 we have PA(to) = SA and we define the arrival time of A as the
smallest time tarr for which PA(tarr) = DA. For every path we define the unit cost cP (t), and the
cost of a time segment C(t1, t2) =

∫ t2

t1
cP (t)dt. Most of the time, we are interested in the cost of the

path CP (t0, tarr). In the simplest case we are only interested in the time to reach the destination.
This corresponds to a unit cost cP (t) = 1, and the cost of the path CP (t0, tarr) = tarr − t0. Many
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environmental factors can be modeled by the appropriate setting of the unit costs. For instance,
the unit cost might be dependent on the location cP (t) = f(PA(t)) or on the speed of the agent
cP (t) = f(P ′

A(t)). Locations or speeds which are unfeasible to the agent can be set to have an infinite
unit cost.

Two agents form a convoy if they are following the same path PA+B(t) over the period of time
[tjoin, tsplit]. An agent is motivated to join a convoy because of the convoy advantage: the unit cost for
the convoy is smaller than for the individual agent over the same path. One example is the case when
convoys can traverse areas which are not accessible to individual agents: ∃t ∈ [tjoin, tsplit] ∃l PA+B = l
with cP,A(t) = ∞ and cP,A+B(t) = c ∈ R. Naturally, convoy and non-convoy segments of the path need
to be continuous in space: PA(tjoin) = PB(tjoin) = PA+B(tjoin) = Ljoin and PA(tsplit) = PB(tsplit) =
PA+B(tsplit) = Ljoin. We call Ljoin and tjoin the join locations and time, and Lsplit and tsplit the split
locations and time, respectively.

We are considering self-interested agents which are searching for the path with the smallest
cost from source to destination. This path might or might not include segments traversed as a
convoy. In the following we assume that the agents are using negotiation to agree on the seg-
ment traversed as a convoy. The negotiation succeeds if an agreement is reached over a quadruplet
(Ljoin, tjoin, Lsplit, tsplit). Convoy negotiation is thus a multi-issue negotiation, with two temporal
and two spatial issues. It can be seen as a six-issue negotiation if we consider the spatial location
L = (x, y) as two issues.

3.2 Defining a collaborativeness metric

Each of us has an intuitive feel for negotiation scenarios which are “easy” because the negotiation
partners have a strong incentive to form a deal and for scenarios which are “hard” because a rational
agreement is difficult to find (or it might not exist). Also, we have an intuition of certain negotiation
scenarios where one of the participants has “more to gain” from an agreement.

Our objective is to develop metrics which match well with these intuitions, while abstract away
the other parameters of the scenario (such as the location and destination of the agents).

In the remainder of this paper we will assume that the unit cost is either unity (cp(t) = 1) or
infinity (cp(t) = ∞). Under these conditions, the cost of every feasible path is equal to the time to
destination, but not all paths are feasible. We will also assume that the agents negotiate in physical
time, with each negotiation round taking time tr, and the agent being immobile during negotiation.

We call the cost of an offer C(A)(O) of agent A for a particular offer O = {Ljoin, tjoin, Lsplit, tsplit}
the time it takes for the agent to reach its destination if it accepts the offer and follows the trajectory.
The lower the time to destination, the more desirable is the offer for the agent. The time to destination
is composed of three components: the time it takes for both agents to reach the meeting location, the
time for traveling together in the forest, and time from the split location to the agent’s destination.
We assume C(A)(O) = ∞ if the offer is unfeasible for the agent. The cost of the conflict deal C

(A)
conflict

is the time for the agent to reach its destination if it does not make any deal.
As time is passing during the negotiation, the actual cost of an offer made at negotiation round

n will be C
(A)
r=n(O) = n · tr + C(A)(O). This also applies to the cost of the conflict deal at round n:

C
(A)
conflict,r=n = n · tr + C

(A)
conflict.

Considering agents whose negotiation time is the physical time requires us to refine our definition
of rationality of a deal. At the beginning of the negotiation, at time t0, the agent has a conflict
deal path with cost C

(A)
conflict. According to the baseline rationality definition, any offer which has a
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higher cost than C
(A)
conflict is not rational and it will not be accepted by the agent. Any negotiation the

agent might enter implies a risk of conflict. Thus, at negotiation round n the agent might find itself
in the position that it has already incurred costs Cx = n · tr. If at this moment an offer with cost
C(A)(O) is received, it will be called pragmatically rational if C(A)(O) < C

(A)
conflict and baseline rational

if Coffer + n · tr < Cconflict. A rational agent will need to act based on the pragmatic rationality, as
the original conflict deal alternative is not available any more at this moment in time. Occasionally,
the agent might find it necessary to accept deals which are not baseline rational. In the rest of the
paper, unless explicitly mentioned differently, the term rationality will mean pragmatic rationality.

However, when we are measuring the overall performance of the negotiation strategy / action
strategy pairs, the term of comparison should be the original conflict deal. In order for a strategy
pair to be acceptable, it needs to be baseline rational at least in the statistical average.

Definition 1 The pragmatic utility of an offer O for agent A, denoted with PA(O), is the time
the agent saves accepting the offer compared to the conflict deal, considering no time spent on the
negotiation.

U (A)(O) = C
(A)
conflict − C(A)(O) (1)

The baseline utility of the offer which has been made at the n-th negotiation round is:

U (A)(O) = C
(A)
conflict − C(A)(O) − n · tr (2)

For instance, let us consider an agent whose time to destination is 45 minutes proceeding alone.
Let us assume that the agent spent 15 minutes negotiating a deal which takes it to destination in
40 minutes. The pragmatic utility of this deal is +5 while the baseline utility is -10. At time 15,
the negotiation time being already spent, the agent is better off taking the deal (which makes it
arrive at time 55) than taking the conflict deal (which makes it arrive at time 60). Thus, the deal is
pragmatically rational (at time 15). The deal however, is not baseline rational, because the original
conflict deal was 45, thus the agent would have been better off if it does not negotiate at all.

Definition 2 We define the absolute best time to destination C
(A)
ab for agent A the time it would

take it to reach the destination assuming an ideally performant and ideally collaborative negotiation
partner.

For the CRF problem, the trajectory associated to the absolute best time to destination is a
straight line from the source to destination traversed by the agent with its maximum velocity.

C
(A)
ab =

|SA, DA|

vA

(3)

This assumes that there is an ideal negotiation partner, who is (a) willing to accept any geometric
location for meeting and splitting points proposed by the agent, (b) its velocity is greater than or
equal of the current agent and (c) its current position is such that it can reach the meeting point at
a time earlier or equal with the time it takes agent A to reach it. Note that for a practical scenario,
the absolute best time to destination may not be feasible, even for an ideally cooperative negotiation
partner.

Definition 3 We define the ability constrained best time to destination C
(A),{B}
acb , of an agent

A negotiating with an agent B, the time A can reach the destination assuming an ideally collaborative
agent B.
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The ability constrained best time takes into account the physical limits of the negotiation partner
and the scenario. The meeting and split point of the offer associated with the ability constrained
best time might not be the one situated on the intersection of the straight line to destination with
the forest. The offer(s) associated with C

(A),{B}
acb might not be rational for agent B.

Let us consider an agent for which the absolute best deal involves meeting at point L1 at time
t1 = 20, with the agent reaching its destination at time tdest = 100. However, the opponent can not
physically make it to the point L1 in at time t1, because it is too far away. We need to search for a
deal which is feasible, for instance by extending the join time to t′1 = 30. This would also extend the
time to destination to t′dest = 110. Alternatively, we can also modify the location of the join point.

Definition 4 The rationality constrained best time to destination U
(A),{B}
rcb for agent A nego-

tiating with agent B is the time to destination of agent A which can be obtained assuming that agent
B will accept any offer, as long as it is rational for B.

For instance, let us consider a case the ability constrained best deal for the agent A would have
a time to destination 100, with meeting at point L1 and splitting at L2. Let us assume that this
trajectory is also feasible for agent B. It is still possible, however, that this trajectory would result
for the B in a deal which is worse than going around the forest alone. One reason for this might
be that the split point L2 is too far from the B’s destination DB. B will not accept such a deal. A
different deal would need to be negotiated, which, however, would normally be less advantageous for
agent A.

As C
(A),{B}
acb and U

(A),{B}
rcb introduce successive restrictions over C

(A)
ab , we have:

C
(A)
conflict ≥ C

(A){B}
rcb ≥ C

(A){B}
acb ≥ C

(A)
ab (4)

Each of these time to destination values define a set of one or more concrete offers which actually
achieve them. Thus we define a rationality constrained best offer of A to be an offer O

(A),{B}
rcb such

that
C(A)

(

O
(A),{B}
rcb

)

= C
(A){B}
rcb (5)

The metrics introduced until now characterize the scenario from the point of view of one of the
agents. Let us now develop a metric which quantifies the desirability of a certain offer O from the
point of view of the social good.

Definition 5 We call the social cost of the offer O any function Csocial(O) =
Csocial

(

C(A)(O), C(B)(O)
)

which is monotonically increasing both with C(A) and with C(B):

∀C(B), C
(A)
1 ≥ C

(A)
2 ⇒ Csocial(C

(A)
1 , C(B)) ≥ Csocial(C

(A)
2 , C(B))

∀C(A), C
(B)
1 ≥ C

(B)
2 ⇒ Csocial(C

(A), C
(B)
1 ) ≥ Csocial(C

(A), C
(B)
2 ) (6)

We call denote with Osocial the set of offers which minimize the social cost:

Osocial = argmin
O

(Csocial(O)) (7)

Within the constraints of this definition, there are many possible functions which can serve as the
social cost function. The choice of a specific function depends on the policy of the supervisor. One
simple choice is to define the social cost as the sum of the individual costs.

Csocial(O) = CA+B(O) = C(A)(O) + C(B)(O) (8)
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Note however, that a social best offer might not be rational for both agents. We can define a
rationality constrained social cost, which assumes a cost of plus infinity for the offers which are not
rational for one of the agents:

Crcsoc(O) =
{

+∞
(

C(A)(O) > C
(A)
conflict

)

∨
(

C(B)(O) > C
(B)
conflict

)

Csocial(O) otherwise
(9)

Based on this definition, we can define the set of rationality constrained social best offers Orcsoc as:

Orcsoc = argmin
O

(Crcsoc(O)) (10)

Definition 6 We define as the collaborativeness of the scenario from the point of view of agent
A, negotiating with agent B, the ratio of the utility of the rationality constrained social best deal to
the maximum rationally obtainable utility:

Ξ(A),{B} =
C

(A)
conflict − C

(A),{B}
rcsoc

C
(A)
conflict − C

(A),{B}
rcb

(11)

Let us verify that this definition satisfies our intuition about the collaborativeness of a scenario.
In a fully competitive scenario, there is no rational deal possible, thus the cost of the rational deal
will be the conflict deal, thus we have Ξ(A),{B} = 0. On the other hand, we say that a scenario is
fully cooperative from the point of view of agent A if the rationality constrained social best offer is
also the rationality constrained best offer for agent A. In this case Ξ(A),{B} = 1.

Definition 7 We define the relative utility of an offer for agent A as the ratio of the utility of
the offer to the maximum rationally obtainable utility:

U
(A),{B}
rel (O) =

C
(A)
conflict − C(A)(O)

C
(A)
conflict − C

(A),{B}
rcb

(12)

The relative utility of the agent can range from 0 to 1. Notice that the relative utility of a deal
does not tell us whether the agent has negotiated “better” than the negotiation partner. There are
situations when both agents can reach the maximum relative utility.

4 Negotiation strategies

To illustrate the ways in which the proposed collaborativeness characterization metrics can be ex-
ploited in a negotiation strategy, we will consider some negotiation strategies and augment them to
take into consideration the collaborativeness of the scenario.

As the negotiation strategies are strongly dependent on the shape of the surface, we shall consider
a simple version of the convoy formation problem, the Children in the Rectangular Forest (CRF)
game, where the “convoy advantage” is the ability of the convoy to traverse a rectangular region
inaccessible to the individual agents.
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Figure 1: The Children in the Rectangular Forest problem. The trajectories associated with the
conflict deal are shown with an interrupted line, while the trajectories corresponding to a possible
agreement are shown with a continuous line.

4.1 The CRF problem

In [9, 10] we have considered a simplified convoy formation problem called Children in the Rectan-
gular Forest (CRF), where the convoy advantage is represented by the convoys ability to traverse a
rectangular obstacle which is not accessible to the individual agents (see Figure 1). The CRF game
presents many challenges of the general problem such as the difficulty of establishing whether an offer
is feasible to the opponent, whether it represents a concession or not, and the difficulty of simultane-
ously negotiating temporal and spatial issues. At the same time, the CRF problem simplifies away
the path planning problem, as all the Pareto-optimal deals correspond to paths formed of at most
three linear segments.

The four negotiation issues are not completely independent. For instance, if we know the max-
imum velocity of both agents, the split time tsplit can be calculated from Ljoin, Lsplit, and tjoin.
Similarly, if all information is known about the current location and speed of the agents, the Pareto
optimal value of tjoin can be calculated, knowing Ljoin.

We call a fully specified offer a quadruple O = {Ljoin, tjoin, Lsplit, tsplit} which specifies both the
spatial and temporal components of an offer. A spatially specified offer specifies only the spatial
components of the offer: O = {Ljoin, ?, Lsplit, ?}. An agent A can complete a spatially specified offer

by calculating the timepoints t
(A)
join and t

(A)
split which are the earliest feasible ones for the agent. The

resulting offer is the best time completion for A of the spatially specified offer O:

BTC(A)(O) = BTC(A)({Ljoin, ?, Lsplit, ?}) = {Ljoin, t
(A)
join, Lsplit, t

(A)
split} (13)

A CRF scenario is defined by the map of the CRF game (the size of the forest), the source points
of the two agents SA and SB, the destination points of the two agents DA and DB, and the maximum
velocities of the agents vA and vB. The path of the agents are series of segments together with the
velocities of the vehicle on the different segments.

We call time to destination

C(A)(O) = max

(

|SA, Ljoin|

vA

,
|SB, Ljoin|

vB

)

+
|Ljoin, Lsplit|

min (vA, vB)
+

|Lsplit, DA|

vA

(14)
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4.2 Negotiation protocol: exchange of binding offers with mandatory,
non-binding evaluations

The negotiation setting we consider is a zero-knowledge setting: the only information the agents
have about their opponent is acquired during the negotiation itself, no external sources of information
exist. The negotiation protocol we assume is exchange of binding offers with mandatory, non-binding
evaluations (EBOMNE).

The offers in convoy formation problems are quadruplets O = {Ljoin, tjoin, Lsplit, tsplit}, having two
spatial and two temporal components. The offers are binding to the offering agent: if accepted by the
opponent, they will represent a deal. We assume that the agent proposes first its absolute best offer,
which assumes an ideally performant and ideally collaborative negotiation partner. At each round
the agent can “accept” the opponent’s offer, “confirm” the acceptance, “propose” a counter-offer,
and “quit” the negotiation.

Upon receipt of an offer, the agent proceeds to evaluate it. If the offer is feasible and rational,
the evaluation is the offer itself: E = O. If the offer is not feasible (for instance, because the agent
can not reach the join location in time, or it can not match the required speed during the common
path), the agent can extend the temporal components of the offer such that they become feasible for
the agent. If the resulting offer is rational for the agent, it will become the evaluation. If it is not
feasible, the evaluation is considered to be the empty set E = ∅. The evaluation will paired with a
counter offer to form the return message. Thus the response of the agent A at negotiation round i
will be the pair (OA

i , EB
i−1).

While the offers are binding, the evaluations are not. An empty evaluation intuitively means
“the proposed spatial coordinates are very wrong”, while an evaluation returned with a counteroffer
means “I would be able to accept the offer, but I am not willing to”. The evaluation does not
immediately disclose the utility function of the agent, but they allow the opponent to select its offer
more efficiently. Thus, the EBOMNE protocol represents a simple variant of argumentation.

4.3 Negotiation strategies: general considerations

One the negotiation space is determined and the negotiation protocol agreed upon, the flow of the
negotiation for a certain negotiation scenario is defined by the negotiation strategies of the agents.
The agents have a considerable freedom in choosing the negotiation strategy, which is limited only
by the requirement of conformance with the protocol.

However, the structure of the successful strategies is frequently dictated by the objective nature
of the negotiation domain. In the following we present some considerations about the state of the
convoy negotiation, which need to be implicitly or explicitly made by any successful strategy. Let
us consider that agent A has just received a message (OB

i−1, EA
i−2) from agent B. The agent A can

evaluate the current state of the negotiation as follows.

A Blind search (EA
i−2 = ∅, U (A)(EB

i−1) < 0). In this case the agent A was told that its previous
offer was not rational for B, but it also finds that the offer of the opponent is not rational for
himself either. This situation frequently happens at the beginning of the negotiation. Being
in this state does not necessarily means that there is no deal possible, but the agents need to
explore the state space for areas where mutually rational offers can be found.
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B Accept or concede (EA
i−2 = ∅, U (A)(EB

i−1) > 0): The agent’s last offer (OA
i−2) isn’t rational

for the opponent but opponent’s last offer (OB
i−1) is pragmatically rational after extending the

time issues. In this situation, the agent can either accept the opponent’s offer with the time
components extended or concede in a counter-offer. A deal will be formed only if the opponent
confirms the modified offer.

C Unbalanced blind search (U (A)(EA
i−2) < 0, U (A)(EB

i−1) < 0): The opponent returns an evaluation
of the agent’s last offer. However, this extended offer is not rational for the agent A. On the
other hand, the opponent counter-offer is not rational for the agent, either. This situation can
happen when the agent is near the forest while its opponent is not. Although the opponent
accepts the joining and splitting locations, they fail to form a mutually rational agreement.

D Opponent’s offer acceptable (U (A)(EA
i−2) < 0, U (A)(EB

i−1) > 0): The evaluation of the agent’s
previous offer was not rational for the agent, but the opponent’s offer evaluation is rational.
The agent can either accept the opponents offer, or create a counter-offer which it hopes to be
rational to the opponent.

E Agent’s offer acceptable (U (A)(EA
i−2) > 0, U (A)(EB

i−1) < 0): The evaluation of the agent’s
offer is pragmatically rational, while the opponent’s offer is not. Intuitively, the agent has no
motivation to conceed until the opponent comes up with a rational offer. The agent will insist
on its own offer until the opponent either accepts it, or provides a rational counter-offer.

F Mutual concessions (U (A)(EA
i−2) > 0, U (A)(EB

i−1) > 0): Both offers are evaluated to be rational,
thus the agents now need to reach a deal with mutual concessions. Other things being equal,
the agents will try to minimize their concessions. However, at the same time, the agents need
to consider the risk of the opponent quitting the negotiation, as well as weight the potential
benefits they can obtain from further negotiation against the time tr lost in every negotiation
round.

G Accepted offer can not be confirmed (U (A)(EA
i−2) < 0, OB

i−1 = ∅): The opponent accepted the
evaluated version of the agent’s counter offer. This evaluation, however, is not rational for
the agent. As the opponent is also interested in getting to the split point as soon as possible,
this means that no deal is possible with the current set of spatial components (it is not the
matter of the opponent conceeding more). The agent can either generate a spatially different
counter-offer or quit the negotiation.

H Accepted offer can be confirmed (U (A)(EA
i−2) > 0, OB

i−1 = ∅): The opponent accepted the eval-
uated version of the offer, and this evaluation is rational for the agent. The agent can confirm
the offer, which then becomes a deal. Alternatively, the agent can restart the negotiation with
a new counter-offer if it considers that it can form the basis of a better deal.

4.4 Two strategies without collaborativeness analysis

4.4.1 Internal negotiation deadline (IND)

In the internal negotiation deadline strategy, the agent sets up a deadline nmax (expressed as a number
of negotiation rounds) and adapts the speed of concession in function of the remaining negotiation
rounds. In stage E, the IND agent will insist its last offer to force the opponent to concede. In the
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G and H stages, the IND agent stops calculating the next offer and makes decision between “quit”
or “confirm”. In the other stages, the IND agent will calculate the next conceded offer described by
the following values:

y
(A),i
join =

{

y
(A),i−2
join − cm if y

(B),i−1
join < y

(A),i−2
join

y
(A),i−2
join + cm if y

(B),i−1
join > y

(A),i−2
join

(15)

where the conceding amount in the meeting location is:

cm =

∣

∣

∣
y

(B),i−1
join − y

(A),i−2
join

∣

∣

∣

⌈(nmax − i)/2⌉
, for i < nmax − 2 (16)

A similar expression for y
(A),i
split , the best time completion tAjoin and tAsplit are calculated accordingly.

Note that there are three situations that the IND agent couldn’t find the next offer: (a) the next
concession break its own rationality constraint, (b) the current negotiation round i is greater or
equal than nmax − 2 (one call left for the agent), and (c) the next conceded offer is worse than the
evaluation of opponent’s previous offer. In these situations, the IND agent, again makes decision:
either “accept” or “quit” the negotiation according to U (A)(EB

i−1). If the evaluation EB
i−1 is the same

with the opponent’s offer OB
i−1 (no extension in time issues), the IND agent can “confirm” it directly.

4.4.2 Uniform concession (UC)

The advantage of the IND strategy is that it is easy to understand and simple to implement. It
resembles the monotonic concession strategy from single-issue worth-oriented domains. There are,
however, some important differences. Conceding in the join and split location does not necessarily
mean an even concession in terms of utility. By exploring only specific combinations of meeting and
splitting points, with the tight joining and splitting time according to its own speed, the strategy
excludes a large part of the solution space.

In the uniform concession strategy, the agent generates a pool of all possible offers (all combi-
nations of joining and splitting location with a certain resolution), as well as possible time buffers
at the meeting time field. The splitting time is calculated based on the minimum common speed in
the history of all previous offers and evaluations. The offer pool is then divided into a number of
subpools. The first subpool contains offers which have the agent’s absolute best utility U

(A)
ab . Each

successive subpool i = 1 . . . n groups offers whose utility Usp(i) is smaller by the value α than the
previous one, where α ∈ [0, 1] is the conceeding speed of the agent:

Usp(i) = (1 − (i × α)/2) × U
(A)
ab , for (1 − (i × α)/2) ≥ 0 (17)

The insight is that from the agent’s point of view all the offers in a given subpool are equivalent
- however, for the opponent, the different offers in a subpool might provide different utilities. When
conceding, the UC agent will simply pick the new offer from the next pool. Whenever the opponent’s
offer evaluates to a utility which is larger than the utility of the current subpool, the agent accepts
the offer. Otherwise, it will calculate the next counter offer from the offer pool which is the most
similar to EB

i−1. The similarity between two offers is defined as the sum of squared difference for each
issue:
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OA

i
= arg min

O

(||O −EB

i−1
||2), for UA(O) ≥ Usp(i) and UA(O) < Usp(i − 2) (18)

If the agent reaches the last subpool without a deal, it quits the negotiation and takes the conflict
deal.

4.5 Augmenting strategies with collaborativeness analysis

In our current setting, negotiation happens in physical time, each negotiation round taking time tr.
The decision to close the negotiation (by either accepting the current offer, or by quitting with the
conflict deal), should depend on the agent’s view of the possible benefits it can obtain if it continues
the negotiation weighted against the time delays this would involve. If no deal is possible, the agent
is wasting utility by negotiating.

The collaborativeness metric we introduced in Equation 11 was developed precisely for the purpose
of characterizing the potential deals in a scenario. We need to emphasize that a high collaborativeness
metric does not necessarily guarantee a negotiation success, because the agents need to find those
mutually beneficial deals, which depends on the offer formation strategies. On the other hand, even
if the collaborativeness is low, the agent might hope to “trick” the opponent in a deal which is
only marginally rational for the opponent, but much better for the agent. Overall, however, the
collaborativeness metric is a good predictor of negotiation success of certain scenario.

Thus, it makes sense to augment the negotiation strategies with collaborativeness analysis. These
augmented strategies would alter their behavior in function of the collaborativeness of the current
scenario, for instance, quitting earlier the negotiation for low collaborativeness scenarios.

The problem with the collaborativeness metric Ξ(A) is that it can be evaluated only by a full
knowledge agent (e.g. a supervisor). The agent participating in a negotiation starts with zero
knowledge, but it can gradually acquire information from the negotiation. At the second round of
the negotiation, the agent assumes its absolute best time C

(A)
ab as the rationality constrained best

time C
(A){B}
rcb . It will approximate the rationality constrained social best time C

(A),{B}
rcsoc as the averaged

utility between its first offer and evaluation of the opponent’s first offer. Thus the agent will estimate
the collaborativeness as:

Ξ ≈ Ξ
(A)
estimate(E

B
2 ) =

C
(A)
conflict −

C(A)(O
(A)
1 )+C(A)(EB

2 )

2

C
(A)
conflict − C(A)(O

(A)
1 )

=
U

(A)
ab + U (A)(EB

2 )

2 × U
(A)
ab

(19)

If this value is negative, it can be viewed as non-collaborative scenario with collaborativeness of
zero.

Let us now see how this value can be used by the negotiation strategies. The internal negotiation
deadline augmented with collaborativeness analysis (IND+CA) will compare the estimated collabo-
rativeness with a threshold Ξthreshold. If the estimate is smaller, the agent will quit the negotiation
either by accepting the opponents first offer (if it is rational) or by taking the conflict deal. For

Ξ
(A)
estimate(E

B
2 ) > Ξthreshold the IND+CA agent will change its negotiation deadline according to the

following formula:

n′
max =

{

0 if Ξestimate < Ξthreshold

nmax ×
Ξestimate−Ξthreshold

1−Ξthreshold

otherwise
(20)
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The uniform concession with collaborativeness analysis (UC+CA) agent, will also compare the
estimated collaborativeness with a threshold Ξthreshold. If the estimate is smaller, the agent will quit
the negotiation either by accepting the opponents first offer (if it is rational) or by taking the conflict

deal. For Ξ
(A)
estimate(E

B
2 ) > Ξthreshold the IND+CA agent will change its conceding pace α according

to the following formula:

α′ =

{

1 if Ξestimate < Ξthreshold

α × 1−Ξthreshold

Ξestimate−Ξthreshold

otherwise
(21)

The intuition behind this update is the absolute best offer can get the agent to reach its des-
tination, assuming it has an ideal opponent in an ideal scenario. Its utility should be similar with
the rationality constrained best utility, as the latter one just adds two geometric restrictions in the
solution space. On the other hand, taking the average between the utility of the two first offers seems
to be fair, if the utility function is linear and both agents concede until they meet in the middle. In
a low collaborative scenario, the two agent need long time to search the deal. Even they form an
agreement at last, the utility of the deal may not compensate the cost of negotiation. In this case, it
should be wise for the learning agent to drop the negotiation immediately or increase the conceding
pace so that they can end the negotiation quickly.

The estimation above didn’t consider the impact of time scale tr. If each negotiation round takes
too much time, the agent should continue to accelerate the negotiation. We let the agent remember
the best evaluation in history which has the most pragmatical utility, and continuously check if such
evaluation is irrational from baseline point of view. If the agent finds out the its baseline utility
is less than a threshold, it will drop the negotiation by either sending “accept” message or “quit”
the negotiation directly. The intuition behind this is when the negotiation time tr is expensive, the
baseline utilities of all un-explored deals are decreasing quickly. The best potential deal which has
already been explored by agents somehow indicates the decreasing speed of all un-explored deals.
If its baseline utility is less than a threshold, the agent should quit the negotiation immediately to
avoid the further damage.

5 Experimental results

In this paper we defined an approach to measure the collaborativeness of convoy negotiation scenarios.
We also described an approach through which an agent starting the negotiation with zero knowledge
can estimate the collaborativeness in the first several rounds of negotiation. Finally, we have shown
the way in which the negotiation strategies can be augmented to take into account the estimate of
the collaborativeness values.

In this section we proceed to experimentally validate the proposed metric, its estimation and
application in negotiation strategies. The questions we plan to answer are:

• What is the distribution of collaborativeness in scenarios?

• How good is the estimation of collaborativeness described in Equation 19?

• What is the relative performance of the IND, UC, IND+CA and UC+CA strategies over a
wide range of collaborativeness settings and various negotiation partners?
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We implemented the CRF game in the Yet Another Extensible Simulator (YAES) environment [1].
The proposed negotiation protocols and the negotiation strategies IND, UC, IND+CA and UC+CA
have been implemented exactly as described in the previous sections, with the offers encoded as FIPA
ACL messages.

5.1 The distribution of the collaborativeness

The distribution of the collaborativeness provides the answer to the question: if we pick a random
scenario, is it going to be competitive or collaborative? Naturally, the distribution of the collabora-
tiveness depends on the distribution of the source and destination locations of the scenarios, as well
as the distribution of the speed of the agents. Let us assume that the source and destination are dis-
tributed uniformly in rectangular areas situated immediately on the left and right side of the forest.
To study a variety of possible distributions we consider three settings corresponding to the source
and destination areas shown in Figure 2. For each setting, we generate 1000 scenarios by choosing
the source and destination according to a uniform spatial distribution from the corresponding source
and destination rectangles. We calculate the value of collaborativeness according to Equation 11, and
assemble the values in a 10-bucket histogram. The three resulting histograms are shown in Figure 3.

We can make the following observations:
Setting 1: has the source and destination areas a square of the same height as the forest. The

histogram shows a U-shape, with higher number of scenarios falling at the higher and lower extremes
of collaborativeness.

Setting 2: has the source and destination areas rectangles of the same height as the forest but
a width of half as much. The corresponding histogram shows a similar U-shape like in the previous
case, but it is shifted towards the higher collaborativeness. We conclude that the closer is the forest
to the source and destination, the higher the probability that forming a coalition to traverse the
forest will be advantageous.

Setting 3: has the source and destination areas square and half the height of the forest. We find
that the distribution of the collaborativeness is weighted toward the higher values.

This result matches our intuitive expectations. For instance, citizens in tightly packed cities such
as New York and San Francisco rely more on public transportation, as their source and destination
locations are frequently correlated. In cities spread over large areas such as Orlando or Phoenix, the
transportation interests are rarely collaborative.

5.2 Accuracy of collaborativeness estimation

Figure 4 shows the scatter plot and the average of the estimated collaborativeness Ξestimate function
of the real value of the collaborativeness. In this graph, every point represents the estimate at
negotiation round 2 for a total of 1000 scenarios. The closer it is the point to the diagonal, the
better the estimate. The first observation is that the estimate is by no means perfect. Quite a
number of datapoints fall far from the diagonal. There are even cases where a fully collaborative
scenario is estimated to have near-zero collaborativeness. There are, however, no cases where low
collaborativeness scenarios are estimated to have high collaborativeness. The average value, on the
other hand, is tracking the diagonal relatively well, although it is always below the diagonal. Agents
using this metric will likely err on the side of safety, underestimating collaborativeness rather than
overestimating it.
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Figure 2: Three settings for the distribution of the source and destination areas for the study of the
distribution of collaborativeness among scenarios.
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Figure 3: The comparison of collaborativeness distributions in three cases of restricted areas.
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Figure 4: The estimated vs. real collaborativeness. Each point in the scatter plot corresponds to one
scenario. The solid line is the average estimate for different collaborativeness values.

Overall, the estimate of collaborativeness is satisfactory, considering that we are only two nego-
tiation rounds in a negotiation started with zero knowledge. It also opens the possibility of future
work towards of a more accurate estimation based on information acquired in subsequent negotiation
rounds.

5.3 Negotiation performance

In the following we investigate the performance of the negotiation strategies IND and UC and their
variants augmented with collaborativeness analysis IND+CA and UC+CA. In a setting where the
negotiation takes place physical time, the negotiation performance of the agents can be considered
from two points of view. The pragmatic relative utility (Definition 7) measures the balance between
the negotiation results of the participating agents. An agent which frequently manages to convince
the opponent to concede more will have a high relative utility. This is a pragmatic measure which
does not depend on the negotiation time. The baseline utility (Definition 1) on the other hand,
considers the time spent during negotiation as part of the cost. Certain strategies might choose
to exit the difficult negotiation scenarios early even at the cost of an unrequited concession, which
damages their relative utility, but can boost their baseline utility.

For the experiments describe in this section, we consider a negotiation round to take tr = 0.5.
The deadline for the IND strategy is nmax = 40, the conceding speed of the UC strategy is α = 0.05.
For the strategies which use collaborativeness analysis, we let the threshold Ξthreshold = 0.3.

In the first set of experiments we compare the IND and UC strategies in all four possible pairings
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Figure 5: The relative pragmatic utility in the function of collaborativeness for the following strategy
pairs: IND vs IND, IND vs UC, UC vs UC and UC vs IND.

(IND vs IND, IND vs UC, UC vs IND and UC vs UC). We plot the relative pragmatic utility in
Figure 5 and the baseline utility in Figure 6. The first observation is that for all settings the utility
increases monotonically with the collaborativeness, but there is a significant variation among the
negotiating strategy pairs. For the relative pragmatic utility the IND strategy always outperforms
UC. For the baseline utility, however, the order is different, the best performance being obtained
by the UC vs UC pairing. The baseline utility graphs shows how difficult is to obtain a positive
negotiation result under the settings of our problem: the UC vs UC pairings yields negative average
for Ξ < 0.45, but IND vs UC is negative for Ξ < 0.65 and UC vs IND and IND vs IND is negative
for Ξ < 0.85! These negative values are a result of long negotiation sessions trying to obtain a better
concession from the opponent, while loosing more on the time spent for each negotiation round.

Figure 7 shows the baseline utility for the IND, IND+CA, UC and UC+CA strategies when
negotiating with opponents using the same strategy. In addition to the averages, these graphs
also show the scatter plot of the individual negotiation results. The immediate observation is the
significant improvement of the IND+CA and UC+CA strategies for the low collaborativeness values.
While the scatter plot shows a large number of negotiations finishing in the negative for IND and
UC, there are virtually none of them for IND+CA and UC+CA.

Another noteworthy feature is the visible concentration of points on the -20 horizontal line at
Figure 7-a (IND vs IND). This line corresponds to the tr · nmax = 0.5 × 40 = 20 value of the
negotiations where the IND agent was forced to take the conflict deal after reaching the internal
negotiation deadline.

A similar concentration of points can be found around the line corresponding to zero utility for
the IND+CA and UC+CA graphs. These points correspond to the case when the collaborativeness
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Figure 6: The baseline utility in the function of collaborativeness for the following strategy pairs:
IND vs IND, IND vs UC, UC vs UC and UC vs IND.

analysis component dictated an early termination of the negotiation.
For a closer analysis of the relative performance, we ran a series of experiments where all the

proposed strategies (IND, UC, IND+CA and UC+CA) negotiate against the same opponent, IND
for Figure 8 and UC for Figure 9. The trend is similar for all the combinations on these graphs: the
strategies augmented with collaborativeness analysis significantly outperform the other ones for low
collaborativeness values, limiting their losses to the cost of the several negotiation rounds necessary to
come up with an estimate. For scenarios of high collaborativeness, on the other hand, the performance
is roughly equivalent. In some cases, such as the UC vs UC and UC+CA vs UC in Figure 9, the
CA version might perform slightly worse for the highest collaborativeness values. This phenomena
appears because of the inaccuracies of the collaborativeness estimation.

6 Conclusions

In this paper we considered the problem of negotiating convoy formation under time constraints. This
is a relatively complex multi-issue negotiation with two spatial and two temporal issues. Not all the
offers are feasible, the utility is a non-linear function of the issues and the offer formation is difficult,
as it might require complex path calculations. We developed a collaborativeness metric which allows
us to put a quantitative value on our intuition of “easy” and “hard” negotiation scenarios. The
metric is not dependent on the negotiation scenario, but can be evaluated only by a full knowledge
supervisor. We describe an approach through which agents starting with zero knowledge can estimate
the collaborativeness of the scenario using information acquired from the first several negotiation
rounds. Finally, we show how this estimate can be used to augment negotiation scenarios with
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(d) UC+CA vs UC+CA

Figure 7: The baseline utility of the IND, IND+CA, UC and UC+CA agents negotiating with
opponents using the same strategy.
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Figure 8: Baseline utility of the IND, IND+CA, UC and UC+CA strategies negotiating against an
agent using the IND strategy.

collaborativeness analysis. In a series of experimental studies, we have shown that the augmented
strategies significantly outperform the original strategies for low collaborativeness scenarios, and
closely match them for high collaborativeness scenarios.

Future work is planned in several directions. We need to study the influence of the accuracy of
the collaborativeness estimate on the performance of the agent. Agents might employ strategies to
mislead the opponent into believing that a scenario is more collaborative than it is in reality.

Another direction of future work is when agents are acting while negotiating. The assumption
that agents hold still during negotiation might not be the right model for real-world convoy formation.
While negotiating, agents might keep moving either on the conflict deal trajectory, or on the trajectory
of the predicted deal. Such agents are controlled by the pair of negotiation and action strategies. In
addition, the utility values and the collaborativeness dynamically change in time. Another direction
is the exploration of other negotiation protocols, including more sophisticated argumentation models.
Such models would also need to explicitly model the temporal cost associated with the creation and
selection of arguments.
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