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ABSTRACT
In spatio-temporal negotiation evaluating an offer for feasibility or
utility often requires computationally expensive path planning, thus
practical negotiation strategies can evaluate only a small subset of
the possible offers during offer formation. As equilibrium strate-
gies are not practically possible, we are interested in strategies with
bounded rationality, which achieve good performance in a wide
range of practical negotiation scenarios. Naturally, the performance
of a strategy is dependent on the strategy of the opponent and the
characteristics of the scenario. The utility of a deal alone for a
particular agent is not a good measure of the quality of the negoti-
ation strategy; we also need to consider whether better deals were
overlooked or whether the agent had “outsmarted” the opponent,
by convincing it to accept a lesser deal. We also have an intuition
of collaborative scenarios (where the agents’ interests are closely
aligned) versus competitive scenarios (where the gain of the utility
for one agent is paid off with a loss of utility for the other agent).

Using the Children in the Rectangular Forest (CRF) game as a
canonical model of spatio-temporal negotiation, we develop a se-
ries of quantitative metrics for the characterization of deals in rela-
tion to the possibilities of the scenario and the interest of the other
agent. We also develop a metric for the collaborativeness of the
scenario. Through an experimental study involving three negotia-
tion strategies of increasing complexity, we show that the proposed
metrics match our intuition about the scenarios and can serve as a
tool in analyzing and developing strategies as well as in designing
negotiation mechanisms promoting cooperative behavior.

1. INTRODUCTION
Collaboration between embodied agents often requires the tem-

poral and spatial collocation of the agents. Agents need to coordi-
nate their movements, agree on meeting points, time, common path
and speed, as well as locations where they split and start moving on
independent trajectories. Such problems appear as sub-problems in
many practical applications such as transportation and disaster res-
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cue. In previous work [6] we have identified five differentiating
features of the spatio-temporal negotiation problems: (1) heteroge-
neous issues (which include spatial locations and time points), (2)
non-monotonic valuation of issues, (3) an evolving environment,
(4) offers need to be verified for feasibility (usually by both par-
ties) and (5) there is an interaction between the negotiation time
and the physical time. As this category of problems can not be
conveniently represented through the “split the pie” model of ne-
gotiation, we proposed a model, Children in the Rectangular Forest
(CRF), which captures the main features of these problems and can
be used as an canonical problem for the study of spatio-temporal
negotiation strategies.

The evaluation (and creation) of offers in spatio-temporal nego-
tiation problems is computationally expensive, as it often involves
path planning. As the negotiation happens in real physical time,
agents can not afford to evaluate a large number of offers for feasi-
bility and utility. As equilibrium strategies are not practically pos-
sible, we are interested in developing strategies with bounded ratio-
nality, which achieve good performance in a wide range of practical
negotiation scenarios. Naturally, the performance of a strategy is
dependent on the strategy of the opponent and the characteristics of
the scenario. The utility of a deal alone for a particular agent is not
a good measure of the quality of the negotiation strategy; we also
need to consider whether better deals were overlooked or whether
the agent had “outsmarted” the opponent, by convincing it to accept
a lesser deal. We also have an intuition of collaborative scenarios
(where the agents interests are closely aligned) versus competitive
scenarios (where the gain of the utility for one agent is paid of with
a loss of utility for the other agent).

To show the intuition behind collaborativeness in a negotiation
scenario, let us first consider the simpler scenario of the split the
pie game. Here two agents are negotiating over the partitioning
of a pie. As the parts allocated to one agent are lost for the other
agent, the single pie game is fully competitive. This is true even
for the cases when we are partitioning over multiple pies. Note
that although all zero-sum games are fully competitive, not all fully
competitive games are zero sum1. For instance, a “split multiple

1Some game theory texts, such as [7] equate fully competitive with
zero sum, by making the assumption that the utility function is just
a convenient expression of the preference ordering. In our case,
however, the utility has the dimensionality of time, and it can not be
arbitrarily scaled. There is a difference between a scenario where a
1 second utility decrease from one agent gives 1 second utility gain
to the other agent, and the scenario where 1 second utility decrease
gives 100 seconds utility gain for the opponent. In our language the
first scenario is fully competitive and zero sum, while the second



pies” game where the agents value the different pies with different,
positive values, is still fully competitive, but not zero sum. On
the other hand, a fully cooperative game is one where there is a
possible agreement which is individually optimal for both agents.
An example of a fully collaborative game is a split the multiple pie
game with two pies P1 and P2, where agent A values P1 positively
and P2 negatively, while agent B values them the other way around.
In this case the agents can easily agree on a partitioning where agent
A gets the pie P1, while agent B gets the pie P2.

For spatio-temporal negotiations similar considerations apply;
however both the definition of collaborativeness and the calcula-
tion of the optimal deal is more difficult.

2. RELATED WORK
While automated negotiation [5] generated a lot of interest in

recent years, negotiation about spatio-temporal issues in embodied
agents has received relatively little attention. Nevertheless, many
research results in multi-issue negotiation or collaborative robotics
have relevance to our work.

Sandholm and Vulkan [9] analyze the problem of negotiating
with internal deadlines where the deadlines are private information
of the agents. The negotation problem is a “split a single pie”, zero-
sum negotation. They find that for rational agents, the sequential
equilibrium is a strategy which requires agents to wait until their
deadline, and at that moment, the agent with the earliest deadline
concedes the whole cake.

Fatima, Wooldridge and Jennings [2] extensively study the prob-
lem of multi-issue negotation under deadlines. The problem con-
sidered is the split multiple pie problem where the pie is assumed
to shrink after every negotiation round, under both complete in-
formation and incomplete information assumptions. The authors
compare three negotiation procedures: the package deal procedure
where all the issues are discussed together, the simultaneous proce-
dure where issues are discussed independently but simultaneously,
and the sequential procedure where issues are discussed one after
another. The authors show that the package deal is the optimal pro-
cedure for both agents.

Golfarelli et al. [3] considers the case of robotic agents which are
assigned a set of tasks which are attached to physical locations. The
tasks carry precedence constraints (execute one specific task earlier
than the other) and object constraints (fetch the object in order to
execute the task). Agents need to determine, on a network of places
and routes, a sequence of places to be visited in order to carry out a
set of tasks. Through swapping tasks based on announcement-bid-
award mechanism, the agents can decrease their tasks execution
costs in the map. An extended version of this work [4], allows
the agents to exchange clusters of tasks to avoid being stuck in
local minima. To cluster similar tasks, the authors calculate spatial
distance and temporal distance of tasks, and apply thresholds to
differentiate between near and far tasks.

Saha and Sen [8] discuss the problem of negotiating efficient
outcomes in a multi-issue negotiation where some of the param-
eters of the agent are not common knowledge. The “distributive”
and “integrative” scenarios proposed by them are the equivalents
of the “competitive” and “collaborative” scenarios we define for
the spatio-temporal negotiation problem.

Crawford and Veloso [1] applied the “experts” algorithm to solve
the multi-agent scheduling problem. In this algorithm the agent is
helped by a number of “experts”, but it needs to decide which ex-
perts’ advice it should follow. The learning agent can dynamically
change its strategy according to its opponents’ behavior. The per-

scenario is fully competitive but not zero sum.
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Figure 1: The Children in the Rectangular Forest problem. The
trajectories associated with the conflict deal are shown with an
interrupted line, while the trajectories corresponding to a pos-
sible agreement are shown with a continuous line.

formance of each algorithm is measured in terms of total utility
achieved over each of the trials.

3. METRICS FOR THE CHARACTERIZA-
TION OF THE CRF PROBLEM

3.1 The CRF problem
The Children in the Rectangular Forest (CRF) problem consid-

ers a world in which two children A and B are moving from source
points S A and S B on one end of a rectangular forest to their respec-
tive destination points DA and DB on the other side of the forest
(see Figure 1). Traveling alone, the children can not enter the for-
est and they need to go around it. However, if they join together in a
coalition, the children can traverse the forest, thus possibly shorten
their trip. The children travel at different velocities vA and vB; when
traveling together, they move with the velocity of the slower child.
The selfish objective of each child is to reach his or her respective
destination as early as possible.

The two children are using negotiation to agree on the parameters
of the deal. This is a 4-issue negotiation, with two issues being spa-
tial locations (meeting point Lm and split point Ls), and two issues
time points (meeting time tm and split time ts). If the negotiation is
unsuccessful, the agents are taking the conflict deal; that is, they go
around the forest.

Several properties of rational deals in the CRF problem, are sum-
marized below:
• The optimal trajectories of the conflict deal and the collabo-

rative deal are sequences of straight segments. However, the
trajectory of an agent before making a deal might be curvi-
linear, reflecting, for instance, the evolving estimation of the
agent about the likelihood of the deal.

• The meeting point and the split point of any Pareto optimal
deal is at the edge of the forest in non-degenerate cases. In
degenerate cases, there is a deal with the same time to des-
tination for both agents where the points are the edge of the
forest.

The four negotiation issues are not completely independent. For
instance, if we know the maximum velocity of both agents, the
split time ts can be calculated from Lm, Ls, and tm. Similarly, if all
information is known about the current location and speed of the
agents, the Pareto optimal value of tm can be calculated, knowing
Lm.

We can make a more general observation concerning negotia-
tion problems which involve meeting and splitting locations and
times of convoys. If (a) the utility of all participants depends only
on the time to reach the destination and (b) the negotiation is full



knowledge, then the negotiation can be reduced to the spatial com-
ponents, as the temporal components can always be calculated by
considering the time it takes for the last participant to reach the
given point.

However, if the negotiation is not full-knowledge, then the agent
might find it impossible to form an offer where the temporal values
are guaranteed to be feasible for both agents. In the simplest case,
an agent might not know the current location of the negotiation
partner, and thus, naturally, it cannot calculate the time at which it
can reach a certain point.

We call a fully specified offer a quadruple O = {Lm, tm, Ls, ts}
which specifies both the spatial and temporal components of an of-
fer. A spatially specified offer specifies only the spatial components
of the offer: O = {Lm, ?, Ls, ?}. An agent A can complete a spatially
specified offer by calculating the timepoints t(A)

m and t(A)
s which are

the earliest feasible ones for the agent. The resulting offer is the
best time completion for A of the spatially specified offer O:

BTC(A)(O) = BTC(A)({Lm, ?, Ls, ?}) = {Lm, t(A)
m , Ls, t(A)

s } (1)

3.2 Metrics
Each of us has an intuitive feel for negotiation scenarios which

are “easy” because the negotiation partners have a strong incentive
to form a deal and for scenarios which are “hard” because a ratio-
nal agreement is difficult to find (or it might not exist). Also, we
have an intuition of certain negotiation scenarios where one of the
participants has “more to gain” from an agreement.

Our objective is to develop metrics which match well with these
intuitions, while abstract away the other parameters of the game
(such as the location and destination of the agents).

A CRF scenario is defined by the map of the CRF game (the size
of the forest), the source points of the two agents S A and S B, the
destination points of the two agents DA and DB, and the maximum
velocities of the agents vA and vB. The path of the agents are se-
ries of segments together with the velocities of the vehicle on the
different segments.

We call time to destination C(A)(O) of agent A for a particular
offer O = {Lm, tm, Ls, ts} the time it takes for the agent to reach its
destination if it accepts the offer and follows the trajectory. The
lower the time to destination, the more desirable is the offer for the
agent. The time to destination is composed of three components:
the time it takes for both agents to reach the meeting location, the
time for traveling together in the forest, and time from the split
location to the agent’s destination.

C(A)(O) = max
( |S A, Lm|

vA
,
|S B, Lm|

vB

)
+
|Lm, Ls|

min (vA, vB)
+
|Ls,DA|

vA
(2)

The time to destination of the conflict deal C(A)
conflict is the time for

the agent to reach its destination if it does not make any deal. This
value of the baseline of the negotiation; a rational agent will not
accept an offer which will yield a time to destination later than the
conflict deal.

D 1. The utility of an offer O for agent A, denoted
with PA(O), is the time the agent saves accepting the offer com-
pared to the conflict deal.

U (A)(O) = C(A)
conflict −C(A)(O) (3)

D 2. We define the absolute best time to destination
C(A)

ab for agent A the time it would take it to reach the destination as-
suming an ideally performant and ideally collaborative negotiation
partner.

For the CRF problem, the trajectory associated to the absolute
best time to destination is a straight line from the source to destina-
tion traversed by the agent with its maximum velocity.

C(A)
ab =

|S A,DA|
vA

(4)

This assumes that there is an ideal negotiation partner, who is (a)
willing to accept any geometric location for meeting and splitting
points proposed by the agent, (b) its velocity is greater than or equal
of the current agent and (c) its current position is such that it can
reach the meeting point at a time earlier or equal with the time it
takes agent A to reach it. Note that for a practical scenario, the
absolute best time to destination may not be feasible, even for an
ideally cooperative negotiation partner.

D 3. We define the ability constrained best time to
destination C(A),{B}

acb , of an agent A negotiating with an agent B, the
time A can reach the destination assuming an ideally collaborative
agent B.

The ability constrained best time takes into account the physi-
cal limits of the negotiation partner and the scenario. The meeting
and split point of the offer associated with the ability constrained
best time might not be the one situated on the intersection of the
straight line to destination with the forest. The offer(s) associated
with C(A),{B}

acb might not be rational for agent B.

D 4. The rationality constrained best time to desti-
nation U (A),{B}

rcb for agent A negotiating with agent B is the time to
destination of agent A which can be obtained assuming that agent
B will accept any offer, as long as it is rational for B.

As C(A),{B}
acb and U (A),{B}

rcb introduce successive restrictions over C(A)
ab ,

we have:

C(A)
conflict ≥ C(A){B}

rcb ≥ C(A){B}
acb ≥ C(A)

ab (5)

Each of these time to destination values define a set of one or more
concrete offers which actually achieve them. Thus we define a ra-
tionality constrained best offer of A to be an offer O(A),{B}

rcb such that

C(A)
(
O(A),{B}

rcb

)
= C(A){B}

rcb (6)

The metrics introduced until now characterize the scenario from
the point of view of one of the agents. Let us now develop a metric
which quantifies the desirability of a certain offer O from the point
of view of the social good.

D 5. We call the social cost of the offer O any func-
tion Csocial(O) = Csocial

(
C(A)(O),C(B)(O)

)
which is monotonically

increasing both with C(A) and with C(B):

∀C(B),C(A)
1 ≥ C(A)

2 ⇒ Csocial(C
(A)
1 ,C(B)) ≥ Csocial(C

(A)
2 ,C(B))

∀C(A),C(B)
1 ≥ C(B)

2 ⇒ Csocial(C(A),C(B)
1 ) ≥ Csocial(C(A),C(B)

2 ) (7)

We call denote with Osocial the set of offers which minimize the
social cost:

Osocial = argmin
O

(Csocial(O)) (8)

Within the constraints of this definition, there are many possible
functions which can serve as the social cost function. The choice
of a specific function depends on the policy of the supervisor. One
simple choice is to define the social cost as the sum of the individual
costs.

Csocial(O) = CA+B(O) = C(A)(O) + C(B)(O) (9)



Note however, that a social best offer might not be rational for both
agents. We can define a rationality constrained social cost, which
assumes a cost of plus infinity for the offers which are not rational
for one of the agents:

Crcsoc(O) =
+∞

(
C(A)(O) > C(A)

conflict

)
∨

(
C(B)(O) > C(B)

conflict

)

Csocial(O) otherwise
(10)

Based on this definition, we can define the set of rationality con-
strained social best offers Orcsoc as:

Orcsoc = argmin
O

(Crcsoc(O)) (11)

D 6. We define as the collaborativeness of the sce-
nario from the point of view of agent A, negotiating with agent B,
the ratio of the utility of the rationality constrained social best deal
to the maximum rationally obtainable utility:

Ξ(A),{B} =
C(A)

conflict −C(A),{B}
rcsoc

C(A)
conflict −C(A),{B}

rcb

(12)

Let us verify that this definition satisfies our intuition about the
collaborativeness of a scenario. In a fully competitive scenario,
there is no rational deal possible, thus the cost of the rational deal
will be the conflict deal, thus we have Ξ(A),{B} = 0. On the other
hand, we say that a scenario is fully cooperative from the point of
view of agent A if the rationality constrained social best offer is
also the rationality constrained best offer for agent A. In this case
Ξ(A),{B} = 1.

D 7. We define the relative utility of an offer for agent
A as the ratio of the utility of the offer to the maximum rationally
obtainable utility:

U (A),{B}
rel (O) =

C(A)
conflict −C(A)(O)

C(A)
conflict −C(A)

rcb, {B}
(13)

The relative utility of the agent can range from 0 to 1. Notice
that the relative utility of a deal does not tell us whether the agent
has negotiated “better” than the negotiation partner. There are situ-
ations when both agents can reach the maximum relative utility.

D 8. We define the competitive utility of an offer for
agent A as the ratio of the utility of the offer to the utility of the
rationality-constrained social best offer:

U (A),{B}
comp (O) =

C(A)
conflict −C(A)(O)

C(A)
conflict −C(A)

rcsoc, {B}
=

U (A),{B}
rel (O)
Ξ(A),{B} (14)

The competitive utility can range from 0 to 1
Ξ(A),{B} > 1. Intu-

itively, U (A),{B}
comp (O) = 1 means that the agent obtained the social

deal. If U (A),{B}
comp (O) < 1 and U (B),{A}

comp (O) > 1 it can be interpreted that
agent B “outsmarted” agent A in the negotiation. If is not possi-
ble that both competitive utilities to be above 1, as the specific offer
would become the new social deal. However, it is possible that both
values are below 1, which means that the negotiating agents agreed
on a deal which is not Pareto optimal. As finding a Pareto opti-
mal deal in spatio-temporal problems is a non-trivial collaborative
search task, this can happen quite often for real-world negotiations.
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Figure 2: Example runs of negotiation protocols. (left) Ex-
change of binding offers (EBO). (right) Exchange of offers with
mandatory, non-binding evaluations (EBOMNE).

3.3 Negotiation protocols for CRF
For most negotiation settings, it is assumed that the complex-

ity of the negotiation lies in the strategy, while the protocol is a
relatively trivial alternating exchange of offers by the two parties.
Such a simple protocol would still work well for the CRF game
with full knowledge. In the case of incomplete knowledge, how-
ever, the difficulty of forming a feasible offer as well as evaluating
whether a given offer represents a concession or not, make simple
offer-exchange protocols little better than random search. The sim-
ple protocol can be enhanced by schemes in which the agents add
additional information of the negotiation flow to aid the negotia-
tion partner in the offer formation. In the following we illustrate
the design space for the CRF negotiation protocols through several
examples.

Simple exchange of binding offers (EBO). In this simplest ne-
gotiation protocol, the agents are alternating in making fully speci-
fied offers in the form O = {ym, tm, ys, ts}. The offers are binding for
the agents who made the offer, in the sense that once made by an
agent and accepted by the other agent, the offer will be the outcome
of the negotiation. An example run of this protocol is illustrated in
Figure 2-left.

Exchange of binding offers with mandatory, non-binding
evaluations (EBOMNE). In this protocol the agents are exchang-
ing pairs of offers and evaluations. Agent A first chooses a spatially
specified offer O = {ym, ?, ys, ?}, and computes the associated best
time completion BTC(A)(O) = {ym, t

(A)
m , ys, t

(A)
s }. This is the offer

which A will send to agent B, which is guaranteed to be feasible
for A and is binding for A. Agent B will calculate its own best
time completion BTC(B)(O) = {ym, t

(B)
m , ys, t

(B)
s } for the same spa-

tially specified offer. Using the two best time offers, B will form an
evaluation of the initial offer

E(O) =
{
ym,max(t(A)

m , t(B)
m ), ys,max(t(A)

s , t(B)
s )

}
(15)

This evaluation has the form of an offer which is feasible for
both agents, but it is not binding for the evaluating agent. Rather
it represents a critique of the original offer, and such it helps the
other agent in the formation of feasible offers. Note that the eval-
uation provides some information about the evaluating agent, but
it does not immediately disclose the source, destination or maxi-
mum speed (for instance, it is providing less information then the
exchange of the BTC would). Also, if the evaluation amounts to
an offer which is not feasible for the evaluating agent, an empty
evaluation ∅ will be returned instead.



In practice, agents would couple the evaluation of the received
offer with the sending of new offer. An example run of this protocol
is illustrated in Figure 2-right.

Exchange of binding offers with optional, non-binding eval-
uations (EBOONE). A variation of the previous protocol removes
the requirement that the agents evaluate every received offer. The
advantage of this protocol is that agents would not be required to
disclose information in response to offers which they would not
consider. An agent would normally evaluate only offers which are
satisfactory from the point of view of the spatial components.

Other combinations are also possible. For instance, exchange of
offers with optional but binding evaluations is the (near) equivalent
of a simple exchange of offers strategy where one of the agents is
choosing as its next offer the evaluation of the opponents’ offer.

There is an interdependence between the negotiation protocol
and the strategies of the agents. A negotiation strategy created for
the EBO protocol can be trivially extended to the EBOMNE as the
evaluation can be created automatically - but the strategy would not
take advantage of the information contained in the evaluations. The
same strategy can be also trivially extended to EBOONE, by choos-
ing not to send any evaluation. It is more difficult to “downgrade”
strategies which rely on information from evaluations such as in
EBOMNE protocol, to protocols where this information might not
be available, such as EBO.

The protocols described in the next section are expected to oper-
ate in the EBOMNE protocol, although the first protocol presented
does not take advantage of the evaluations and it would work simi-
larly under the EBO protocol.

4. NEGOTIATION STRATEGIES
In the following we briefly introduce three negotiation strategies

for the CRF problem. The goal is to illustrate a broad range of
strategies which the agents might deploy. For all these strategies
the assumption is the “no initial information” setting - that is the
agents start with no information about the parameters of the nego-
tiation partner. The negotiation protocol is assumed to be the ex-
change of binding offers with mandatory, non-binding evaluations
(EBOMNE); however, not all protocols are taking advantage of the
information in the evaluations. Due to lack of space, the description
of the strategies will be inevitably cursory.

4.1 Monotonic concession in space (MCS)
Although monotonic concession is one of the basic strategies in

most negotiation settings, for the CRF game with incomplete infor-
mation, monotonic concession is not possible. One compromise is
to limit the concession to the spatial domain. This will usually, but
not always represent a concession in terms of the utility function of
the opponent.

The monotonic concession in space agent is parameterized by the
pair (cm, cs) representing the concession rate in the meeting point
and splitting point respectively.

The agent will start its negotiation by proposing an of-
fer corresponding to its absolute best O(A),1 = O(A)

ab =

{y(A),1
m , t(A),1

m , y(A),1
s , t(A),1

s }. In response to this, the agent will receive
an evaluation (which will contain the offer corresponding to the
ability constrained best O(A)

(acb) and the counteroffer of agent B,
O(B),1 = {y(B),1

m , t(B),1
m , y(B),1

s , t(B),1
s }.
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Figure 3: A negotiation trace between the a monotonic conces-
sion in space agent A and an internal negotiation deadline agent
B.

The next offer of agent A is described by the following values:

y(A),n+1
m =



y(A),n
m − cm if y(B),n

m < y(A),n
m − cm

y(B),n
m if y(B),n

m < y(A),n
m ≤ y(B),n

m + cm

y(B),n
m if y(B),n

m > y(A),n
m ≥ y(B),n

m − cm

y(A),n
m + cm if y(B),n

m > y(A),n
m + cm

(16)

with a similar expression for y(A),n+1
s . Using the resulting spatially

specified offer {y(A),n+1
m , ?, y(A),n+1

s , ?}, the agent will calculate the best
time completion. The resulting fully specified offer will be evalu-
ated for rationality. If the offer is not rational, the agent will break
the negotiation. The agent will accept the opponent’s offer if it
evaluates to a utility which is higher than the next counteroffer the
agent is about to make.

4.2 Internal negotiation deadline (IND)
In the internal deadline negotiation strategy the agent sets to it-

self a deadline (expressed as a number of negotiation rounds) and
adapts the speed of concession in function of the remaining nego-
tiation rounds and the difference between the current offers. If the
number of rounds have expired without an agreement being reached
the agent breaks the negotiation. The negotiation strategy is param-
eterized by the negotiation deadline.

Similarly to the MCS strategy, the agent starts by offering the
absolute best O(A)

ab . At every step the agent A will calculate the rel-
ative utility of its own previous offer based on the evaluation made
by the opponent agent. Then it adapts the concession rate based on
its own and the opponents’ previous concession such that the deal
will be reached at the negotiation deadline. Naturally, a deal can be
reached sooner if the opponent agent accepts an offer. The agent
will insist on an offer (by repeating it without change), if the offer
is evaluated to be rational by the opponent while the opponents’
offer is not rational for the agent. Figure 3 shows a negotiation
trace between a MCS and IND agent. Note the adaptation of the
concession speed by the IND agent.

4.3 Estimation of the opponents parameters
(EOP)

The main problem with the previous two strategies is that it is
difficult to create attractive offers, because the agents do not know
whether a particular offer represents a concession. Furthermore, the
offering agent can not even evaluate the utility of a spatially spec-



ified offer for itself, as the offer needs to be ability and rationality
constrained by the opponent agent.

The EOP strategy tries to improve its offer formation by esti-
mating the opponent’s speed and current location based on the of-
fers and evaluations made by the opponent. With this estimate, the
agent can calculate the ability constrained tm and ts values for a
spatially specified offer. The EOP strategy maintains an offer pool
which contains a set of pre-calculated offers, which are believed to
be rational for both agents. The agent will make offers from the
pool in the decreasing order of its own utility. The agent accepts
the opponents’ offer if it is higher than the next offer in the pool,
and breaks the negotiation if the offer pool is empty. Naturally, the
offer pool needs to be updated whenever the estimates change.

Note that will all these negotiation strategies it is possible that
two agents will not reach an agreement despite the fact that a mu-
tually rational offer exists.

5. EXPERIMENTAL RESULTS
In the following we describe the results of a series of empirical

studies which study the influence of the collaborativeness of the
scenario on the results of negotiations. In particular, the three main
questions we plan to answer is:
• What is the distribution of collaborativeness in scenarios?
• How is the efficiency of the negotiation process affected by

the collaborativeness of the scenario?
• How does the performance of a negotiation strategy affected

by the collaborativeness of the scenario?
The negotiation protocol considered was exchange of offers with

mandatory, non-binding evaluations (EBOMNE). We have used
three agents: (a) monotonic concession in space (MCS), with con-
cession size (2, 2), (b) internal negotiation deadline (IND) with in-
ternal deadline 30 and (c) estimation of the opponents’ parameters
(EOP), with the offer generation resolution of 5.

5.1 The distribution of the collaborativeness
The distribution of the collaborativeness provides the answer to

the question: if we pick a random scenario, is it going to be com-
petitive or collaborative? Naturally, the distribution of the collabo-
rativeness depends on the distribution of the source and destination
locations of the scenarios, as well as the distribution of the speed of
the agents. Let us assume that the source and destination are dis-
tributed uniformly in rectangular areas situated immediately on the
left and right side of the forest. To study a variety of possible distri-
butions we consider three settings corresponding to the source and
destination areas shown in Figure 4. For each setting, we generate
1000 scenarios by choosing the source and destination according
to a uniform spatial distribution from the corresponding source and
destination rectangles. We calculate the value of collaborativeness
according to Equation 12, and assemble the values in a 10-bucket
histogram. The three resulting histograms are shown in 5.

We can make the following observations:
Setting 1: has the source and destination areas a square of the

same height as the forest. The histogram shows a U-shape, with
higher number of scenarios falling at the higher and lower extremes
of collaborativeness.

Setting 2: has the source and destination areas rectangles of the
same height as the forest but a width of half as much. The corre-
sponding histogram shows a similar U-shape like in the previous
case, but it is shifted towards the higher collaborativeness. We con-
clude that the closer is the forest to the source and destination, the
higher the probability that forming a coalition to traverse the forest
will be advantageous.
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Figure 4: Three settings for the distribution of the source and
destination areas for the study of the distribution of collabora-
tiveness among scenarios.
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Figure 5: The comparison of collaborativeness distributions in
three cases of restricted areas.

Setting 3: has the source and destination areas square and half
the height of the forest. We find that the distribution of the collab-
orativeness is weighted toward the higher values.

This result matches our intuitive expectations. For instance, cit-
izens in tightly packed cities such as New York and San Francisco
rely more on public transportation, as their source and destination
locations are frequently correlated. In cities spread over large areas
such as Orlando or Phoenix, the transportation interests are rarely
collaborative.

Beyond matching intuition, however, our approach allows us to
put a numerical value on the distribution, which is useful for both
an acting guide for individual agents

5.2 Competitive (relative) utility in function
of collaborativeness

In our next set of experiments we study the relative utility
achieved by specific strategies against specific opponents under in
scenarios with various levels of collaborativeness. Naturally, if a
deal falls through, the relative utility is zero.

One of the difficulties of our study is that we cannot generate
directly random scenarios with predefined collaborativeness level.
Thus we rely on rejection sampling, a technique borrowed from
Monte Carlo simulation methods: we generate scenarios by pick-
ing source and distribution points according to a uniform distribu-
tion, calculate their collaborativeness, group them into 20 buckets,
and then randomly reject scenarios from the buckets which are too
full until they are uniformly filled with 500 scenarios each. The
resulting collection of 10,000 scenarios was used in simulations.
The agents are using the EBOMNE negotiation protocol. Once the
negotiation terminated (either with an agreement or a conflict), we
measured the relative utility of the deal.

To present both the variability in the results of negotiation, as
well as the underlying trends, we choose to superimpose a scat-
terplot of the simulation results with a plot of the average values



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

collaborativeness

re
la

tiv
e 

ut
ili

ty

Figure 6: The scatterplot and average values function of collab-
orativeness for two monotonic conceding in space (MCS) agents
with identical parameters negotiating with each other.
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Figure 7: The scatterplot and average values function of collab-
orativeness for two internal negotiation deadline (IND) agents
with identical parameters negotiating with each other.

calculated on a per-bucket basis. Plotting only the average value
would be misleading, as the spread of the simulation values is not
accidental, but an intrinsic property which would not disappear if
we would, for instance, run a larger number of experiments.

Figure 6 shows the scatterplot and average values of relative util-
ity for the case of two MCS agents negotiating against each other.
We find that, as expected, the relative utility is increasing with the
collaborativeness of the scenario. However, the scatterplot shows
that the results were spread over a large range of relative utilities.
Even for scenarios with very high collaborativeness levels, there
are many negotiations which end without an agreement. In general,
this reflects weaknesses of the negotiation strategy, as the negotia-
tion breaks down while there were possible deals which would have
been mutually acceptable.

The second experiment uses the internal negotiation deadline
(IND) strategy for both agents. The results are shown in Figure
7. The shape of the graph is roughly similar to the MCS vs. MCS
graph, however, the strategy shows better results for very low col-
laborativeness scenarios. For instance, for a collaborativeness of
0.025 the IND vs. IND settings obtains an average relative utility
of 0.295, compared to 0.09 for the MCS vs. MCS case.

In the third experiment, we plot the same values for two agents
using the estimating the opponents’ parameters (EOP) strategy ne-
gotiating with each other. The results are shown in Figure 8, and
the overall trend remains the same as in previous cases: the relative
utility grows with the collaborativeness of the scenarios. We find
that the overall relative utility of the EOP agents is much higher
than the other two cases. Looking at the scatterplot, we can see that
this was accomplished both through higher utility values for deals,
as well as the reduction of the scenarios which ended in conflict.
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Figure 8: The scatterplot and average values function of col-
laborativeness for two estimating the opponents’ parameters
(EOP) agents with identical parameters negotiating with each
other.
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Figure 9: The comparision of average relative profits both
agents get when deadline agent negotiates with the estimating
agent in different scenarios.

In the previous examples, we always had the same types of
agents negotiating each other. Pitting agents of different types
against each other can give as insight into their relative perfor-
mance. Figure 9 shows the average relative utility function of
collaborativeness graphs an IND agent negotiating with an EOP
agent. The two plots represent the results for the same series of
experiments seen from the point of view of the two agents (that
is the U (IND),{EOP}

rel and the U (EOP),{IND}
rel values). For reference, we

also added the plot of two IND agents negotiating each other. The
overall shape of the curves is what we expected, the relative utility
increases with the collaborativeness. However, the agent using the
EOP strategy is able to consistently achieve higher utility values
than the IND agent, which shows the (expected) superiority of the
EST strategy in this setting.

An interesting observation can be made comparing the results of
the IND agent versus the EOP agent and versus another IND agent.
For low collaborativeness levels the IND strategy performs worse
against the EOP strategy than against the EOP strategy, which we
can interpret that EOP “outsmarted” its less sophisticated opponent,
and pushed it into less advantageous deals. For high collaborative-
ness levels, however, the situation is reversed; for these scenarios
the two agents have largely aligned interests, thus the efforts of
EOP to find better deals for itself also improves the deals for the
IND agent.

6. CONCLUSIONS



The contribution of this paper is the introduction of a set of met-
rics which allows us to measure the performance of a negotiation
strategy in comparison to its peers, as well as to evaluate, without
assuming any particular negotiation strategy whether a negotiation
will be easy or difficult.

Measuring the performance of a negotiation strategy against a
particular type of partner is not trivial. A weak performance in a
particular scenario does not necessarily mean that the strategy is
weak; it is possible that in the particular scenario “the odds were
against the agent”. The relative utility and competitive utility met-
rics allows us to evaluate the performance from a small number of
negotiation runs in the cases when we are interested in the abso-
lute value of gained utility or in the competitive advantage over the
negotiation partner.

The collaborativeness metric we introduced allows us to put a
quantitative value on the intuition of “easy” vs. “hard” negotia-
tion scenarios. This measurement is independent of the strategy,
but, naturally, some strategies might be better in exploiting the ad-
vantage of collaborative scenarios, or to retain acceptable utility
in competitive scenarios. We had also seen some empirical evi-
dence for the claim that negotiating against a sophisticated strategy
leads to lower relative utility for scenarios with low collaborative-
ness levels, but it actually becomes an advantage when negotiating
in scenarios with high collaborativeness levels.

One can envision strategies which perform a collaborativeness
analysis on the scenarios they encounter and make a prediction of
the success of the negotiation. One way to use this information
might be agents which can “act while negotiating”. If an agent
is almost sure that a deal will be reached, it might start to move
towards the predicted location of the deal while the negotiation is
in progress. Alternatively, if an agent is able to choose which agent
it will launch into negotiation for collaboration, the agent might
pick the negotiation with the highest collaborativeness value as the
negotiation most likely to succeed and reach a high relative utility.

Appendix: Generalized CRF
An important question which might be asked is whether the results
in this paper can be applied to practical applications. Naturally, the
CRF game itself does not map one-to-one to any practical applica-
tion.

Let us now introduce a generalized version of the CRF game.
As before, we assume that two agents A and B are moving from
source points S A and S B to their respective destination points DA

and DB. Their velocities in vector form are vA = (vA,x, vA,y)
and vB = (vB,x, vB,y) respectively. They can form a coalition, in
which case they have the common velocity vA+B. The velocity
of the agents is subject of restrictions of the form RA(vA, xA, yA),
RB(vB, xB, yB) and RA+B(vA+B, xA+B, yA+B)

The CRF game is a special version of the generalized CRF
where:

RA :


|vA| ≤ cA if (xA, yA) < forest
|vA| = 0 if (xA, yA) ∈ forest (17)

RA+B : |vA+B| ≤ |min(vA, vB)| (18)

Notice, that this immediately generalizes to situations where the
forest is of arbitrary size and position. It can also generalize to
multiple obstacles, including those which produce only a slowdown
as opposed to acting as a barrier. The approach also generalizes to
cases where the agents are of different type. For instance, if A is
a human, and B is a vehicle which the human can board, RA+B is
changes as follows:

RA+B : |vA+B| ≤ |vB| (19)

We can also develop restrictions for cases when, for instance, B is
a ferry, while A is a vehicle. In this case B and the coalition of
A+B has mobility on water, while A has mobility on solid ground.
These examples all have restrictions on the scalar component of
the velocity; this, however, might not always be the case. We can
model roads, where lateral movement is impossible or slower, or
rivers where the speed of movement is greater in the direction of
the flow.

The question is, how much of the results of this paper remain ap-
plicable to the generalized CRF? The metrics defined in Section 3.2
are applicable without modification. Similarly, the proposed nego-
tiation protocols 3.3 remain valid and functional. The negotiation
strategies, however, need to be adapted for the specific restriction
models. In a generalized setting it is even more difficult to define
what constitutes a concession. With a more complex map, offer
generation becomes more expensive, which limits how many offers
an agent can maintain in its offer pool. Nevertheless, the general
outline of negotiation strategies will be still functional; it will need,
however, to be adapted to cover the specifics of the restrictions.
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