
Noname manuscript No.
(will be inserted by the editor)

Optimizing coalition formation for tasks with dynamically
evolving rewards and nondeterministic action effects

Majid Ali Khan, Damla Turgut and Ladislau Bölöni

Received: date / Accepted: date

Abstract We consider a problem domain where coalitions of agents are formed in order to
execute tasks. Each task is assigned at most one coalition of agents, and the coalition can
be reorganized during execution. Executing a task means bringing it to one of the desired
terminal states, which might take several time steps. The state of the task evolves even if
no coalition is assigned to its execution and depends nondeterministically on the cumulative
actions of the agents in the coalition. Furthermore, we assume that the reward obtained for
executing a task evolves in time: the more the execution of the task is delayed, the lesser the
reward. A representative example of this class of problems is the allocation of firefighters to
fires in a disaster rescue environment. We describe a practical methodology through which
a problem of this class can be encoded as a Markov Decision Process. Due to the three
levels of factoring in the resulting MDP (the states, actions and rewards are composites of
the original features of the problem) the resulting MDP can be directly solved only for small
problem instances. We describe two methods for parallel decomposition of the MDP: the
MDP RSUA approach for random sampling and uniform allocation and the MDP REUSE
method which reuses the lower level MDP to allocate resources to the parallel subproblems.

Through an experimental study which models the problem domain using the fire simula-
tion components of the Robocup Rescue simulator, we show that both methods significantly
outperform heuristic approaches and MDP REUSE provides an overall higher performance
than MDP RSUA.

1 Introduction

We consider a problem domain where a group of agents {Ag1, . . . Agk} are forming coali-
tions to execute a set of tasks {T1 . . . Tn}. The tasks have a state which evolves in time even
in the absence of the actions of the agents; in general, left on their own, tasks move to states
which represent a higher difficulty. The effects of the actions of the agents are nondetermin-
istic. The reward of executing the tasks evolves in time; in general, the later the execution is

School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816–2450
Email: khan@bond.cs.ucf.edu,turgut@eecs.ucf.edu, lboloni@eecs.ucf.edu

2

finished, the lower the reward. Our goal is to find the optimal allocation of the agents to the
coalitions; this might involve the reorganization of the coalitions during task execution. We
assume, however, that once a coalition is formed and assigned to a task, the agents in the
coalition will choose the best possible collaborative action in order to further the execution
of the task.

The running example used in the remainder of this paper is firefighting in disaster sit-
uations (such as, after an earthquake). Several fires are erupting in a city. There is an in-
sufficient number of firefighters to cover all the current fires with an adequate number of
resources simultaneously. The fires increase in intensity in time. The reward for putting out
a fire, interpreted as a portion of the building which was saved, is decreasing in time. The
result of the firefighting action is nondeterministic: the same amount of water might or might
not put out a fire, due to some unknown parameters of the building.

How do we attack a problem like this? Naturally, simple heuristics can be developed
through the analysis of the problem domain. Some ideas can be borrowed from related
fields such as task scheduling or coalition games. However, these domains do not, by default,
capture the dynamic nature of the problem, the evolving rewards and the uncertainty of the
execution. They also do not exploit the ability to reorganize the coalitions during execution.

The objective of this paper is to provide practitioners a consistent methodology for en-
coding this class of problems as an optimization problem, which can then yield an appro-
priate coalition formation policy. The approach relies on the encoding of the problem as
a Markov Decision Process (MDP). We assume that the practitioner has ample problem
domain knowledge and has access to software libraries which allow him to solve general
purpose MDPs. The main challenge, under these assumptions, is how to capture the prob-
lem domain in a MDP. Our solution builds a three-level factored MDP, where both the states,
the actions and the rewards are composites of features of the original problem.

As any practical application of such a problem would involve hundreds or thousands of
tasks and agents, and factored MDPs grow very quickly with the problem size, we also need
to provide a practical solution for scaling. Our working assumption is that such a system
would be used in real-time applications. In the time-accelerated world of the Robocup Res-
cue simulator our system was tuned such that the decision time was kept below 20ms for 100
buildings and 200 firefighters. In many real world applications where actual physical coali-
tions are formed, somewhat higher running times would be acceptable. This, however, does
not change the real time nature of the problem or the importance of the scaling techniques.

The scaling approach we propose is based on the parallel decomposition of the MDP.
We describe two concrete algorithms: the MDP RSUA algorithm relies on the convergence
of a random sample to the properties of the sampled distribution, and does not require do-
main specific information. The MDP REUSE approach reuses the MDPs calculated for the
subproblems for an artificially created higher level problem which allocates resources to the
partitions. This approach requires problem domain information: the user needs to provide a
distance function over the state space.

The set of concerns on which the present paper is focused are shaped by the desire to
be useful to a practitioner building a real-time system. While MDPs in general are a well
understood tool, the encoding of a real world problem in an MDP raises non-trivial deci-
sions. Thus, we allocate a relatively large part of the paper to a detailed methodology. In
contrast, we choose not to explore some topics of theoretical interest, but which are not of
practical applicability in a real time system. For instance, it would be of theoretical appeal to
divide the uncertainty about the firefighters into a proper execution variance component and
another component which models the uncertainty of our observations about the fuel avail-
able in the building. This would lead naturally to a POMDP model, introducing a whole

3

new level of modeling and computational complexity. However, without a high quality ob-
servation model, which is rarely available in practical settings, the theoretical beauty of this
model would not be translated into higher performance.

We also decided not to focus on the various accelerated and/or approximate techniques
to solve factored MDPs. This field has a rich literature and certainly some of the techniques
can be applied to the MDPs created following our methodology. However, the practitioner,
whom we envision as the beneficiary of this work, can not be expected to perform a graph
theoretic analysis on the created MDP. He might, however, swap out the classical MDP
solution algorithms (variants of value or policy iteration) for a more advanced, possibly
approximate solver. By allowing to solve larger MDPs, these approaches would allow to
reduce or even eliminate the necessity of parallel decomposition, possibly increasing the
quality of the solution.

The remainder of this paper is organized as follows. Section 2 discusses related problem
domains. Section 3 describes the methodology to create an MDP to model the problem. The
problem of scaling and the two proposed parallel partitioning approaches are described in
Section 4. Section 5 describes the simulation study in which the methodology is applied to
the firefighter allocation domain. We conclude in Section 6.

2 Related work

The subject of this paper can be identified as a multi-agent coalition structure formation
problem, where the coalitions perform actions towards specific tasks, and the coalitions can
change in time.

In coalition games, the value of the coalition is given by its structure [Osborne and Ru-
binstein 1994; Goranko 2001; van der Hoek and Wooldridge 2005; Ågotnes et al 2006b;a],
every coalition being assigned a value by the characteristic function (which can be stochas-
tic [Suijs et al 1999]). Very often, the main challenge in game theory is the allocation of the
value between the participants in a coalition.

In contrast to game theoretic approaches, in multi-agent settings, the value of the coali-
tion also depends on the specific actions taken by the coalition. MDPs and the closely related
reinforcement learning models are a good choice to represent multi-agent coalition problems
because they can simultaneously model the coalition structure and the actions taken by the
individual coalitions. The resulting MDPs have action and transition models which inte-
grate both the coalition structure and the chosen action. This structure can lead to very large
MDPs, but also opens opportunities for solution methods significantly faster than general
purpose value or policy iteration.

One of the approaches most closely related to our work is described in [Meuleau et al
1998]. The authors introduce a formal description of the finite horizon decision problems
with both probabilities and rewards non-stationary. Then, they focus on a special case of
this problem, targeted towards the application domain of air campaign planning and find an
approximate solution using the decomposition of the problem into several weakly coupled
MDPs.

The problem considered by us, although not strictly speaking finite horizon, can be
made to conform to this general class by observing that any fire will burn for only a finite
time. Thus, our work can also be considered a special case of the general problem, which,
however, does not overlap with the one considered by Meuleau et al. The most important
differences are:

4

– The state of the fire changes even if no firefighter is allocated to the fire. In an air cam-
paign, damage to the target only occurs when airplanes are assigned to the target.

– A fire which was “contained” but not extinguished by the firefighters can “rekindle” it-
self if the firefighters are assigned elsewhere. Damaging a target is a cumulative process,
targets do not self-heal.

– The reward in the air campaign domain is secured at the moment when the damage
is done, while in case of the firefighting domain, the reward is allocated only when a
terminal state is reached. There is no reward for slowing down the burning if eventually
the building burns out.

– The reward of the firefighters is the saved portion of the building. There are no fixed
deadlines, nor an explicit reward for putting out a fire faster. By allocating a small num-
ber of firefighters to the building, the increase of the fire can be delayed. In contrast,
in the air campaign problem, there are strict availability windows when a target can be
damaged.

In several papers, Chalkiadakis and Boutilier considered the problem of sequential coali-
tion formation with agents uncertain about each other’s type. At each round, the agents need
to decide about which coalition to join, and what coalition action to take. Rewards are ac-
quired after each round, which can be used to infer the value of the coalition and the types of
the other agents. The agent’s goal is to optimize the long term reward. The agents use a re-
inforcement learning type strategy, with occasional exploration actions to learn the types of
other agents. The optimal behavior for an agent can be obtained as a solution to a POMDP.
Finding an exact solution of the POMDP is not feasible in practical applications, but approx-
imation algorithms, either myopic [Chalkiadakis and Boutilier 2004] or more far-sighted
[Chalkiadakis and Boutilier 2008] can provide a performance adequate for real-world de-
ployment. The best performance has been found to be provided by approaches based on the
exploration of the Value of Perfect Information (VPI).

The problem attacked by our paper is different in several important aspects. There is
an externally given set of dynamically changing tasks, the agents can not choose their own
actions, and the allocation is made by a manager trying to optimize the overall reward. Al-
though coalitions can change, rewards are only given when the task is brought to a terminal
state. Finally, the nature of the applications we consider does not allow for a reinforcement
learning approach.

Our problem can also be considered as a case of planning. For instance, the coalitions
formed to solve the tasks can be considered an example of conditional plans. An extensive
survey of the use of MDP formalisms for planning is provided in [Boutilier et al 1999].

The approach described in [Guestrin et al 2002] relies on a system where a multi-agent
planning system with locality properties is modeled through a factored MDP, with the tran-
sition model represented by a Dynamic Bayesian Network, and the value function of the
MDP being a linear combination of pre-selected base functions. The one-step lookahead al-
gorithm is used to calculate the local contributions of the agents to the total utility function.
A series of algorithms for the efficient solving of factored MDPs are proposed in [Guestrin
et al 2003].

The MDP model is not the only approach for coalition formation in multi-agent sce-
narios. Other approaches are based on online, local interactions either through formal ne-
gotiation or argumentation, or predefined exchange of local information. Although such
approaches cannot strive for optimality, they represent a simpler, more scalable alternative
which does not require a central authority.

5

A summary of this type of approaches and a future research agenda is outlined in
[Klusch and Gerber 2002]. They also outline a customizable, simulation based dynamic
coalition framework (DCF-S), which requires that the coalition leading agent determines
valid coalitions before starting negotiations. The paper also calls for research on developing
coalition algorithms for stochastic and fuzzy domains.

[Shehory and Kraus 1998] provide an extensive investigation of approaches where coali-
tions of agents must be formed for the allocation to tasks, but the value of coalitions is not
super-additive. They consider both the case of disjoint and overlapping coalitions, as well
as the case where tasks have priority values. The proposed coalition formation methods rely
on a distributed, iterative calculation of the coalition values, and have the useful “anytime”
property: algorithms interrupted before termination would still yield an approximate solu-
tion.

One recent example of this class of approaches is [Ebden et al 2008], where coalitions
of sensors are dynamically created in order to more efficiently identify targets. Examples
of these sensors might be remote controlled cameras deployed in a field where the actions
of the sensors are the change of the orientation and of the zooming factor. In this approach,
the sensors repeatedly exchange information with their neighbors until they converge to a
specific coalition structure. The locality of the communication ensures the scalability of the
approach.

3 A methodology for modeling the problem domain as an MDP

In the following we describe a general methodology to model the considered problem do-
main as an MDP. Agents {Ag1, . . . Agk} are forming coalitions to execute tasks {T1 . . . Tn}.
The tasks have a state which evolves nondeterministically in time, dependent on the actions
of the coalition assigned to it (if any). The reward of executing the tasks evolves in time; in
general, the later the execution is finished, the lower the reward. Our goal is to find the op-
timal allocation of the agents in the coalitions; coalitions can be reorganized at any moment
in time.

The methodology is composed of the 7 steps described in Table 3. For the presentation
of every step, we first discuss the general approach, then illustrate it using the firefighter
domain. The same firefighter application will be used in the experimental evaluation of the
approach.

Table 1 The steps of the MDP modeling.

Step 1 Develop a stochastic model for the evolution of a single task in time.
Step 2 Develop a model for the joint action of the agents.
Step 3 Develop a stochastic model of the evolution of tasks in response to the actions.
Step 4 Develop a cost and reward model.
Step 5 Using the models developed above, specify a Markov decision process modeling the

problem domain.
Step 6 Solve the MDP using the appropriate algorithms.
Step 7 Interpret the MDP. Assemble the policy for the agents from the solutions of the MDP.

6

3.1 Step 1: Develop a model for the evolution of the individual task in time

We assume that the state of the task T at time t can be characterized by a measure M(T, t).
We are looking for an expression which describes the state of the task at time t + 1, in the
absence of any actions from the agents. The evolution of the state is assumed to be nonde-
terministic. The value of a (continuous) measure at time t+ 1 would then be described as a
probability distribution over possible values of M . As such distributions are very difficult to
acquire, we choose to discretize the value of M , assuming that the value can be one of the
discrete values M(T, t) ∈ {m1,m2 . . .mq}.

The number of discrete values is technically limited by the accuracy of the measure.
In practice, however, we might choose to represent a smaller number of discrete states to
reduce the size of the resulting MDP.

Once the M(T, t) is expressed as a discrete value, M(T, t+ 1) can be expressed with a
series of probabilities. If we assume M(T, t) = mx, we have:

M(T, t+ 1) =

m1 with probability pT (mx

∅→ m1) = pTx1
. . .

mq with probability pT (mx
∅→ mq) = pTxq

(1)

with
∑q

i=1 p
T
xi = 1. These probabilities form a matrix of q2 values, which can be acquired

either through theoretical analysis of the problem domain or from historical data. The prob-
abilities pTij are normally task dependent. However, in most scenarios, the tasks are not
unique, but can be seen as coming of a finite number of classes. Thus we need to acquire
only a finite number of probability matrices.

In the firefighter domain, the measure of the task is the state of the fire in the building.
Our representation uses the eight discrete states shown in Table 2.

Table 2 The discrete states of a task representing a building on fire.

Fire Level Description
NO-FIRE The building is not on fire.
LOW-FIRE The building has just caught fire.
LOW-BURNT The building was extinguished soon

after catching fire.
MEDIUM-FIRE The building has been on fire for

some time.
MEDIUM-BURNT The fire was extinguished after being

on medium fire.
HIGH-FIRE The building has been on fire for a

long time.
HIGH-BURNT The fire was extinguished after being

on high fire.
COMPLETELY-BURNT The building was completely burnt

out.

As every building is different and setting buildings on fire is not an acceptable method
of obtaining transition probability data, we need to cluster the buildings in types and predict
the evolution of the fire through historical data from buildings of the given type. We consider
three types of buildings distinguished by their size: SMALL (defined as smaller than 1000
sqft), MEDIUM (between 1001 and 3000 sqft) and LARGE (larger than 3000 sqft).

7

For instance, the probabilities in the case of a small building create the Markov chain in
Figure 1. We assume LOW-FIRE to be the initial state. Note that some of the states are not
reachable in this graph, reflecting the fact that buildings on fire do not extinguish themselves.
If the fire is left unattended, the building will burn out completely.

Fig. 1 The transition probabilities for a single small building. The terminal states are gray. Note that some of
the states are not reachable.

3.2 Step 2: Develop a model for the coalition actions of the agents

At this step we need to determine the actions which can be executed by the individual agents,
and the ways in which the actions are assembled into joint actions for the case when the
agents are acting in a coalition.

In general, if agents Ag1 . . . Agk are acting in a coalition towards achieving a task T ,
each agent Ai chooses an individual action αi. The composition of the individual actions
forms a coalition action cα = ⟨α1 . . . αk⟩. The effect of the tuple can be a complex function
of the individual actions.

If each agent can choose from m possible actions, this means that mk distinct coali-
tion actions are theoretically possible. This number, however, can be usually drastically
reduced with careful domain specific analysis. Most application domains have a limited set
of feasible coalition actions. A coalition action, on its turn, determines the actions of the
participating agents.

In the firefighting domain, the action model is very simple. The only action the agents
can take is to use water to extinguish the fire. The agents are assumed to be homogeneous,
and the resulting action is the sum of the actions. If each firefighter can apply 5 units of
water in a unit of time, 10 firefighters will apply 50 units of water. Thus, the actions can be
simply represented with the number of firefighters participating in the coalition.

Note, however, that the linear composition of the actions does not necessarily mean a
linear composition of the effects of the actions. It is not, in general, true that 50 units of water
will extinguish the fire 10 times faster than 5 units. Under a certain threshold, the application
of water would not extinguish the fire at all, only extends the time it takes for the building
to burn out.

3.3 Step 3: Develop a stochastic model of the evolution of the tasks in response to actions

In Step 1 we have considered the evolution of tasks without any actions from agents, in Step
2 we considered the model of the composition of the actions of the agents into coalition

8

actions. In this step we consider the evolution of the tasks with the coalition actions being
applied. We assume that task T is at time t in state mx. A coalition of agents CAg =

⟨Ag1, . . . Agk⟩ is acting on the tasks performing a coalition action cα = ⟨α1 . . . αk⟩. We are
interested in the state of the task at time t+ 1.

M(T, t+ 1, cα) =

m1 with probability pT (mx

cα→ m1)

. . .

mq with probability pT (mx
cα→ mq)

(2)

Note that now the probabilities depend both on the current state, the task and the coali-
tion action. If we assume that there is a discrete number n of possible coalition actions, we
will have n independent probability matrices of size q2. These probabilities can be acquired
from historical information or domain specific analysis.

While the state of the possible states of the task is the same as in Step 1, the effects of
the actions frequently make states which were not reachable in the absence of an action,
reachable.

3.3.1 Problem subclass: commander assigning agents to tasks

Our running example involving firefighters in disaster situations is a specific case of a large
class of problems in which a commander or manager is assigning coalitions of agents to
tasks. This class of problems frequently come with two specific assumptions: uniformity of
agents and delegated action.

A trained firefighter is assumed to be able to execute all the actions pertinent to his as-
signment at a certain expected level. Similar considerations apply to soldiers, clerks, taxi
drivers, customer service representatives and many other jobs. Even highly skilled profes-
sionals such as surgeons are considered as having the same level of abilities from the point
of view of hospital planning or insurance companies.

Tailored allocation based on specific skill sets, although an interesting and challenging
problem on its own, is not practical at the level of allocating hundreds of agents. Part of the
problem is the lack of a catalog of provable individual skills - as opposed to the uniform skill
sets which are validated by degrees, certification programs and other similar means. Thus,
from the point of view of a manager, all agents have uniform skill sets (or are grouped in a
small number of classes with uniform skill sets).

The other assumption we make is delegated action. The manager assembles the coali-
tions of agents and assigns them to specific tasks. However, the manager does not directly
assign the agent the concrete action to be executed. Rather, the assignment is “do the proper
action for task t”. At the local level, the team organizes itself and takes actions according
to the situation - with the different agents being assigned specific actions. These specifics,
however, are not visible from the point of view of the commander.

In the firefighting domain, the result of these assumptions is that we can model the
coalition action simply with the number of agents participating in firefighting. Figure 2
illustrates the evolution of the state of a small building as the result of the coalition action
of 2 (continuous lines) or 3 (dotted lines) firefighters. To keep the figure readable, we did
not include actions with 1, 4 or more firefighters. Comparing with Figure 1, we can make
several observations. States such as LOW-BURNT, MEDIUM-BURNT and HIGH-BURNT,
which were not reachable in the absence of actions, are now reachable. On the other hand the
COMPLETE-BURNT state is not reachable in this subgraph, reflecting the fact that if there
are at least two firefighters working on a small house, the house will never be completely

9

burnt. Another observation is that the states form two disjoint graphs - there is no transition
from the LOW-FIRE state to the MEDIUM-FIRE state for the action of the 2 or 3 firefighters.
Still the building can reach the MEDIUM-FIRE state, for instance if no firefighter is working
on it. As our problem domain assumes a dynamic formation of the coalitions, this is possible.

The source of these transition probabilities is normally historical information. In our
case, we have extracted transition probabilities from a collection of simulator logs. Obvi-
ously, in our case, more accurate data could have been obtained by looking at the source
code of the fire model and the parameters of the buildings, such as the type and quantity
of available fuel. This, however, would be an information to which the firefighter comman-
der would not have access. The full set of transmission probabilities for the case of a small
building and coalitions of at most 4 agents is shown in Table 3.

Fig. 2 The transition probabilities for a single small building as the effects of the coalition actions of 2
(continuous lines) or 3 (dotted lines) firefighters. The terminal states are gray.

Table 3 Transition probabilities for small building with four firefighters. The fire levels are indicated with
integer values and are associated as LOW-FIRE=1, MEDIUM-FIRE=2, HIGH-FIRE=3, LOW-BURNT=4,
MEDIUM-BURNT=5, HIGH-BURNT=6 and COMPLETE-BURNT=7 respectively

Fire
level

Fire
fighters

1 2 3 4 5 6 7

1 0 0.81 0.19 0.00 0.00 0.00 0.00 0.00
1 0.81 0.19 0.00 0.00 0.00 0.00 0.00
2 0.23 0.00 0.00 0.77 0.00 0.00 0.00
3 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00

2 0 0.00 0.88 0.12 0.00 0.00 0.00 0.00
1 0.00 0.88 0.12 0.00 0.00 0.00 0.00
2 0.00 0.88 0.08 0.00 0.03 0.03 0.00
3 0.00 0.80 0.00 0.00 0.20 0.00 0.00
4 0.00 0.71 0.00 0.00 0.29 0.00 0.00

3 0 0.00 0.00 0.97 0.00 0.00 0.00 0.03
1 0.00 0.00 0.93 0.00 0.00 0.07 0.00
2 0.00 0.00 0.87 0.00 0.00 0.13 0.00
3 0.00 0.00 0.85 0.00 0.00 0.15 0.00
4 0.00 0.00 0.82 0.00 0.00 0.18 0.00

10

3.4 Step 4: Develop a cost and reward model

Until now we did not consider which states of the tasks are more favorable, nor the cost
associated with the actions. Let us discuss the problem of rewards by contrasting it with
classical task scheduling. In task scheduling, a task can be in one of the four states: READY,
RUNNING, DONE and FAILED, with the latter two being terminal states. Naturally, we
prefer the DONE state to the FAILED state. We say that the DONE state carries a reward
r > 0, while the FAILED state carries either no reward, or it carries a penalty p < 0.

In the class of problems we are considering, rewards are only associated with entering a
terminal state (corresponding to the completion of a task). The reward expresses the relative
preference over the terminal states. In addition to the rewards we also consider the costs
associated with the actions. These costs allow us to express preferences over various actions
with equivalent or similar effects.

In the firefighting domain we define the reward to be proportional with the saved (un-
burnt) area of the building:

Bi =

Ai × 3/4, if Fi = LOW-BURNT
Ai × 1/2, if Fi = MEDIUM-BURNT
Ai × 1/4, if Fi = HIGH-BURNT
0, if Fi = COMPLETE-BURNT

(3)

where, Ai represents the total area of the building i, Bi represents the unburnt area of the
building i and Fi is the fire level of building i.

As the firefighters have a single possible action (i.e. firefighting), we define a cost for a
collaborative action to be a small number (in our case, 0.01) multiplied with the number of
firefighters participating in the coalition. There is no cost for agents which are not assigned
to any building.

This choice of rewards and costs ensures that there will never be a case where a building
will be left burning to save on the action costs. On the other hand, in general we will prefer
smaller coalitions, as long as the achieved terminal state is identical, and will prefer to reach
the specific terminal states faster.

3.5 Step 5: Specify a Markov decision process

In the next step of the process, using the models developed in steps 1-4 we create a Markov
decision process whose solution allows us to extract the optimum desired coalition structure.

To build the MDP we need to specify the (a) states, (b) the actions (c) the transition
probabilities and (d) the rewards. Although the components rely on the models developed
previously, assembling the MDP requires non-trivial technical decisions.

Determining the global states of the MDP

A global state defines the MDP state in terms of the set of tasks in the system. The global
state of the system with n tasks is a n-tuple of the discrete states of the individual tasks:
gm = ⟨m(1), . . .m(n)⟩ where m(i) ∈ {m1 . . .mq}. There are nq number of possible states.

11

Determining the global actions

The actions of the system are defined by the coalitions formed and the actions taken by that
coalition. For the sake of a uniform representation we assume that there is one coalition per
task, which can be an empty coalition. As we had seen the coalition action is determined by
the actions of the individual agents in the coalition. The global action gα is thus defined as:

gα = ⟨cα1 . . . cαn⟩ where cαi = ⟨αi1 . . . αiki
⟩ (4)

where ki is the number of agents in coalition i. The action of an empty coalition is the empty
action.

The number of possible coalitions is, naturally, very large. If we have n tasks and k

agents, the number of coalitions can be calculated by considering that each agent chooses
independently which task will it work on, with the number of possible coalitions being nk.
If we assume that the agent might also choose not to be part of any coalition, the number of
alternatives becomes (n+ 1)k.

Naturally, we need to find ways to reduce the number of potential coalitions and actions.
This can be done by exploiting application specific features. In the firefighting domain,
exploiting the previously introduced uniformity of agents and delegated actions properties
we can represent a global action gα only with the number of agents participating in each
coalition:

gα = ⟨k1 . . . kn⟩ where
n∑

i=1

ki = k (5)

Algorithm 1 A recursive algorithm for integer partitioning
1: function IntegerPartition(k, n)
2: C ← empty list of the list of integers
3: if (n = 1) then
4: L← empty list of integers
5: Add k to the list L
6: Add the list L to the list C
7: return C
8: end if
9: for i← 0 to k

10: for all list P ∈ IntegerPartition(k − i,n− 1)
11: Append i to the front of the list P
12: Add the list P to the list C
13: end for
14: end for
15: return C
16: end function

The possible coalitions under these assumptions can be generated by the possible weak
integer partitions of k into n places. For instance, for dividing 3 agents into 2 partitions we
have the following choices: {⟨0, 3⟩, ⟨1, 2⟩, ⟨2, 1⟩, ⟨3, 0⟩}. Weak integer partitions allow some
of the partitions to have the value zero, in contrast to strong partitions where all partitions
need to be non-zero. To our best knowledge, there is no simple analytical expression for the
number of weak partitions1, but Table 4 gives a good idea of their increase.

A recursive algorithm for partitioning k agents to n tasks is presented in Algorithm 1.

1 The number of strong partitions (where each partition is required to be non-zero) is given by the Stirling
number of the second kind. The number of weak partitions is at least as large because every strong partition

12

Table 4 The number of the weak partitions of m items into k partitions

m/k 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 1 3 6 10 15 21 28 36 45 55
3 1 4 10 20 35 56 84 120 165 220
4 1 5 15 35 70 126 210 330 495 715
5 1 6 21 56 126 252 462 792 1287 2002
6 1 7 28 84 210 462 924 1716 3003 5005
7 1 8 36 120 330 792 1716 3432 6435 11440
8 1 9 45 165 495 1287 3003 6435 12870 24310
9 1 10 55 220 715 2002 5005 11440 24310 48620
10 1 11 66 286 1001 3003 8008 19448 43758 92378

Assigning probabilities

If we make the assumption that the tasks are independent of each other, then the probability
of the transition from a global state to another as a response to a global action is the product
of the transition probabilities on a per task basis, with respect to the coalition action applied
to the given task.

If the system is in a global state gmx = ⟨m(1)
x , . . .m

(n)
x ⟩, and the global action per-

formed is gα = ⟨cα1 . . . cαn⟩, the probability to transition to a new global state gmy =

⟨m(1)
y , . . .m

(n)
y ⟩ will be:

p
(
gmx

gα→ gmy

)
=

k∏
i=1

p(i)
(
m

(i)
x

cαi→ m
(i)
y

)
(6)

If the tasks are not independent, their interdependencies need to be taken into account.
For instance, in the case of our running example, it is possible that two buildings on fire
are located next to each other, and thus the evolution of the fires is co-dependent. This adds
additional modeling difficulty, but it does not change the size of the resulting MDP.

Let us illustrate the building of the final MDP through a simple example. To keep the
graph readable, we will simplify the firefighting model to a model where each building can
be in only 3 possible states: Fire (F), Burned (B) and Extinguished (E). We assume that if
there is at least one firefighter working on the building, it will be extinguished, while if no
firefighter is working on the building, it will burn down. Figure 3 illustrates the building of
the final MDP for two buildings and one single firefighter. The resulting MDP, as expected,
has 32 = 9 states. The possible team actions, in each state are two: ⟨1, 0⟩ representing that
the firefighter is allocated to the first building, and ⟨0, 1⟩ representing that the firefighter is
allocated to the second building.

Costs and rewards

The final problems regarding the building of the MDP are the assignment of the costs and
rewards. The definition of the MDP can be formulated in three different ways: either by
assigning rewards to being in a given state R(si), with an action in a given state R(si, α) or
with a certain transition taken as a result of an action R(si, α, sj). While the formulations are

is also a weak partition, but not the other way around. The difference in some cases can be large. For instance
in Table 4 the number of weak partitions of 10 agents into 10 coalitions is 92378, while the number of strict
partitions is 1.

13

Fig. 3 Creating an MDP for a simplified version of the firefighter problem with only three states: Fire (F),
Burned (B), and Extinguished (E). The final MDP is assembled for the case of one firefighter and two build-
ings.

Fig. 4 Transformation of the MDP to allow for the expression of a reward for reaching a terminal state. A
new, single terminal state FINAL is introduced. The previous terminal states are becoming non-terminal, and
a special action Finalizing moves from them to the FINAL state with the probability p = 1. The rewards will
be attached to the Finalizing transition.

ultimately equivalent, in the sense that they define the same design space, the MDP solvers
usually support only one of them. Depending on the original problem formulation, we might
need to transform the MDP to accommodate the different formulation. Most MDP solvers
expect the rewards to be associated with state-action pairs.

In our model, we have costs associated with actions, and one-time rewards for reaching
a terminal state. The cost for an action can be modeled in a R(si, α) model by replicating the
same cost over all the possible states si where the action α can be taken. The representation
of the one time reward, however, is problematic: as the reward is defined on the starting
state and the action taken, we can not assign the reward, as there is no guarantee that the
next state will be the terminal state. To work around this problem, we modify the MDP in

14

such a way that the reward can be attached to a transition which happens with a probability
of 1. We introduce a new terminal state called FINAL and a special action called Finalizing.
The original terminal states of the MDP will become non-terminal (we will mark them in
our code as semi-terminal). The Finalizing action taken in these states will transition with a
probability p = 1 to the FINAL state. Now, we can attach the reward to the combination of
the semi-terminal state and the Finalizing action. The actual cost or reward will be the sum
of rewards of the component states.

For the case of firefighting with a single building the transformation is shown in Figure 4.

3.6 Step 6: Solve the MDP

This step involves solving the MDP using one of the available methods. The classical meth-
ods for MDP solving are value iteration, policy iteration, and various hybrid methods and
variants. Solvers are available as libraries in various programming languages. There is a
rich literature of various approximate solvers as well as solvers which can exploit specific
features of the MDP. For approaches for solving factured MDPs, see [Guestrin et al 2003].

3.7 Step 7: Interpreting the results

Let us now discuss how the methodology creates a solution for the problem we started
with. Returning to our running example, let us assume that we have a problem with 5
buildings on fire: 2 LARGE, 2 MEDIUM and 1 SMALL and 10 firefighters. The individ-
ual states of the MDP will be quintuples, each member describing the state of a build-
ing. An example of this state would be ⟨LARGE MEDIUM FIRE, LARGE LOW FIRE,
MEDIUM MEDIUM FIRE, MEDIUM COMPLETELY BURNT, SMALL LOW FIRE⟩.
All the possible combinations of fire levels for all the buildings present will be in the MDP.

The solution of the MDP will be a policy which maps every state to the optimal action.
The optimal action for the above state, for example, might be ⟨5, 2, 2, 0, 1⟩. This means that
the first building will be assigned a coalition of 5 firefighters, and so on. When one of the
tasks is in a terminal state, in our case MEDIUM COMPLETELY BURNT, we will assign
it an empty coalition.

A firefighter commander, operating in real time, would operate as follows. When first
learning of the set of tasks and the available resources, he or she will create the MDP ac-
cording to the methodology and solve it. It is also possible to pre-solve a number of MDPs
and store their associated policies. In any case the MDP needs to be solved only once for a
certain set of tasks and agents.

The commander then proceeds to create the coalitions according to the current policy
and based on the current state. As a note, there is no particular entry state in the MDP – it
is possible that the buildings have been burning for some time before the controller takes
the first decision (a phenomena called preburn, which will be modeled in our experimental
study).

The allocated agent coalitions would then proceed on working on the tasks. Every time
the state is changed, the commander looks up a new policy and, if necessary, reorganizes the
coalitions. Note, again, that this reallocation of coalitions does not require the solving of an
MDP, only a simple policy lookup.

Let us assume that our new state is ⟨LARGE MEDIUM FIRE,
LARGE MEDIUM FIRE, MEDIUM HIGH BURNT, MEDIUM COMPLETELY BURNT,

15

SMALL LOW BURNT⟩. The corresponding action would be ⟨7, 3, 0, 0, 0⟩ which requires
the reallocation of the firefighters from the third and fifth building. Note that two identical
buildings in identical states might not be assigned identical size coalitions. In fact, in our
experimental study we shall see that spreading our forces thin by performing a uniform
allocation is one of the worst possible strategies. Other problem domains, naturally, have
their own requirements.

4 Scaling up

4.1 Scalability challenges

Let us denote the problem involving n tasks and k agents CF (k, n). The MDP created
according to the technique described previously has qn states, where q is the number of
discrete states of a task. For each state, the number of actions corresponding to the possible
coalitions which the agents can form is the number of weak integer partitions of k agents
into n partitions, which, as we have seen in Table 4, can be very large.

The resulting MDP not only has a large number of nodes (increasing exponentially with
the number of tasks) but it is also dense, with a very large number of actions for every
state. This number can be somewhat reduced by commonsense filtering of the actions -
for instance, by eliminating the actions where we assign firefighters to extinguished fires.
Unfortunately, for a problem with 10 buildings and 10 firefighters, we will have 1010 states,
with each state having 92378 actions. Obviously, even this relatively small problem pushes
the limits of what is possible to solve (even assuming an offline solution).

4.2 A parallel decomposition approach for scaling

To extend the proposed methodology to problems of realistic size we will use a parallel
decomposition of the MDP, where the state space will be a cross-product of the individ-
ual MDPs. The MDP resulting from the descibed methodology is three-way factored – the
states, actions and reward function are each assembled from a number of independent fea-
tures. The states are composed of the states of n tasks. The actions are a composition of
a number of coalitions formed to perform the task - the effects of the coalitions on the re-
spective tasks are independent, but the sub-actions are linked by the resource constraints
[Meuleau et al 1998].

We are performing the parallel decomposition as follows. Consider the set of tasks to
be executed {T1, . . . Tn} and the set of k agents {Ag1, . . . Agk}. We partition the tasks into
N disjoint partitions of sizes n1, . . . , nN . Usually we will choose the sets to be of the same
size (as much as it is possible). We partition the set of agents into corresponding sets of sizes
k1 . . . kN . This way, we will need to solve N problems CF (ki, ni) instead of a single large
problem CF (k, n). The subproblems will be solved optimally, and they immediately define
the coalitions which are going to be assigned to the tasks. However, the act of partitioning
already involves allocation decisions and limits the choices in the subproblems.

In general, we want as few partitions as possible because the act of partitioning reduces
the accuracy of the solution. The rule of thumb is: choose the smallest N for which the
partitioned subproblems are still optimally solvable.

16

In the following we describe two choices for the partitioning of the coalition formation
problem: random sampling with uniform allocation and partitioning by reusing the lower
level MDP in the partitioning process.

4.3 Random sampling with uniform allocation (MDP RSUA)

The idea behind this approach is to partition the original problem into subproblems of the
same difficulty level, and allocate a uniform number of agents to the partitions. This is a
sensible approach as long as the problem size is not too small. The challenge is how to
create the partitions of equal difficulty: in the firefighting domain, the difficulty is a complex
multidimensional function depending on the various properties of the subtasks (such as the
size of the building and the level of the fire), for which we do not have an explicit model.

On the other hand, bad partitioning can seriously impact the performance. For instance,
in a natural disaster, the larger fires will be reported earlier than the smaller ones. Assigning
the tasks in the order of arrival to two partitions will create one partition with all the difficult
tasks (large buildings, high fire), and one with all the easy ones (small buildings, low fire).

Random sampling with uniform allocation (MDP RSUA) relies on the fact that a random
sample of a distribution will asymptotically converge to the original distribution with the
increase in the size of the sample. We create a common pool of all the tasks, and allocate
tasks to the partitions by random sampling. This approach guarantees that with the increase
of the size of the partition, the partitions will become more and more representative of the
original problem, and, in consequence, more and more similar to each other. As we have
seen before, the size of the sample is limited by our ability to solve the resulting MDP.

The resulting approach is fast, fully automatic and it does not require domain specific
knowledge. This approach has been taken in [Khan et al 2008].

4.4 Partitioning with the reuse of the lower level MDP (MDP REUSE)

We can try to improve on MDP RSUA by:

– Intervening into the selection of the tasks which go into the partition (which will not be
random)

– Intervening into the allocation of the resources on the subproblem (which will not be
uniform)

MDP REUSE is based on the insight that the high level problem (assigning agents to
the partitions) has analogies with the low level problem (assigning agents to tasks). The
analogy can be made better if we create the partitions in such a way that they mirror the
relative difficulty of specific tasks. In this case we can reuse the low level, optimally solved
MDP for the high level partitioning task. Our approach will comprise the following steps:

(S1) Create N partitions of k/N tasks which each resemble, as closely as possible, the
profile of an independent task.

(S2) Create an artificial problem for where the tasks are T ∗
1 . . . T ∗

N where T ∗
i is the state

most representative for the partition i, while the number of agents is k∗ = k/N .
(S3) Solve the resulting problem CF (k∗, N). Assume that the resulting coalition sizes

are ⟨c1 . . . cN ⟩, with
∑

ci = k∗.
(S4) To each partition i created in step S1 allocate N · ci agents.

17

SMALL

LOW_FIRE

MEDIUM

LOW_FIRE

LARGE

LOW_FIRE

SMALL

MEDIUM_FIRE
MEDIUM

MEDIUM_FIRE

LARGE

MEDIUM_FIRE

SMALL

HIGH_FIRE

MEDIUM

HIGH_FIRE

LARGE

HIGH_FIRE

Dist(MEDIUM_LOW_FIRE,

LARGE_MEDIUM_FIRE)=2

Fig. 5 Defining a distance function between the states of the individual tasks. This function is specific to the
firefighter problem, other application domains might need different approaches.

(S5) Solve the resulting subproblems and perform the allocations of coalitions to indi-
vidual tasks accordingly.

For instance, if we have 100 tasks of the state LARGE HIGH FIRE, and 50 tasks
of the state MEDIUM MEDIUM FIRE, with 300 agents available, we can create a
representative problem of the type CF (⟨LARGE HIGH FIRE, LARGE HIGH FIRE,
MEDIUM MEDIUM FIRE⟩, 6). If this leads to a solution ⟨1, 1, 4⟩, we will allocate 50
agents to the subproblems of 50 LARGE HIGH FIRE tasks, another 50 agents to an-
other subproblem of 50 LARGE HIGH FIRE tasks, and 200 agents to a subproblem of
50 MEDIUM MEDIUM FIRE tasks. The resulting subproblems can be partitioned again if
they are too large to be solved directly.

The problem, unfortunately, is that in the general case, the collections of tasks to solve
will not be aligned so conveniently for partitioning into representative subproblems. We need
domain specific information about the relative difficulty of the tasks. An intuitive and rela-
tively simple way to represent this information is to require the practitioner to define a dis-
tance function with respect to the difficulty of states as part of the Step 1 of the methodology.
We try to find groups of states which are of similar difficulty, then sort these groups in the
order of difficulty. For instance, we can assume that the increase in the fire level represents
(roughly) a similar resource requirement like the increase in the size of the building. With
these assumptions, we divide the 9 states into 5 zones according to the Figure 5. This will
define a discrete distance function between states, for instance dist(MEDIUM LOW FIRE,
LARGE HIGH FIRE) = 3.

Using this distance function, our algorithm first sorts the current tasks into groups based
on their states. From the groups with the largest membership, it creates the initial set of N
clusters (if necessary, splitting some of the clusters). Then, it assigns each of the remaining
tasks to the closest incomplete cluster (based on the distance function defined by Figure 5).

5 Simulation study

In the following, we describe the results of a simulation study performed using the Yet An-
other Extensible Simulator (YAES) [Bölöni and Turgut 2005]. The evolution of the burning
buildings and the actions of firefighters were simulated using the fire simulator component of
the Robocup Rescue framework which was designed to simulate a realistic physical model
of the heat development and heat transport in urban fires [Nüssle et al 2004].

18

The simulations were run with 100 buildings of random sizes. Each simulation was run
for 100 cycles where a simulation cycle was treated as being equivalent to the time it takes a
firefighter to move from the water source to the building, sprinkle the water on the building
and go back to the water source to refill its water tank. We also assumed that each firefighter
can be re-assigned to a new building at the beginning of each simulation cycle.

At the end of the simulation, a score was obtained based on the state of the buildings.
The scoring mechanism was similar to the one used by the Robocup Rescue simulation
environment. If Ai represents the total area of the building i, Bi represents the unburnt area
of the building i and Np is the number of buildings in state Sp then the score for state Sp is
computed as follows:

score(Sp) = 100×
∑Np

l=1 Bl∑Np

l=1 Al

(7)

where, for a given building i which is at fire level Fi, the unburnt area Bi is computed as
shown in Equation 3.

Under disaster response conditions, it is unrealistic to expect that every fire will be
attended to as soon as it starts. To simulate more realistic response times, a certain number of
buildings in the simulation were “preburnt” for a random amount of time. Preburning simply
means letting the fire model evolve for a predetermined amount of time with no firefighter
assigned to the building.

The simulation was repeated 100 times with different initial conditions. We plotted the
average values and the 95% confidence interval. The number of firefighter units ranged
from 25 to 200. To put these numbers in perspective, the Orlando Fire Department has 32
fire trucks, with some of the autonomous suburbs having fire departments with 4-6 trucks.
The Orlando metropolitan area has about 2 million inhabitants.

5.1 Algorithms evaluated

We evaluated the approach described in this paper using the two parallel partitioning
schemes:

MDP RSUA: Partitioning based on random sampling and uniform allocation - as
described in Section 4.3. The MDP policy was learnt offline for all the combinations of three
building sizes (i.e. SMALL, MEDIUM and LARGE) and with six available firefighters.
Under these assumptions, we had to learn policies for 33=27 different MDPs where each
MDP consisted of 73=343 states and 28 possible coalition actions from each state. It took
about eight to ten hours to learn all the policies on a 2.66 GHz Pentium 4 machine with 1
GB RAM using the value iteration algorithm. During the real-time execution the decision
time was approximately 10ms / decision.

MDP REUSE: Partitioning with the reuse of the lower level MDP - as described in
Section 4.4. The same precomputed MDP library was used as in the MDP RSUA case. The
real-time decision time was, again, approximately 10 ms / decision.

In order to evaluate the quality of the solution provided by our methodology, we have
implemented several approaches based on empirical considerations.

UNIFORM: Allocate a uniform number of firefighters to the fires. If the number of
available firefighters is denoted with k, and the number of remaining fires to be allocated
with n, then the allocation was made as follows:

19

– if k <= n: Exactly one firefighter was allocated to the first k fires
– if k > n: Exactly ⌊ k

n⌋ firefighter was allocated to the n fires. The remaining k − ⌊ k
n⌋

firefighters were allocated to first k − ⌊ k
n⌋ fires.

UNIFORM RANDOM: Allocate firefighters uniformly to randomly selected fires.
At each simulation cycle, the algorithm selected one of the firefighters and allocated it to
a randomly selected fire. This process was repeated until all available firefighters had been
allocated.

CLUSTERED RANDOM: Allocate multiple firefighters to randomly selected fires.
At each simulation cycle, the algorithm selected a random number of firefighters between
1 and 4 and allocated them to a randomly selected fire. This process was repeated until all
available firefighters had been allocated.

HEURISTIC: Allocate firefighters based on the area of the building. At each sim-
ulation cycle, the algorithm allocated 2 firefighters to small, 3 firefighters to medium and 4
firefighters to large buildings. These numbers have been chosen in such a way that this is
the smallest allocation which guarantees that the fire will be put out at its current level. The
buildings have been considered in arrival order. This process was repeated until all available
firefighters had been allocated.

Our intuition tells us that HEURISTIC and UNIFORM are “sensible” approaches which
can potentially be implemented by a fire station commander. While the UNIFORM approach
tries to allocate at least some firefighters to every fire, the HEURISTIC approach attacks
each fire with exactly the necessary firefighting power (at the cost of leaving some fires ini-
tially not attended). The UNIFORM RANDOM and CLUSTERED RANDOM might model
a situation where individual firefighters or groups are wandering randomly and picking fire
fighting tasks based on reports without the ability to coordinate with each other. These ap-
proaches are not intuitively “sensible” from the point of view of a commander, but their
performance compared with the other approaches can yield some useful insights.

5.2 Results

In the following, we present and interpret the results of our experiments. The maximum
attainable score is 75, because every building is initially put on fire and the best possible
outcome is to extinguish all of them at their initial fire level (as shown in the scoring mech-
anism in Equation 7).

Figure 6 shows the results with 25 firefighters. This is a very difficult problem, with
only one firefighter for every 4 buildings on fire. Unsurprisingly, the scores obtained by
all approaches are very low. There are two clearly separated groups of strategies: the MDP
RSUA, MDP REUSE and HEURISTIC approaches obtained scores around 14-18, while the
UNIFORM, UNIFORM RANDOM and CLUSTERED RANDOM obtained scores around
2-4.

There is no clear advantage of MDP REUSE over MDP RSUA, in fact the latter one
obtained marginally better results for high preburn. Neither the advantage of the two MDP-
based approaches over the heuristic approach is significant at this setting.

One interesting phenomena we see in this graph is that the performance of MDP
REUSE, although starting up the highest, decreases at a higher rate than all the other ap-
proaches with the increase of the preburn value, and, at around 35% preburn it actually dips

20

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Preburn (number of buildings preburnt)

S
co

re

MDP RSUA

MDP REUSE

UNIFORM RANDOM

CLUSTERED RANDOM

UNIFORM

HEURISTIC

Fig. 6 Evaluation of coalition formation strategies to extinguish 100 fires with 25 firefighters.

below MDP RSUA. The reason for this behavior is that MDP REUSE relies on finding
a representative task for its partitions. This is easy when all the buildings are on low fire
(choose a representative which is also on low fire and is the same size). With preburn the
possible states of the tasks become highly varied, thus finding good representative tasks be-
comes more difficult and the approximation errors are lowering the performance. For MDP
RSUA this is not a factor, because its method of creating partitions by random sampling
is not affected by the diversity of the task pool. Thus, MDP RSUA, just like HEURISTIC
and the other approaches, declines only at the rate at which the preburn makes the problem
inherently more difficult.

In the low score group, the random approaches fare the worst, because they reallocate the
firefighters between turns. With only 1 firefighter to 4 buildings, if the firefighter is moved
from building to building, eventually almost all the buildings will burn down. CLUSTERED
RANDOM might allocate more than one firefighter to a building, which makes it more
probable that the fire will be put out. The UNIFORM approach, by keeping one firefighter
consistently at the same set of buildings, scores the best here, as there is some probability
that a fire at a small building can be put out with one firefighter.

Figure 7 shows the results with 50 firefighters. With more firefighters to work with,
the average score is higher, but the relative performance of the approaches changes. The
MDP REUSE is now clearly the best with up to 10% relative increase over MDP RSUA. As
before, MDP REUSE decreases faster with the preburn than the other approaches, but with
50 firefighters it shows the best performance throughout the range. Its advantage, however,
diminishes with the increase in the preburn.

The HEURISTIC approach is still in the upper group. In the bottom pack there is an
interesting shift in the relative performance: the CLUSTERED RANDOM approach clearly
outperforms UNIFORM and UNIFORM RANDOM. With a larger number of firefighters,

21

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Preburn (number of buildings preburnt)

S
co

re

MDP RSUA

MDP REUSE

UNIFORM RANDOM

CLUSTERED RANDOM

UNIFORM

HEURISTIC

Fig. 7 Evaluation of coalition formation strategies to extinguish 100 fires with 50 firefighters.

the CLUSTERED RANDOM approach which can put up to 4 firefighters to a single fire has
a higher chance of extinguishing a fire than the more uniform distributions.

0 10 20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

Preburn (number of buildings preburnt)

S
co

re

MDP RSUA
MDP REUSE
UNIFORM RANDOM
CLUSTERED RANDOM
UNIFORM
HEURISTIC

Fig. 8 Evaluation of coalition formation strategies to extinguish 100 fires with 100 firefighters.

Figure 8 shows the results with 100 firefighters, and it continues the trends of the previ-
ous figures. The advantage of MDP REUSE over MDP RSUA becomes more pronounced

22

and the HEURISTIC approach falls behind the MDP approaches. In the bottom half, the
CLUSTERED RANDOM approach improves its lead over the other two approaches, and
UNIFORM RANDOM becomes better than UNIFORM. This surprising reversal is due to
the fact that the exactly one firefighter for a fire allocation, which is what the UNIFORM
approach will do here, is quite bad - it can put out only low fires on small buildings, and with
a non-zero probability that the fire will increase. On the other hand, allocating a firefighter
to every building will slow down the burning of the building, preventing the firefighter from
moving to another building. Due to this phenomena, the “sensible” uniform allocation is
actually the worst one for this scenario.

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

Preburn (number of buildings preburnt)

S
co

re

MDP RSUA

MDP REUSE

UNIFORM RANDOM

CLUSTERED RANDOM

UNIFORM

HEURISTIC

Fig. 9 Evaluation of coalition formation strategies to extinguish 100 fires with 200 firefighters.

Finally, Figure 9 with 200 firefighters marks a milestone in the sense that the MDP
REUSE approach, at 0 preburn closely approximates the theoretical maximum score of 75.
Note that this does not mean that it performs an optimal allocation: a better algorithm, for
instance, based on the exact solution of the original, unpartitioned MDP might be able to
reach the same performance with a lower number of firefighters, or maintain a higher per-
formance for higher preburn values. As expected, MDP RSUA is lower, but MDP REUSE’s
advantage decreases for high preburn.

An interesting phenomena is that while the HEURISTIC approach is the third best for
low preburns, for higher preburn values CLUSTERED RANDOM takes over, becoming
better than the “sensible” HEURISTIC approach! HEURISTIC looses performance with
higher preburn because it takes into account only the size of the building, not its level of fire.
While its allocation always successfully extinguishes the fire, for higher fire levels it can take
a long time, during which some fires will be unattended. Note that even in this comparatively
easy scenario, there are not enough firefighters for HEURISTIC to allocate firefighters to
every fire in the first round. In contrast, CLUSTERED RANDOM, which allocates a higher
number of firefighters, although to randomly chosen fires, is able to extinguish fires more
rapidly and move over to the next.

23

Let us now analyse some of the observed phenomena. Clearly, the MDP-based ap-
proaches outperform the other ones in every case - the differences are significant and con-
sistent. There are significant differences between the two partitioning methods as well, but
overall, the MDP REUSE has a greater advantage when it has more “freedom of operation”,
that is, when we have more firefighters and lower preburn.

The low performance of the UNIFORM and UNIFORM RANDOM approaches, and
the relatively high performance of the CLUSTERED RANDOM can be explained by the
properties of the problem domain. There is a race between the extension of the fire in the
building and the extinguishing efforts of the firefighters. If the number of firefighters is
lower than a minimum, the building will completely burn out (albeit slower). The result
is that spreading the forces too thin is one of the worst choices one can make – and this
is exactly what the UNIFORM and UNIFORM RANDOM approaches are doing. Forming
larger teams is a better choice even if they are deployed at random buildings (the case of the
CLUSTERED RANDOM approach).

Finally, the advantage of the two proposed approaches is evident not only from their
higher performance, but also by the fact that they consistently were the first and the second,
while all the other approaches went through a number of reversals for different scenarios.
Even hand crafted approaches which perform well on a range of scenarios might show an
unexpected dip on a relatively easy scenario - as shown by the case of HEURISTIC for 200
firefighters and high preburn.

6 Conclusions

In this paper we developed a methodology for optimizing coalition formation for execution
of tasks which evolve in time, respond nondeterministically to the actions of the agents,
and the execution reward changes in time. The methodology relies on the creation of a
factored MDP, which then can be solved using the well-known MDP solving methods. As
the resulting MDP will likely be too large for any realistic problem size, we described two
approaches for speeding up the computation using parallel partitioning of the resulting MDP.
The MDP RSUA approach does not require any domain specific information. The MDP
REUSE approach relies on the reuse of the low level MDP at the partitioning step, and
requires the user to define a distance function with respect to difficulty in the state space of
the tasks.

An experimental study confirms that both presented approaches scale well for hundreds
of tasks and agents, and significantly outperform heuristic approaches. As expected, the
MDP REUSE approach performs better than MDP RSUA, the difference being especially
significant for scenarios with larger number of agents.

Acknowledgments

This research was sponsored in part by the Army Research Laboratory and was accom-
plished under Cooperative Agreement Number W911NF-06-2-0041. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Labora-
tory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation heron.

24

References

Ågotnes T, van der Hoek W, Wooldridge M (2006a) On the logic of coalitional games.
In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), Hakodate, Japan, May 8-12, 2006, pp 153–160

Ågotnes T, van der Hoek W, Wooldridge M (2006b) Temporal qualitative coalitional games.
In: 5th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), Hakodate, Japan, May 8-12, 2006, pp 177–184

Bölöni L, Turgut D (2005) YAES - a modular simulator for mobile networks. In: Proceedings
of the 8-th ACM/IEEE International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems MSWIM 2005

Boutilier C, Dean T, Hanks S (1999) Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research 11(1):94

Chalkiadakis G, Boutilier C (2004) Bayesian reinforcement learning for coalition forma-
tion under uncertainty. In: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, vol 3, pp 1090–1097

Chalkiadakis G, Boutilier C (2008) Sequential decision making in repeated coalition for-
mation under uncertainty. In: Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume 1, International Foundation for Au-
tonomous Agents and Multiagent Systems, pp 347–354

Ebden M, Briers M, Roberts S (2008) Decentralized predictive sensor allocation. In: 47th
IEEE Conference on Decision and Control, 2008. CDC 2008, pp 1702–1707

Goranko V (2001) Coalition games and alternating temporal logics. In: TARK ’01: Pro-
ceedings of the 8th conference on Theoretical aspects of rationality and knowledge, pp
259–272

Guestrin C, Koller D, Parr R (2002) Multiagent planning with factored MDPs. Advances in
Neural Information Processing Systems 2:1523–1530

Guestrin C, Koller D, Parr R, Venkataraman S (2003) Efficient solution algorithms for fac-
tored MDPs. Journal of Artificial Intelligence Research 19(10):399–468

van der Hoek W, Wooldridge M (2005) On the logic of cooperation and propositional con-
trol. Artif Intell 164(1-2):81–119

Khan M, Turgut D, Bölöni L (2008) Optimizing coalition formation for tasks with dynam-
ically evolving rewards and nondeterministic action effects. In: Proceedings of Interna-
tional Workshop on Optimisation in Multi-Agent Systems (OptMas08), in conjunction
with the Seventh Joint Conference on Autonomous and Multi-Agent Systems (AAMAS
2008), pp 69–76

Klusch M, Gerber A (2002) Dynamic coalition formation among rational agents. Intelligent
Systems 17(3):42–47

Meuleau N, Hauskrecht M, Kim K, Peshkin L, Kaelbling LP, Dean T, Boutilier C (1998)
Solving very large weakly coupled markov decision processes. In: In Proceedings of the
Fifteenth National Conference on Artificial Intelligence, pp 165–172

Nüssle TA, Kleiner A, Brenner M (2004) Approaching urban disaster reality: The resQ fires-
imulator. In: Nardi D, Riedmiller M, Sammut C, Santos-Victor J (eds) RoboCup 2004:
Robot Soccer World Cup VIII, Springer, Lecture Notes in Computer Science, vol 3276,
pp 474–482

Osborne M, Rubinstein A (1994) A Course in Game Theory. MIT Press
Shehory O, Kraus S (1998) Methods for task allocation via agent coalition formation. Arti-

ficial Intelligence 101(1–2):165–200

25

Suijs J, Borm P, Waegenaere AD, Tijs S (1999) Cooperative games with stochastic payoffs.
European Journal of Operational Research 113(1):193–205

