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ABSTRACT
In the convoy formation problem, two embodied agents are
negotiating the synchronization of their movement for a por-
tion of their respective paths from source to destinations. In
this paper, we consider a setting in which the negotiation
happens in physical time, thus the agents have the oppor-
tunity to perform actions, such as movement, while negoti-
ating. In these settings, the agent’s behavior is controlled
by the pair of the negotiation and action strategies. After
considering the challenges of acting while negotiating for the
general convoy formation problem, we propose three static
and one learning based strategies for the specific case where
convoys can traverse a rectangular obstacle which is unacces-
sible to individual agents. Through a series of experiments
we study the interaction between the action and negotiation
strategies and the performance advantage of learning based
approaches in incomplete information scenarios.

1. INTRODUCTION

1.1 Convoy formation in spatio-temporal do-
main

Let us start by defining the convoy formation problem for
embodied agents. Two agents A and B move from their
source positions SA and SB to their destinations DA and
DB . We assume that the agents move along the paths given
by the function Pa(t) → L, which we read by saying that
agent a is at the location L at time t.

At the initial timepoint t0 we have PA(to) = SA and we
define the arrival time of A as the smallest time tarr for
which PA(tarr) = DA. For every path we define the unit cost

cP (t), and the cost of a time segment C(t1, t2) =
∫ t2

t1
cP (t)dt.

Most of the time, we are interested in the cost of the path
defined as CP (t0, tarr). In the simplest case we are only
interested in the time to reach the destination. This cor-
responds to a unit cost cP (t) = 1, and the cost of the
path CP (t0, tarr) = tarr − t0. Many environmental fac-
tors can be modeled by the appropriate setting of the unit
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costs. For instance, the unit cost might be dependent on
the location cP (t) = f(PA(t)) or on the speed of the agent
cP (t) = f(P ′A(t)). Locations or speeds which are unfeasible
to the agent can be set to have an infinite unit cost.

Two agents form a convoy if they are following the same
path PA+B(t) over the period of time [tjoin, tsplit]. Agents
join into a convoy because of the convoy advantage: the
unit cost for the convoy is smaller than for the individ-
ual agent over the same path. One example is the case
when convoys can traverse areas which are not accessible
to individual agents: ∃t ∈ [tjoin, tsplit] ∃l PA+B = l with
cP,A(t) = ∞ and cP,A+B(t) = c ∈ R. Naturally, convoy
and non-convoy segments of the path need to be continu-
ous in space: PA(tjoin) = PB(tjoin) = PA+B(tjoin) = Ljoin

and PA(tsplit) = PB(tsplit) = PA+B(tsplit) = Ljoin. We call
Ljoin and tjoin the join locations and time, and Lsplit and
tsplit the split locations and time, respectively.

We are considering self-interested agents which are search-
ing for the path with the smallest cost from source to des-
tination. This path might or might not include segments
traversed as a convoy. In the following we assume that the
agents are using negotiation to agree on the segment tra-
versed as a convoy. The negotiation succeeds if an agreement
is reached over a quadruplet (Ljoin, tjoin, Lsplit, tsplit).

In [4, 5] we have considered a simplified convoy formation
problem called Children in the Rectangular Forest (CRF),
where the convoy advantage is represented by the convoys
ability to traverse a rectangular obstacle which is not acces-
sible to the individual agents. The CRF problem presents
many challenges of the general problem such as the difficulty
of establishing whether an offer is feasible to the opponent,
whether it represents a concession or not, and the difficulty
of simultaneously negotiating temporal and spatial issues.
At the same time, the CRF problem simplifies away the
path planning problem, as all the Pareto-optimal deals cor-
respond to paths formed of at most three linear segments.

The work described in this paper represents a step to-
wards bringing convoy negotiation closer to a more realistic
setting. Rather than assuming that the agents are negotiat-
ing instantaneously, we assume that the negotiation process
is happening in physical time, during which the agents can
take real world actions, such as moving towards their desti-
nation, their expected meeting point or other locations. The
immediate consequence is that in addition to the negotiation
strategy, the agents also need to consider the action strategy.
The relationship between the two is complex. A good action
strategy will consider the current status of negotiation; in
its turn, the actions taken by the agent will change the value



of the exchanged offers.
The remainder of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 introduces some gen-
eral considerations about the acting while negotiating for the
convoy formation problem. In Section 4 we define the acting
while negotiating problem in the context of the CRF canon-
ical problem extended to allow movement while negotiating.
Section 5 describes the Lambda-Gamma meta-strategy for
the AWN problem and three non-learning implementations:
monotonic concession in space (MCS), exhaustive try (ET)
and uniform concession (UC). We also describe the problem
of balancing selfishness and optimism and illustrates the re-
duction of the offer space during the acting while negotiat-
ing process. Section 6 describes a negotiation which extends
the Lambda-Gamma model with the learning of the evolving
opponent model. The beliefs about the opponent model are
tracked through a Sampling-Importance-Resampling parti-
cle filter. A clustering method generates concrete models
which are used by the learning agents to generate offers. In
Section 7 we describe several experiments studying the in-
teraction between the action and negotiation strategies, as
well as the performance advantage of the learning based ap-
proach in incomplete information settings. We conclude in
Section 8.

2. RELATED WORK
Ito et al. [3] investigated the inter-dependent multi-issue

problems which have nonlinear utility function. They intro-
duced the Bidding-based Negotiation Protocol, letting the
agents sample and adjust possible offers base on its own
utility and then identify deals relying on a mediator. In
this paper, we are more focusing on the spatio-temporal ne-
gotiation which also have non-linear utility functions, and
constraints between issues. But we let the agent learn the
opponent independently and select the next counter offer.

Fatima et al. [2] used a shrinking pies model to research
the multi-issue negotiation problem with deadlines. They
apply the back-reasoning method to concede the amount of
utility which will shrink next round and the greedy strategy
to concede the pie the opponent like more. In the spatio-
temporal negotiations, however, a lot of possible offers in the
agent’s point of view are not feasible to the opponent. In
addition, those number of possible solutions are also shrink-
ing along the negotiation, but the agent can decrease this
trend by moving itself to the potential deals (if it estimates
correctly).

Hindriks et al. [1] used Bayesian learning to study the
opponent’s preference for a specific issue. They apply the
probabilistic guess over a set of hypothesis of the opponent’s
type. These probabilities are updated based on Bayes’ rule
and the distance between the opponent’s expected utility
and the utility of actual bid. We also use the same idea to
update belief for learning agent, but we use a particle filter
model to realize the dynamic reasoning over time. Moreover,
we don’t assume that the opponent will propose the offer
with linear concession in the utility. Instead, we model the
expected offer by the opponent at a specific time and we
update the probabilities according to the similarity between
the expected offer and the opponent’s actual offer.

3. GENERAL CONSIDERATIONS ABOUT
ACTING WHILE NEGOTIATING

The idea that a negotiation is a process which is happening
in time is not new, but many applications it is considered un-
der strong simplifying assumptions. For instance, the split
the pie game, used to model worth oriented negotiations,
frequently assumes that the pie shrinks a fixed fraction at
every negotiation round. Although this is a good model for
motivating the agents to reach a deal as soon as possible, it
does not capture the ability of the agents to take actions,
and the relationship between the elapsed time and the value
of offers is unrealistically simple.

In the case of the convoy formation problem, allowing act-
ing while negotiating means that we consider every negoti-
ation turn to take a time ti, during which the agents can
move on any feasible trajectory, naturally incurring the cor-
responding costs. For the remainder of this paper, we will
make the assumption that ti is a constant value. We have
seen that the agents participating in a negotiation under
these conditions need to have both a negotiation and an
action strategy.

Let us now consider several extreme examples of action
strategies. The simplest action strategy would be for the
agent to stand still during the negotiation. The disadvan-
tage of such an approach is that the value of all possible
deals will become lower with the amount of time wasted
during negotiating. For instance, an agent which spends
100 seconds negotiating, finding out that no deal is possible,
then moving on the conflict deal trajectory, would arrive 100
seconds later than an agent which did not even negotiate.
This scenario is very similar to the “shrinking pie” scenarios
in worth-oriented negotiations, which also assume that the
agents do not act while negotiating.

The second strategy would be to continue moving on the
originally established trajectory, that of the conflict deal.
This corresponds to a pessimistic agent, which up to the
moment when a deal is agreed upon will assume that no
deal is possible. The advantage of this choice is that the
agent has a guarantee that it will not fare worst than the
conflict deal. Unfortunately, moving on the path of conflict
deal will reduce the value of every offer, and it can make
some offers unfeasible in the sense that the agent can not
reach the proposed join location Ljoin in time tjoin.

At the other extreme, the agent might act optimistically:
it can move on the shortest trajectory to the location of
its own latest offer. Provided that the offer is accepted,
this is the action which would provide the agent with the
lowest possible cost. On the other hand, it requires a risky
commitment from the agent: if no deal will be reached, or
if the deal reached will be relatively far from the predicted
one, the cost to destination will be actually higher than if
the agent has not participated at all in the negotiation.

3.1 Baseline and pragmatic rationality
One of the consequences of the situation is that we need to

refine our definition of rationality of a deal. At the beginning
of the negotiation, at time t0, the agent has a conflict deal
path of cost Cconflict. According to the baseline rationality
definition, any offer which has a higher cost than Cconflict is
not rational and it will not be accepted by the agent. If the
agent is taking risks by acting optimistically, at some point
in time tx it might find itself in the position that it has
already incurred costs Cx, and the best path from current
location Lx to the destination will have a cost Cx

conflict. If at
this moment an offer with cost Coffer is received, it will be



called pragmatically rational if Coffer + Cx < Cx
conflict and

baseline rational if Coffer +Cx < Cconflict. A rational agent
will need to act based on the pragmatic rationality, as the
original conflict deal alternative is not available any more at
this moment in time. Occasionally, the agent might find it
necessary to accept deals which are not baseline rational.

However, when we are measuring the overall performance
of the negotiation strategy / action strategy pairs, the term
of comparison should be the original conflict deal. In order
for a strategy pair to be acceptable, it needs to provide at
least a statistical improvement over the conflict deal.

4. ACTING WHILE NEGOTIATING IN
THE CRF MODEL

In the following we shall study the issue of acting while
negotiating in the Children in the Rectangular Forest (CRF)
problem, an instance of the convoy formation problem where
the “convoy advantage” is the ability of the convoy to tra-
verse a rectangular region inaccessible to the individual
agents. We assume the negotiation protocol to be Simple
Exchange of Binding Offers (no argumentation). We also a
zero-knowledge environment; the only source of information
of the agents is through the offers of the opponent. We will
consider the cost of a path to be the time to destination
along that path.

When an agent receives an offer from its negotiation part-
ner, it first checks it for feasibility. An offer is not feasible
if the agent can not reach the designated locations on time,
and we will consider these offers to have a cost of +∞. For
an offer O = (Lm, tm, Ls, ts) made at time tcrt, the agent
A with source location at LA

src, current location at LA
crt and

destination at LA
dest the cost of the offer will be:

CA(O) =





+∞ if tcrt +
dist(LA

crt,Lm)

vA
> tm

+∞ if dist(Lm,Ls)
vA

> ts − tm

ts +
dist(Ls,LA

dest)

vA
otherwise

(1)

Similarly we define the cost of the conflict deal as the time
spent in the negotiation until the current moment tcrt, plus
the time necessary to reach the destination from the current
location Lcrt by going around the forest. Note that the
cost of both the collaboration and the conflict deal depend
on the state (the current time and location of the agent).
As we discussed in the general convoy formation case, the
pragmatic rationality of the offer is also state dependent.
An offer might be pragmatically rational for an agent at a
certain moment in the negotiation, even if its cost is higher
than the original conflict deal cost. The opposite case is
also possible: an offer which would have been favorable at
the beginning of the negotiation might not be rational for
the agent in the current state (for instance, if the agent is
already well on its way towards the conflict deal).

At the other extreme from the conflict deal is the “ideal
offer” with the cost CA

best, which corresponds to the earliest
time the agent can reach its destination, assuming an oppo-
nent which is ideally collaborative and has ideal capabilities.
For a real opponent, this ideal offer might not be rational, or
even feasible. We define the utility of an offer by the fraction
of how much it can save from the cost of the conflict deal in
comparison to the ideal offer.

UA(O) =
CA

conflict − CA(O)

CA
conflict − CA

best

(2)

With this definition, the utility of non-rational offers is
negative and the utility of non-feasible offers is minus infin-
ity. Naturally, the utility of an offer depends on the current
state. What is then, the role of the past in the agents’ be-
havior? As it can not go back in time to change previous
decisions, the agent should consider its current location and
time as the starting point of the negotiation. The history of
the negotiation is only relevant in the information it provides
the agent about the opponent (its location, utility function,
capabilities and strategy).

5. STRATEGIES FOR THE AWN PROB-
LEM

5.1 The Selfishness-Optimism meta-strategy
We have seen that an AWN agent requires a pair of in-

teracting strategies for negotiating and acting. To capture
the relationship between the two into an easy-to-understand
framework, we propose a technique which integrates the of-
fer acceptance decision and the action strategy into a sin-
gle meta-strategy. This Selfishness-Optimism meta-strategy
(see Algorithm 1) does not define the offer formation mech-
anism; this needs to be provided separately, and is normally
inherited from non-AWN strategies.

The selfishness λ is the lowest utility of the offer, as de-
fined by equation 2, which the agent is ready to accept. A
fully selfish agent (λ = 1) will only accept its ideal offer, a
fully benevolent agent (λ = 0) will accept any rational offer.

The optimism γ governs the agent’s movement and rep-
resents the amount of hedging between moving towards its
own latest offer versus the conflict deal location. A fully
pessimistic agent (gamma = 0) assumes that there will be
no deal and move on the conflict deal trajectory.

The reader might notice that this meta strategy can be
immediately generalized by making the λ and γ parameters
variable over the course of the negotiation. An agent, see-
ing that the opponent conceded too readily, might decide
to drive a hard bargain by increasing its selfishness. An
agent might make its optimism dependent on an external
machine learning system which predicts the likelihood of a
deal. A particularly Machiavellian agent might even make
offers only to confuse the opponent and move to a predicted
deal location which is far from its current offer.

For the remainder of this paper, we will assume agents
with the λ and γ parameters fixed and determined at the
beginning of the negotiation.

Algorithm 1 Generic behavior of agent A at time t

1: receive(Ot−1
B )

2: B(t) ← Bupdate(B(t− 1), Ot−1
B )

3: if isFeasible
(
Ot−1

B

)
and U(Ot−1

B ) ≥ λ then

4: send
(
Ot−1

B

)
// form agreement

5: else
6: Ot

A = S (B(t), λ)
7: if not isFeasible

(
Ot

A

)
then

8: send(∅) // conflict deal
9: else

10: send(Ot
A)

11: end if
12: end if
13: L(t) = moving(L(t), B(t), γ)



5.2 Inferring information from offers
Let us first discuss the information available to an agent

participating in an AWN-CRF negotiation. We assume
a zero-knowledge environment: the only information the
agents have about each other is extracted from the offers.
An offer does not immediately identify the agent’s source
and destination, even if the agent offers its own ideal trajec-
tory. The factor which is relatively easy to identify is the
speed capability of the agent. As every offer is binding, the
first offer made by an agent will identify a minimum value
on the agent’s speed capability based on the speed on the
common trajectory portion. Unless the agent is engaged in
deceptive practices, this first offer will be based on its max-
imum possible speed.

The agent making the second offer can find itself in one
of two possible situations. It can find that the opponent’s
speed is larger than its own. Then it needs to structure its
counter-offer based on its own, lower speed. On the other
hand, if it finds the opponent’s speed to be smaller than
its own capability, it will make an offer assuming the oppo-
nent’s speed for the common part of the trajectory, without
disclosing its own higher capabilities. In either way, by the
end of the first offer exchange, the agents will know their
maximum common speed, and will use this in all subse-
quent offers. Thus, the remainder of the offers will always
be feasible for the common portion of the trajectory, the one
traversing the forest. It is, however, much harder to deter-
mine the current location of the opponent agent. There is
thus no guarantee that the offers are feasible from the point
of view of the opponent being able to reach the meeting
point in time.

5.3 Three “simple” offer formation strategies
Let us now introduce three offers formation strategies for

the Selfishness-Optimism meta strategy. These strategies
are using learning only in the limited sense of basic infor-
mation inference described in the previous section. We will
describe a more complex learning-based strategy in Section
6.

Monotonic Concession in Space (MCS) calculates
the next offer by conceding the location fields of its own
offer, to the opponent’s last offer. It is parameterized by
the conceding pace at each side of the forest (Cm, Cs). The
meeting time is tightly calculated based on its own ability
(the physical time it will arrive the meeting location from its
current location). The splitting time is calculated based on
the opponent’s inferred speed (the physical time both agents
will arrive the splitting location in the speed of the slower
agent). If the utility of the next conceding offer is below the
selfishness, or no concession is possible (e.g. the opponent’s
last offer and the agent’s last offer met together in location),
the negotiation stops with no agreement.

The MCS strategy resembles the monotonic concession
strategy from single-issue worth-oriented domains. There
are, however, some important differences. Conceding in the
meeting and splitting location does not necessarily mean
any concession in terms of utility. By exploring only specific
combinations of meeting and joining points, the strategy
excludes a large part of the solution space.

Exhaustive Try (ET) generates a pool of all possible
offers, described as combinations of meeting and splitting
location with a certain resolution, as well as possible time
buffers for the meeting time. The splitting time is calcu-

lated based on the maximum common speed. Only the of-
fers which are rational, feasible and have an utility higher
than the selfishness λ are included in the pool. At every
round, the ET selects the offer which is the most similar to
the opponent’s last offer. The similarity between two offers
is defined by the sum of squared difference of each issue (see
Equation 3). If the offer pool is empty, the

Ot
agent = arg min

O
(||O−Ot−1

opponent||2) (3)

Uniform Concession (UC) modifies the ET strategy
by defining a conceding rate α and a current utility range
(with the span of α) for each round. When calculating the
next offer, the agent only searches the offers in the current
utility range for the one most similar to the opponent’s offer.
The utility range starts at 1 and decreases with α each round
until the selfishness level is reached (see Algorithm 2). Thus
every offer made will be a concession of about α, in terms
of the offering agent’s utility.

Algorithm 2 The function to calculate next offer in the UC
agent

1: Create Set〈offer〉 to hold all possible offers;
2: while Set〈offer〉 is empty do
3: lower = lower − α;
4: if lower ≤ λ then
5: return Ot

next ← null;
6: end if
7: find all Offer that Utility(Offer) ∈ (lower, lower +

α);
8: add all Offer in Set〈offer〉
9: end while

10: find most similar Offer to Ot−1
opponent in Set〈offer〉;

11: return Ot
me ← offer;

6. A PARTICLE FILTER LEARNING
STRATEGY FOR THE AWN PROBLEM

It is natural that the more an agent knows about its oppo-
nent, the more effective its negotiation will be. For instance
in Figure 2 (a) and (b) we can see the difference between the
agent’s pool of feasible offers and the pool of possible deals.
An agent which can evaluate the opponent’s utility function
can guarantee that all its offers are from the deal pool, thus
improving the likelihood that they get accepted. The agent
can also notice immediately the moment when the deal pool
becomes empty, thus can interrupt the negotiation without
further waste of time and utility.

As for the AWN problem the opponent is moving while
negotiating as well, the problem is not only one of learning
the initial parameters, but one of maintaining a dynamically
evolving model of the opponent, a problem of probabilistic
reasoning over time. In this section we describe a strategy
which uses a Sampling-Importance-Resampling (SIR) parti-
cle filter to update its beliefs about the opponent, then uses
a K-Means clustering technique to extract a likely hypothe-
sis on which the offer formation is based. The resulting PF
strategy is still in the Lambda-Gamma family, thus the only
components we need to specify are the belief update and the
offer formation mechanisms.



6.1 Update current knowledge based on op-
ponent’s offer

The PF strategy represents its knowledge about the op-
ponent as a cloud of weighted particles. In the following
we discuss (1) the particle representation, (2) the prediction
model, describing how the particles evolve in time and (3)
the sensor model, which describes how observations (which
in our case are offers made by the opponent) affect the weight
of the particle.

The particle representation

A particle should contain all the information the learning
agent needs to know the opponent. We decide a particle Xt

inside the learning agent at a specific offering time t 1 as a
vector of its opponent’s current state:

Xt = 〈Lsrc, Lcrt, Ldest, Sid〉
where Lsrc is the source of its opponent, Lcrt is the current

location of its opponent, Ldest is the destination, and Sid is
the strategy its opponent uses.

The prediction model
In AWN, negotiation is proceeding in an evolving world.

So the learning agent should evolve its particles along the
negotiation round. Specifically, at each time when the learn-
ing agent calls, it should update its particle Xt from the
previous one Xt−1.

Xt =





Lsrc(t) = Lsrc(t− 1) + ξsrc

Ldest(t) = Ldest(t− 1) + ξdest

Lcrt(t) = f(Sid, Lcrt(t− 1)) + ξcurrent

Sid(t) = Sid(t− 1)

ξ. is a random variable generated from the two-
dimensional normal distribution. f(.) is a function to calcu-
late the next location according to the opponent’s strategy
Sid and its former location Lcrt(t− 1). The Gaussian noise
added to the particles accounts for the uncertainty of the
estimation.

The sensor model

The weights of the particle are updated according to the
new observation, in our case, it is the opponent’s last offer.
Specifically, for each particle i, the learning agent calculates
the probability to propose that offer Pr(Ot|Xi

t), where Ot

is the opponent’s last offer, and Xi
t is the current state of

particle i that the agent assumes the opponent is in. To do
this, we first calculate the offer which would have been made
by the agent described by the particle Oexp(Xi

t) and then
calculate the probability based on the difference of the real
offer from the expected offer:

Pr(Ot|Xi
t) = Pr(Ot|Oexp(Xi

t))
= g4(ym, tm, ys, ts|yexp

m , texp
m , yexp

s , texp
s )

= g(ym|yexp
m )g(tm|texp

m )g(ys|yexp
s )g(ts|texp

s )

In the formula, (ymeet, tmeet, ysplit, tsplit) is the actual val-
ues in opponent’s last offer Ot. g4(.) is the four-dimensional

1This time should be the proposing order for the learning
agent, because it doesn’t update belief if it is not its turn to
call

Gaussian p.d.f with centers at expected offer Oexp(X
i
t) and

with specific coefficient matrix. In our case, we simplify such
matrix into diagonal matrix with specific coefficient factor
for each issue. So the value equals to the product of one-
dimensional Gaussian p.d.f g(.) with the center at expected
value and specific coefficient factor for each issue. At last,
the learning agent uses this product to update the current
weight of the particle at this round

wi(t) = Pr(Ot|Xi
t)wi(t− 1)

All the weights of particles are normalized after the up-
date, and if the estimate of effective number of particles in
which the total number of particles is P

N̂eff =
1∑P

i=1(wi)2

is less than a given the threshold Nthreshold, a resam-
pling is performed using the stratified resampling algorithm.
Then, the particles and their weights are used as the current
knowledge the learning agent uses to proposes the counter-
offer.

Readers familiar with particle filter representations will
notice that our representation, which includes the strategy
in the particle representation is unusual. The strategy does
not have an obvious distance metric, and it does not evolve
through the life of the particle. On the other hand, it partic-
ipates in the evolution of the other components and it plays
an important role in the weight update. Thus, the strategy
component can also considered as a particle coloring mech-
anism.

A related problem is the initialization of the strategy field
of the particle. While the source and destination location
can be initialized through random sampling of their respec-
tive domains, the strategy can not be randomly generated
from the space of all possible strategies. For our current
implementation, we consider the strategy to represent a dis-
crete choice among a small number of possible strategies,
from which we choose according to some a priori probabili-
ties.

6.2 Calculate the next offer based on the cur-
rent knowledge

Algorithm 3 depicts the calculation of the next offer by
the PF agent. The first main step of the algorithm is to as-
sociate each particle an offer. Specifically, for each particle
i, the learning agent calculates all potential deals which are
feasible for both agents and acceptable for both selfishness
λ and λi. If there is no such deal, it assigns no offer to the
particle. If there are more than one deals can be found, it
assigns the offer which provides opponent best utility, as-
suming the opponent is indeed in the particle i.

The next step is to decide whether to propose counter-
offer or not: if none of the particles have an associated offer,
or the accumulated weights of particles who have assigned
offer is less than a threshold, the learning agent concludes
that there is no deal possible for the current state of the
world, so it reports no further offer and stop negotiation.

In the third step, we perform a K-Means clustering on all
the particles which have assigned offers. The distance metric
used is the sum of squared difference between the issues.



After clustering, the learning agent calculates the weight
of cluster as the accumulated weight for all particles belongs
to it and selects the cluster with highest weight. Then, it
will propose the averaged offer of that cluster as the next
counter-offer to the opponent.

What this process effectively does it to discover the nat-
ural grouping of the particles in several discrete hypothesis
(well visible in the visualization). If we would average over
the complete set of particles, the resulting estimate might
fall in the low probability zone between hypotheses.

Algorithm 3 The function to calculate next offer in the PF
agent

1: for all particle i in belief do
2: search all Oi where Uagent(O

i) ≥ λ and
Uopponent(O

i) ≥ λi;
3: if no any Oi then
4: Oi

best ← null;
5: else
6: Oi

best ← arg max Uopponent(O
i);

7: end if
8: end for
9: if no particle has Oi

best or
∑

wi ≤ threshold then
10: return Onext ← null;
11: else
12: cluster all particles whose Obest! = null;
13: calculate weights of all clusters;
14: find the most weighted cluster j;
15: return Onext ← Oave(j);
16: end if

7. EXPERIMENTAL STUDY

7.1 The influence of the selfishness and opti-
mism on the agent trajectories

To understand the impact of the selfishness and optimism
settings on the behavior of agents, we have run a series of
experiments. We considered a scenario where a mutually ad-
vantageous deal is possible. The size of the map is 600×400,
with the forest located at (200,25) with the size of 200 ×350.
Agent A moves from (100,150) to (500,150) with the speed
of 1.0, agent B with the fixed values of λ = 0.6 and γ = 1
moves from (100,250) to (500,250) with the speed of 1.0.
Both agents use the MCS strategy(Cm = 2, Cs = 2) to cal-
culate the next offer. This is a “hard” scenario, because the
social deal is only marginally better than the conflict deal.

Figure 1 shows the path of the agents for four different
settings of the selfishness and optimism for agent A. As the
MCS strategy does not depend on the current location, the
actual offers exchanged are identical. Interestingly, however,
in cases (a) and (d) the agents agreed to collaborate, while
for (b) and (c) they did not. Figure 1-a shows an agent with
λA = 0.6 and γA = 1, that is, of average selfishness but
fully optimistic. The agent moves towards its own offer at
every step which results in a curving trajectory as the offer
evolves. As the agents are getting closer and closer together,
the utility of their respective offers keeps increasing, thus a
deal is eventually reached.

In Figure 1-b agent A is fully pessimistic and of aver-
age selfishness (λA = 0.6, γA = 0). Agent A moves in a
straight line towards the conflict deal, making the offers of

(a) Fully optimistic (b) Fully pessimistic

(c) Very selfish (d) Very generous

Figure 1: The influence of the selfishness and opti-
mism to the course and the outcome of the nego-
tiation. The meta-strategy of agent B is fixed to
λB = 0.6 and γB = 1. The values for agent A are:
(a) λA = 0.6, γA = 1 - average selfishness, fully opti-
mistic, (b) λA = 0.6, γA = 0 average selfishness, fully
pessimistic, (c) λ = 0.8, γ = 1 high selfishness, fully
optimistic and (d) λ = 0.2, γ = 1 low selfishness, fully
pessimistic.

the opponent and its own offers less and less valuable, de-
spite the opponents’ concession. Finally, the offer which the
agent needs to make according to its strategy becomes of
lower utility than the conflict deal, the negotiation is broken
off, and the opponents move on the conflict deal trajectory.
Note that agent B actually ended up on a trajectory which
is worse than the original conflict deal.

Figure 1-c shows a run with A being fully optimistic but
of high selfishness (λA = 0.8, γA = 1). The trajectories are
initially similar to case (a), however, A will reach a point
in which its next offer will have an utility smaller than its
selfishness. At this point A breaks of the negotiation and
moves to the conflict deal. In this case both agents end up on
trajectories which are worse than the original conflict deal.

Finally, Figure 1-c shows a case when A is fully pessimistic
but of low selfishness - very generous (λA = 0.2, γA = 0).
Despite the fact that it starts to move towards the direction
of the conflict deal, A and B successfully form a deal A will
accept a relatively low utility rational offer. Thus A will
reverse its course and move towards the collaborative deal.
Note that A had lost some utility by making the “detour”
towards the conflict deal.

7.2 The influence of the action strategy on the
offer pool

Let us consider a negotiation turn where agent A needs
to make an offer. We call the agent A’s offer pool, the set of
offers which are rational and feasible for A. The supervisor’s
pool is the set of offers which are feasible and rational for
both A and B. Some strategies, such as ET generate the
agent’s pool explicitly. The supervisor’s pool can not be
computed by the agents in partial knowledge negotiations.
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(a) Fully pessimistic
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(b) Fully optimistic

Figure 2: Evolution of the histograms of offer pool
(gray lines) and the supervisor’s pool (black lines)
function of the utility. (a) γ = 0 (fully pessimistic)
and (b) γ = 1 (fully optimistic). For both cases, the
λ = 0.6.

In the acting while negotiating problem, both the agent
pool and the supervizor’s pool decreases at every negotiation
round, as some offers become unfeasible. However, which
offers become unfeasible depends on the action strategy.

One way to characterize the agent and the supervisor
pools is to consider the histogram of the offers in function of
their utility. Figure 2 plots the evolution of these histograms
over the negotiation scenario described in the previous sec-
tion. Series of gray lines show the agent’s offer pool, and
black lines the supervisor’s pool. Figure 2-a considers a
fully pessimistic agent. As expected, the agent offer pool
shrinks at every iteration. Furthermore, maximum utility
from the agent’s offer pool also becomes lower at every iter-
ation, reflecting the fact that by moving on the conflict deal
trajectory, the agent is reducing its own choices. The super-
visor’s pool is shrinking on its own as well, and eventually
becomes empty.

Figure 2-b considers a fully optimistic agent. We note
that the offer pool is still shrinking at every iteration, but
the amount of decrease is smaller. Furthermore, the maxi-
mum possible utility remains very close to 1.0 during in the
negotiation, because the agent optimistically moves towards
these high utility offers. We also notice that the rate of
shrinking of the supervisor’s pool is much slower than in the
pessimistic case.
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Figure 4: The statistical study of negotiation result
when a PF agent and a MCS agent negotiates with
the same opponent (another MCS agent) in 50 pre-
load scenarios.

7.3 The learning process in the particle filter
agent

In the AWN case every rejected offer comes with a cost
in terms of loss of utility of the final deal, or it can even
lead to a conflict. An agent with perfect knowledge of both
the opponents physical location and destination, as well as
strategy, would be able to make in the first round the per-
fect offer which would be (just) acceptable to the opponent
and would maximize the utility for the offeror. We expect
that the particle filter based agent we described, by learning
during the negotiation some parameters of the opponent,
should be able to achieve a higher utility and, possibly, turn
negotiations ending in conflict into negotiations ending in a
deal.

Let us consider the negotiation in Figure 1-c, with an MCS
agent which is selfish (λ = 0.8), and optimistic (γ = 1),
which ends in conflict. We repeat the experiment, replacing
the MCS agent with a PF agent, with the same λ and γ
values.

Figure
We note that the particles show a relatively large spread

which changes from step to step. This is a result of the way
in which the offers are formed based on the strongest cluster.
If the opponent declines the offer, this represents a strong
negative feedback to the selected cluster, which leads to a
large variation in the particle cloud, which can be further
amplified by the resampling step. Nevertheless, the particle
clouds track relatively well the current location and destina-
tion of the opponent, which allows the PF agent to choose
better offers from the offer pool. In our case, at negotiation
round 10, the opponent accepts the PF agents offer, and
they move together to their meeting location. Thus, the PF
agent, under the same selfishness and optimism parameters,
and starting from zero knowledge, could“save”a deal, which
was lost for a MCS agent using the same parameters.

7.4 Statistical performance advantage of
learning

The quality of a specific action strategy / negotiation
strategy pair can be measured by the average utility of the
deals it can reach over a set of randomly chosen represen-



(a) step 0 (b) step 1 (c) step 2 (d) step 3

(e) step 4 (f) step 5 (g) step 6

Figure 3: The learning progress for the PF agent. The black dots and the corresponding dashed line are the
cluster and its center the learning agent selects at that round. The gray ones are those particles belongs to
the other clusters.

tative scenarios against specific opponents. The statistical
averaging is necessary because some strategies might be a
better fit for certain scenarios: for instance, fully pessimistic
action strategies will yield the best performance in scenarios
where no deal is possible.

Figure 4 shows the relative utility obtained by the MCS
and PF negotiation strategies for various set values of self-
ishness and optimism, when negotiating with a specific op-
ponent (using the MCS strategy and the with the values
of λ = 0.6 and γ = 1, used in the previous examples as
well. The utility values were obtained as an average over 50
randomly generated negotiation scenarios.

As expected, the PF agent significantly outperforms the
MCS strategy. The performance converges to the same value
for the selfishness 1, where almost all the negotiations end
up in conflict. We find that the performance of the PF agent
is only moderately sensitive to the optimism value, while in
the case of MCS, the performance in general decreases with
the optimism. Note, however, that both agents are dealing
with a fully optimistic opponent, pessimism from both sides
would lead to a large increase in the number of conflict deals.
For the PF agent, the maximum average utility is reached
for a value of selfishness of approximately λ = 0.4. For val-
ues smaller than this, the performance suffers because the
agent accepts deals of lower value, while for higher values,
the performance decreases because a larger fragment of ne-
gotiations end in conflict.

8. CONCLUSIONS
In this paper we introduced the acting while negotiating

variant of the convoy formation through negotiation prob-
lem. We have identified that the main challenge of this prob-
lem is the interaction between the negotiation strategy and
the action strategy. We have introduced several negotiation
strategies (three static and one learning based) for a specific
case of convoy formation, the children in the rectangular
forest game.

Our described work is just an initial investigation in a rela-
tively major problem, with application both within the con-
voy formation problem and in other instances where agents
are negotiating in physical time. Our future work involves
both extending the proposed strategies to more general set-

tings, as well as in developing more complex action strate-
gies, such as strategies where the opponent model is used to
adjust the optimism of the action strategy.
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