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ABSTRACT
We consider a problem domain where coalitions of agents are
formed in order to execute tasks. Each task is assigned at most
one coalition of agents, and the coalition can be reorganized during
execution. Executing a task means bringing it into one of the de-
sired terminal states, which might take several time steps. The state
of the task evolves even if no coalition is assigned to its execution
and depends nondeterministically on the cumulative actions of the
agents in the coalition. Furthermore, we assume that the reward ob-
tained for executing a task evolves in time: typically, the more de-
lay in the execution, the lesser the reward. We exemplify this class
of problems by the allocation of firefighters to fires in a disaster
rescue environment. We describe a practical methodology through
which the aspects of this problem can be encoded as a Markov De-
cision Process. An experimental study involving the Robocup Res-
cue simulator shows that a coalition formation policy developed
following our methodology outperforms heuristic approaches.

1. INTRODUCTION
We consider a problem domain where a group of agents
{A1, . . . Ak} are forming coalitions to execute a set of tasks
{T1 . . . Tn}. The tasks have a state which evolves in time even
in the absence of the actions of the agents; in general, left on their
own, tasks move to states which represent a higher difficulty. The
effects of the actions of the agents are nondeterministic. The re-
ward of executing the tasks evolves in time; in general, the later the
execution is finished, the lower the reward. We will call these tasks
Dynamic Nondeterministic Tasks (DNT). Our goal is to find the op-
timal allocation of the agents in the coalitions; this might involve
the reorganization of the coalitions during task execution as well.
We assume, however, that once a coalition is formed and assigned
to a task, the agents in the coalition will chose the best possible
collaborative action in order to further the execution of the task.

The running example which we use in the remainder of this paper
is firefighting in disaster situations (such as, after an earthquake).
Several fires are erupting in a city. There is an insufficient number
of firefighters to cover all the current fires with sufficient resources
simultaneously. The fires increase in intensity in time. The reward
for putting out a fire, interpreted as a portion of the building which
was saved, is decreasing in time. There is an uncertainty in the
result of the firefighting action: the same amount of water might or
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might not put out a fire, due to some unknown parameters of the
building (nondeterminism).

How do we attack a problem like this? Naturally, simple heuris-
tics can be developed through the analysis of the problem do-
main. Some ideas can be borrowed from related fields such as task
scheduling or coalition games. However, these domains do not,
by default, capture the dynamic nature of the problem, the evolv-
ing rewards and the uncertainty of the execution. They also do not
exploit the ability to reorganize the coalitions during execution.

The objective of this paper is to provide a consistent method-
ology for encoding this class of problems as an optimization prob-
lem, which can then yield an appropriate coalition formation policy.
We also provide a discussion of the approaches through which the
method can be scaled for larger problems, in exchange for a loss of
accuracy. The approach relies on the encoding of the problem as a
Markov Decision Process (MDP) [7] in such a way that the agent
actions normally considered in MDPs are replaced with coalition
configurations.

One of our goals was to guarantee a practically usable methodol-
ogy. For this goal, we had to avoid using some theoretically appeal-
ing but practically not useable techniques such a POMDPs. For in-
stance, a convenient way to model the uncertainty of the firefighter
actions might be as an uncertainty about the observation of the fuel
available in the building. However, this would yield an unpracti-
cally high computational complexity.

The remainder of this paper is organized as follows. Section 2
discusses related problem domains. Section 3 describes the steps
of the proposed methodology. Section 4 describes the simulation
study in which the methodology is applied to the firefighter alloca-
tion domain using the Robocup Rescue simulator. We conclude in
Section 5.

2. RELATED WORK
The problem considered in this paper is related to several prob-

lems extensively studied in computer science as well as game the-
ory, operations research and management sciences.

In game theory, coalition games [1, 2, 6, 10, 13] are games in
which agents are forming coalitions in order to increase their pay-
off. If we have a coalition of agents {Ac1, . . . Acj} the value of the
coalition is v({Ac1, . . . Acj}).

Coalition games in stochastic environments (that is, when the
payoffs are stochastic) were also considered by game theory re-
searchers [12]. Most of the research in coalition games start with
the assumption of a super-additive value function. Under this as-
sumption, usually a grand coalition is formed, and the main chal-
lenge remains how to assign the payoff among the participating
agents.

One of the fundamental advances for the coalition formation re-



search in multi-agent environments is due to Shehory and Kraus
[11]. They have relaxed the assumption of a super-additive do-
main, to account for the realities facing practical multi-agent sys-
tems. Under these assumptions, the challenges move to the choice
of the appropriate coalition operations, as a great coalition will not
be, in general, optimal.

One trend of multi-agent coalition research, exemplified in the
work of Blankenburg, Klusch and others [3–5], centers around the
game-theoretic concept of a kernel.

Klusch and Gerber [8] outline a research agenda for the develop-
ment of coalition formation algorithms in a distributed environment
(the Distributed Coalition Formation problem). They also outline
a customizable algorithm framework DCF-S, which relies on the
coalition leading agent pre-simulate to determine valid coalitions
before starting negotiations. The paper also identifies the need for
developing coalition algorithms for stochastic and fuzzy domains
and calls for research on those directions.

3. A METHODOLOGY FOR OPTIMIZING
COALITION ALLOCATION FOR DNT
PROBLEMS

In the following we describe a general approach for solving DNT
problems. The method is composed of 7 steps and it is described
in Table 3. Note, that the most complex parts of the approach are
concerned with the building of the domain models and the interpre-
tation of the solutions. The solution of the MDP, although it is of a
high computational complexity, is relying on well known, standard
algorithms.

As with most problems involving real world settings with MDPs,
there is always a danger of the combinatorial explosion of the num-
ber of states and actions. The developer needs to use domain spe-
cific knowledge to exploit simplification opportunities to maintain
the MDP at a manageable size.

Table 1: The steps of the general approach to the solution of
the DNT problem.

Step 1 Develop a stochastic model for the evolution of the
task in time.

Step 2 Develop a model for joint action of the agents.
Step 3 Develop a stochastic model of the evolution of tasks

in response to the actions.
Step 4 Develop a cost and reward model
Step 5 Using the models developed above, specify one or

more Markov decision processes modeling the prob-
lem domain.

Step 6 Solve the MDP(s) using the appropriate algorithms
(value iteration, policy iteration, hybrid methods)

Step 7 Interpret the MDP(s). Assemble the policy for the
agents from the solutions of the MDP(s).

In the following we describe the steps of our approach in greater
detail. For the presentation of every step, we first discuss the gen-
eral approach, and then we illustrate it using the firefighter domain.
The same firefighter application will be used in the experimental
evaluation of the approach.

3.1 Step 1: Develop a model for the evolution
of the individual task in time

We assume that the state of the task T at time t can be charac-
terized by a measure M(T, t). We are looking for an expression
which describes the state of the task at time t + 1, in the absence

of any actions from the agents. In the DNT domain the evolu-
tion of the state is assumed to be nondeterministic. The value of
a (continuous) measure at time t + 1 would then be described as
a probability distribution over possible values of M . As such dis-
tributions are very difficult to acquire, we choose to discretize the
value of M . We assume that the value can be one of the discrete
values M(T, t) ∈ {m1, m2 . . . mq}.

The choice of the number of discrete values is technically limited
by the accuracy of the measure. In practice, however, we might
choose to represent a lower number of discrete states to reduce the
size of the resulting MDP.

Once the M(T, t) is expressed as a discrete value, M(T, t +
1) can be expressed with a series of probabilities. If we assume
M(T, t) = mx, we have:

M(T, t+1) =

8
><
>:

m1 with probability pT (mx
∅→ m1) = pT

x1

. . .

mq with probability pT (mx
∅→ mq) = pT

xq

(1)
with

Pq
i=1 pT

xi = 1. These probabilities form a matrix of q2 values,
which can be acquired either through theoretical analysis of the
problem domain or from historical data. The probabilities pT

ij are
normally task dependent. However, in most scenarios, the tasks
are not unique, but can be seen as coming of a finite number of
classes. Thus we need to acquire only a finite number of probability
matrices.

In our example scenario, the measure of the task is the state of
the fire in the building. Our representation uses the eight discrete
states shown in Table 2.

Table 2: The discrete states of a task representing a building on
fire.

Fire Level Description
NO-FIRE The building is not on fire.
LOW-FIRE The building has just caught fire.
LOW-BURNT The building was extinguished

soon after catching fire.
MEDIUM-FIRE The building has been on fire for

some time.
MEDIUM-BURNT The building extinguished after

being on medium fire.
HIGH-FIRE The building has been on fire for

a long time.
HIGH-BURNT The building extinguished after

being on high fire.
COMPLETELY-BURNT The building has been com-

pletely burnt.

As every building is different and setting buildings on fire is not
an acceptable method of obtaining transition probability data, we
need to cluster the buildings in types and predict the evolution of
the fire through historical data from buildings of the same type.
We consider three types of buildings distinguished by their size:
SMALL (defined as smaller than 1000 sqft), MEDIUM (between
1001 and 3000 sqft) and LARGE (larger than 3000 sqft).

For instance, the probabilities in the case of a small building cre-
ate the Markov chain in Figure 1. We assume LOW-FIRE to be the
initial state. Note that some of the states are not reachable in this
graph, reflecting the fact that buildings on fire do not extinguish
themselves. If left unattended, the fire will eventually cover and
burn the building completely.

.



Figure 1: The transition probabilities for a single small build-
ing. The terminal states are gray. Note that some of the states
are not reachable.

3.2 Step 2: Develop a model for the coalition
actions of the agents

At this step we need to determine the actions which can be ex-
ecuted by the individual agents, and the ways in which the actions
are assembled into joint actions for the case when the agents are
acting in a coalition.

In general, if agents A1 . . . Ak are acting in a coalition towards
achieving a task T , each agent Ai chooses an individual action ai.
The composition of the individual actions forms a coalition action
ca = {a1 . . . ak}. The effect of the tuple can be a complex function
of the individual actions.

If each agent can choose from m possible actions, this means
that mk distinct coalition actions are theoretically possible. This
number, however, can be usually drastically reduced with careful
domain specific analysis. Most application domains have a limited
set of feasible coalition actions. A coalition action, on its turn,
determines the actions of the participating agents.

In our example scenario, the action model is very simple. The
only action the agents can take is to use water to extinguish the
fire. The agents are assumed to be homogeneous, and the resulting
action is the sum of the actions. If each firefighter can apply 5
units of water in a unit of time, 10 firefighters will apply 50 units of
water. Thus, the actions can be simply represented with the number
of firefighters participating in the coalition.

Note, however, that the linear composition of the actions does
not necessarily means a linear composition of the effects of the ac-
tions. It is not, in general, true that 50 units of water will extinguish
the fire 10 times faster than 5 units.

3.3 Step 3: Develop a stochastic model of the
evolution of the tasks in response to ac-
tions

In Step 1 we have considered the evolution of tasks without any
actions from agents, in Step 2 we considered the model of the com-
position of the actions of the agents into coalition actions. In this
step we consider the evolution of the tasks with the coalition ac-
tions being applied. We assume that task T is at time t in state mx.
A coalition of agents CA = {A1, . . . Ak} is acting on the tasks
performing a coalition action ca = {a1 . . . ak}. We are interested
in the state of the task at time t + 1.

M(T, t + 1, ca) =

8
<
:

m1 with probability pT (mx
ca→ m1)

. . .

mq with probability pT (mx
ca→ mq)

(2)
Note that now the probabilities depend both on the current state,

the task and the coalition action. If we assume that there is a dis-
crete number n of possible coalition actions, we will have n inde-

pendent probability matrices of size q2. These probabilities can be
acquired from historical information or domain specific analysis.

While the state of the possible states of the task is the same as in
Step 1, the effects of the actions frequently make states which were
not reachable in the absence of an action, reachable.

In our example, we can model the coalition action simply with
the number of agents participating in firefighting. Figure 2 il-
lustrates the evolution of the state of a small building as the re-
sult of the coalition action of 2 (continuous lines) or 3 (dotted
lines) firefighters. We did not include actions with 1, 4 or more
firefighters for the purpose of clarity. Comparing with Figure 1,
we can make several observations. States such as LOW-BURNT,
MEDIUM-BURNT and HIGH-BURNT, which were not reachable
in the absence of actions, are now reachable. On the other hand
the COMPLETE-BURNT state becomes unreachable, reflecting
the fact that if there are at least two firefighters working on a small
house, the house will never be completely burnt. Another obser-
vation is that the states form two disjoint graphs - there is no tran-
sition from the LOW-FIRE state to the MEDIUM-FIRE state for
the action of the 2 or 3 firefighters. Still the building can reach
the MEDIUM-FIRE state, for instance if no firefighter is working
on it. As the DNT problem assumes a dynamic formation of the
coalitions, this is possible.

The full collection of transmission probabilities for the case of a
small building and coalitions of at most 4 agents is shown in Table
3.

Figure 2: The transition probabilities for a single small build-
ing as the effects of the coalition actions of 2 (continuous lines)
or 3 (dotted lines) firefighters. The terminal states are gray.

.

3.4 Step 4: Develop a cost and reward model
Until now we did not consider neither which states of the tasks

are more favorable, nor the cost associated with the actions. Let
us discuss the problem of rewards by contrasting it with classical
task scheduling. In task scheduling, a task can be in one of the four
states: READY, RUNNING, DONE and FAILED, with the latter
two being terminal states. Naturally, we prefer the DONE state
to the FAILED state. We say that the DONE state carries a reward
r > 0, while the FAILED state carries either no reward, or it carries
a penalty p < 0.

In the DNT model, there can be several terminal states. We need
to associate a certain reward with each of the states. The reward
expresses the relative preference over the states and also the relative
preference over the various states of the individual tasks.

In addition to the rewards associated with the states, we can also
have costs associated with the actions. These costs allow us to ex-
press preferences over various actions with equivalent or similar
effects.



Table 3: Transition probabilities for small building with four
firefighters. The fire levels are indicated with integer values and
are associated as LOW-FIRE=1, MEDIUM-FIRE=2, HIGH-
FIRE=3, LOW-BURNT=4, MEDIUM-BURNT=5, HIGH-
BURNT=6 and COMPLETE-BURNT=7 respectively

Fire
level

Fire
fighters

1 2 3 4 5 6 7

1 0 0.81 0.19 0.00 0.00 0.00 0.00 0.00
1 0.81 0.19 0.00 0.00 0.00 0.00 0.00
2 0.23 0.00 0.00 0.77 0.00 0.00 0.00
3 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 0.00 0.00 0.00 1.00 0.00 0.00 0.00

2 0 0.00 0.88 0.12 0.00 0.00 0.00 0.00
1 0.00 0.88 0.12 0.00 0.00 0.00 0.00
2 0.00 0.88 0.08 0.00 0.03 0.03 0.00
3 0.00 0.80 0.00 0.00 0.20 0.00 0.00
4 0.00 0.71 0.00 0.00 0.29 0.00 0.00

3 0 0.00 0.00 0.97 0.00 0.00 0.00 0.03
1 0.00 0.00 0.93 0.00 0.00 0.07 0.00
2 0.00 0.00 0.87 0.00 0.00 0.13 0.00
3 0.00 0.00 0.85 0.00 0.00 0.15 0.00
4 0.00 0.00 0.82 0.00 0.00 0.18 0.00

For our example we define a reward for the terminal states in the
following way.

Bi =

8
>>><
>>>:

Ai × 3/4, if Fi = LOW-BURNT
Ai × 1/2, if Fi = MEDIUM-BURNT
Ai × 1/4, if Fi = HIGH-BURNT
0, if Fi = COMPLETE-BURNT

(3)

where, Ai represents the total area of the building i, Bi represents
the unburnt area of the building i and Fi is the fire level of building
i.

Thus, we define the reward of the firefighting as the area of the
buildings saved. As the firefighters have a single possible action
(i.e. firefighting), we define a cost for a collaborative action to
be proportional with the number of firefighters participating in the
coalition. Thus, in general we will prefer smaller coalitions, as long
as the achieved terminal state is identical.

3.5 Step 5: Specify a Markov decision process
In the next step of the process, using the models developed in

steps 1-4 we create a Markov decision process whose solution al-
lows us to extract the optimum desired coalition structure.

To build the MDP we need to specify the (a) states, (b) the ac-
tions (c) the transition probabilities and (d) the rewards. The com-
ponents rely on the models developed previously, still, as we will
see, assembling the MDP requires non-trivial technical decisions.

(a) Determining the global states of the MDP
A global state defines the MDP state in terms of the set of tasks in

the system. The global state of the system with k tasks is a k-tuple
of the discrete states of the individual task: gm = (m(1), . . . m(k))

where m(i) ∈ {m1 . . . mq}. There are kq number of possible
states.

(b) Determining the global actions
The actions of the system are defined by the coalitions formed

and the actions taken by that coalition. For the sake of a uniform
representation we assume that there is one coalition per task, which
can be an empty coalition. As we had seen the coalition action is
determined by the actions of the individual agents in the coalition.
The global action ga is thus defined as:

ga = {ca1 . . . cak} where cai = {ai1 . . . aini} (4)

where ni is the number of agents in coalition i. The action of an
empty coalition is the empty action.

The number of possible coalitions is, naturally, very large. If
we have k tasks and m agents, the number of coalitions can be
calculated by considering that each agent chooses independently
which task will it work on. In this case the number of possible
coalitions is km. If we assume that the agent might also choose
not to be part of any coalition, the number of alternatives becomes
(k + 1)m.

Naturally, we need to find ways to reduce the number of potential
coalitions and actions. This can be done by exploiting application
specific features. For our example, we have two specific properties
of the domain which allow us to drastically reduce the number of
the actions: (i) we assume that all the firefighter agents are equiv-
alent and interchangeable and (ii) the only action of the agent is
firefighting. We can thus represent a global action ga only with the
number of agents participating in each coalition:

ga = {n1 . . . nk} where
kX

i=1

ni = m (5)

The possible coalitions under these assumptions can be gener-
ated by the possible integer partitions of m into k places. One such
recursive algorithm for partitioning m agents to k tasks is presented
in Algorithm 1.

Algorithm 1 A recursive algorithm for integer partitioning
IntegerPartition(m, k)

C ← An empty list of the list of integers
if (k = 1)

L← An empty list of integers
Add m to the list L
Add the list L to the list C
output C

for i← 0 to m
for each list P ∈ IntegerPartition(m− i,k − 1)

Append i to the front of the list P
Add the list P to the list C

output C

(c) Assigning probabilities.
If we make the assumption that the tasks are independent of each

other, then the probability of the transition from a global state to an-
other as a response to a global action is the product of the transition
probabilities on a per task basis, with respect to the coalition action
applied to the given task.

If the system is in a global state gmx = (m
(1)
x , . . . m

(k)
x ), and

the global action performed is ga = {ca1 . . . cak}, the probability
to transition to a new global state gmy = (m

(1)
y , . . . m

(k)
y ) will be:

p
“
gmx

ga→ gmy

”
=

kY
i=1

p(i)
“
m(i)

x
cai→ m(i)

y

”
(6)

If the tasks are not independent, their interdependencies need
to be taken into account. For instance, in the case of our running
example, it is possible that two buildings on fire are located next to
each other, and thus the evolution of the fires is co-dependent. This
adds additional modeling difficulty, but it does not change the size
of the resulting MDP.

Let us illustrate the building of the final MDP through a simple
example. To maintain the graphs readable, we will simplify the
firefighting model to a model where each building can be in only



Figure 4: Transformation of the MDP to allow for the expres-
sion of a reward for reaching a terminal state. A new, single
terminal state FINAL is introduced. The previous terminal
states are becoming non-terminal, and a special action Final-
izing moves from them to the FINAL state with the probability
p = 1. The rewards will be attached to the Finalizing transi-
tion.

k = 3 possible states: Fire (F), Burned (B) and Extinguished (E).
We assume that if there is at least one firefighter working on the
building, it will be extinguished, while if no firefighter is working
on the building, it will burn down. Figure 3 illustrates the building
of the final MDP for two buildings and one single firefighter. The
resulting MDP, as expected, has k2 = 9 states. The possible team
actions, in each state are two: (1, 0) representing that the firefighter
is allocated to the first building, and (0, 1) representing that the
firefighter is allocated to the second building.

The final problems regarding the building of the MDP are the
assignment of the costs and rewards. The definition of the MDP
can be formulated in three different ways: either by assigning re-
wards to being in a given state R(si), with an action in a given
state R(si, a) or with a certain transition taken as a result of an
action R(si, a, sj). While the formulations are ultimately equiva-
lent, in the sense that they define the same design space, the MDP
solvers usually support only one of them. Depending of the origi-
nal problem formulation, we might need to transform the MDP to
accommodate the different formulation. Most MDP solvers expect
the rewards to be associated with state-action pairs.

In the case of our model, we are concerned with the cost of the
actions and the reward to reaching one of the preferred terminal
states. The cost of the action can be represented easily, by replicat-
ing it for all the current states where the actions can be taken. How-
ever, there is a problem with the rewards for the terminal states: as
the reward is defined on the starting state and the action taken, we
can not assign the reward, as there is no guarantee that the next state
will be the terminal state. To work around this problem, we modify
the MDP in such a way that the reward can be attached to a tran-
sition which happens with a probability of 1. We introduce a new
terminal state called FINAL and a special action called Finalizing.
The previous terminal states of the MDP will become non-terminal
(we will mark them in our code as semi-terminal). The Finalizing
action taken in these states will lead to a probability p = 1 to the
FINAL state. Now, we can attach the reward to the combination of
the semi-terminal state and the Finalizing action.

For the case of firefighting with a single building the transforma-
tion is shown in Figure 4.

3.6 Scalability issues
The methodology discussed here, will find the optimal coalition

formation policy, given the available information. Unfortunately,
the methodology creates very large and “dense” MDPs, with a very
large number of transitions possible at every state. This limits the
scalability of the approach. In the following we discuss some meth-

ods through which the scalability of the methodology can be im-
proved by exploiting domain knowledge.

Pre-filtering undesireable coalitions
From the offset, there might be certain types of coalitions which

are not desirable. One example are soft or hard limits on the number
of certain types of agents in a coalition. For instance, we might
have a policy that every firefighter team can include at most one
trainee. Although these types of soft or hard constraints can be
encoded in the reward function, it much more efficient to filter out
these type of coalitions from the beginning.

Another example is when we are using our application domain
knowledge to predict the results and remove coalition setups which
are not going to be optimal. For instance, if we know that one of the
resources is in short supply (for instance, a fire truck with chemical
fire extinguishing agent), we can remove those coalition configura-
tions where the agent in short supply is part of no coalition.

Coalescing equivalent coalitions
Another alternative is to coalesce coalitions which are equiva-

lent, or differ very slightly. We might be able to identify coalition
actions which are closely resembling each other and whose utility
will be also closely related. We can replace these coalitions with a
representative coalition, and obtain an approximate solution.

Iterative refinement
One of the causes of the “density” of the MDPs created by our

methodology is the set of coalition configurations which differ very
little from each other, but appear as transitions in the MDP. An it-
erative refinement method can be applied as follows. We perform a
clustering over all the possible coalition configurations and choose
a representative for each cluster. We first solve an MDP which con-
tains only the cluster representatives. We will find that in the result-
ing policy, some of the cluster representatives will not be present.
In the next step, we add back to the MDP the cluster members of
those representatives which are part of the optimal policy for a cer-
tain task. We solve the resulting MDP.

Partitioning through uniform sampling
Let us assume that we have 40 tasks of type A and 60 tasks of

type B, and 20 agents. The idea of partitioning through uniform
sampling is that instead of solving a problem with 100 tasks and
20 agents, we solve two problems with 30 tasks of type B, 20 of
type A and 10 agents. For this method to be applicable, there are a
number of conditions which need to be met:

• There are multiple, equivalent classes of tasks.

• There are multiple, equivalent classes of agents.

• The remaining number of agents of each type after the par-
tition significantly exceeds the saturation level for a single
task. The saturation level for a task is the number of agents
of a certain type which has the property that adding addi-
tional agents of a given type does not improve the execution
type of the task.

The partitioning needs to be done in such a way that the ratio of
different task types and classes are kept constant. In many cases
these conditions are satisfied only in approximation. In our case,
for instance, there is no “full” saturation level of the number of
firefighters for a single task - adding extra firefighters always in-
creases the probability that the fire will be put out in the next time
interval. However, as the size of the coalition increases, the benefit
of the extra firefighter is decreasing and a saturation level can be
assigned empirically.

4. SIMULATION STUDY



Figure 3: Creating an MDP for a simplified version of the firefighter problem with only three states: Fire (F), Burned (B), and
Extinguished (E). The final MDP is assembled for the case of one firefighter and two buildings.

In the following, we describe the results of a simulation study.
The fire simulation was performed using Robocup Rescue fire sim-
ulator which is designed to simulate a realistic physical model of
heat development and heat transport in urban fires [9].

The simulations were run with 100 buildings of random sizes.
Each simulation was run for 100 cycles where a simulation cycle
was treated as being equivalent to the time it took for a firefighter
to move from the water source to the building, sprinkle the water
on the building and come back to the water source to refill its water
tank. We also assumed that each firefighter can be re-assigned to
new a building at the beginning of each simulation cycle.

At the end of each simulation, a score was obtained based on the
state of the buildings. The scoring mechanism was similar to the
one used by the Robocup Rescue simulation environment. If Ai

represents the total area of the building i, Bi represents the unburnt
area of the building i and Np is the number of buildings in state Sp

then the score for state Sp is computed as follows:

score(Sp) = 100×
PNp

l=1 BlPNp

l=1 Al

(7)

where, for a given building i which is at fire level Fi, the unburnt
area Bi is computed as shown in Equation 3.

As the problem size (100 tasks) was large, we used the partition-
ing through uniform sampling method discussed in the previous
chapter. The MDP policy was learnt offline for all the combina-
tions of three building sizes (i.e. SMALL, MEDIUM and LARGE)
and with six available firefighters. Under these assumptions, we
had to learn policies for 33 = 27 different MDPs where each MDP
consisted of 73 = 343 states and 28 possible coalition actions from
each state. It took about eight to ten hours to learn all the policies
on a 2.66 GHz Pentium 4 machine with 1 GB RAM using the value
iteration algorithm.

Under disaster response conditions, it is unrealistic to expect that
every fire will be attended to as soon as it started. To simulate
more realistic response times, a certain number of buildings in the
simulation were “pre-burnt” for a random amount of time. Pre-
burning simply meant letting the fire model evolve for a predeter-
mined amount of time with no firefighter assigned to the building.

The simulation was repeated 100 times with different initial con-
ditions. We report the average score and the 95% confidence inter-

val.

4.1 Baseline algorithms
In order to evaluate the quality of the solution provided by our

methodology, we have implemented several approaches based on
empirical considerations.

UNIFORM: Allocate equal number of firefighters to the
fires. In this approach, the available firefighters were allocated uni-
formly to the fires. If the number of available firefighters is denoted
with m, and the number of remaining fires to be allocated with n,
then the allocation was made as follows:

• if m <= n: Exactly one firefighter was allocated to the first
m fires

• if m > n: Exactly bm
n
c firefighter was allocated to the n

fires. The remaining m− bm
n
c firefighters were allocated to

first m− bm
n
c fires.

UNIFORM RANDOM: Allocate firefighters uniformly to
randomly selected fires. In this approach, at each simulation cy-
cle, the algorithm selected one of the firefighters and allocated it to
a randomly selected fire. This process was repeated until all avail-
able firefighters had been allocated.

CLUSTERED RANDOM: Allocate multiple firefighters to
randomly selected fires. In this approach, at each simulation cy-
cle, the algorithm selected a random number of firefighters between
1 and 4 and allocated them to a randomly selected fire. This process
was repeated until all available firefighters had been allocated.

HEURISTIC: Allocate firefighters based on the area of the
building. In this approach, at each simulation cycle, the algorithm
allocated certain number of firefighters to the selected fire based
on the size of the building. The small building was allocated 2,
medium building was allocated 3 and were the large building was
allocated 4 firefighters. This process was repeated until all available
firefighters had been allocated.

4.2 Results
In the following, we present and interpret the results of our ex-

periments. The maximum attainable score is 75, because every
building is initially put on fire and the best possible outcome is to
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Figure 5: Evaluation of coalition formation strategies to extin-
guish 100 fires with 50 firefighters.

extinguish all of them at their initial fire level (as shown in the scor-
ing mechanism in Equation 7).

Figure 5 shows the results with 50 firefighters, Figure 6 with 75
firefighters, while Figure 7 with 125 firefighters.

The MDP based allocation approach clearly performed better
than all the other approaches, especially with the increased num-
ber of available firefighters. The HEURISTIC approach performed
reasonably well with small number of firefighters. This was be-
cause: a) even with optimal firefighter allocations with MDP, many
buildings could not be extinguished with fewer number of avail-
able firefighters and b) the heuristic was quite conservative in its
allocations.

However, the difference between MDP and the heuristic based
approach grew with the increased number of firefighters. This is
because with large number of available firefighters, the MDP based
approach could allocate the optimal number of firefighters to the
key fires, while the heuristic allocated conservatively and thus re-
sulted in not being able to extinguish some of the key fires. An
example of such non-optimal allocation would be with a state (SM-
MED, MD-LOW), which specifies a small building on medium
fire level and a medium building on low fire level. If there were
5 firefighters available for allocation, the heuristic based approach
would allocate (2,3), i.e. two firefighters to the small building and
three firefighters to the medium building. This allocation might
results in a state of (SM-MED-BURNT, MD-MED-BURNT) after
the firefighters have worked on the fires for some amount of time.
With MDP, the optimal allocation would be to first extinguish the
medium building on low fire (i.e. (0,5) allocation); which can be
achieved quite quickly. Later on, the MDP would allocate all the
firefighters to the small building, which might have increased to
the next fire level by that time. This would result in a state like
(SM-HIGH-BURNT, MD-LOW-BURNT). Now, since the small

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

40

45

50

Preburn (number of buildings preburnt)
S

co
re

 (
p

e
rc

e
n

ta
g

e
 o

f 
u

n
b

u
rn

t 
a

re
a

)

MDP

UNIFORM RANDOM

CLUSTERED RANDOM

UNIFORM

HEURISTIC

Figure 6: Evaluation of coalition formation strategies to extin-
guish 100 fires with 75 firefighters.
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Figure 7: Evaluation of coalition formation strategies to extin-
guish 100 fires with 125 firefighters



building is 1,000 sq ft and medium building is 2,000 sq ft, the re-
ward obtained by the heuristic would be ((1/2 × 1000 + 1/2 ×
2000)/3000)× 100 = 50. The MDP allocation results in a higher
reward of ((1/4× 1000 + 3/4× 2000)/3000)× 100 = 58.3.

The UNIFORM, UNIFORM RANDOM and CLUSTERED
RANDOM approaches, in general, performed significantly worse.
For a small number of firefighters, the worst approach appears to be
UNIFORM RANDOM, which allocated a uniform number of fire-
fighters to randomly selected fires at each simulation cycle. Since
buildings usually require more than one firefighter to extinguish
them, it performed worse than the CLUSTERED RANDOM ap-
proach which allocates a group of firefighters to the fires. Also,
since it does not focus on certain buildings (i.e. it keeps changing
the allocation at every simulation cycle), it performs worse than the
UNIFORM approach which keeps allocating the same number of
firefighters to the same set of non-extinguished buildings at every
simulation cycle.

However, with the increased number of firefighters, the UNI-
FORM RANDOM approach tends to perform slightly better than
the UNIFORM approach. This is because, with increased number
of available firefighters, the uniform random allocation would end
up allocating multiple firefighters to at least some of the buildings.
The UNIFORM approach would still allocate equal but small num-
ber of firefighters to each fire and thus result in worse performance.

Another interesting observation is the improved performance of
CLUSTERED RANDOM approach with the increased number of
firefighters. This again highlights the fact that it is better to allo-
cate a group of firefighters to some fires and extinguish them early
rather than keep allocating equal but small number of firefighters
to all the fires. Since fires become more difficult with the passage
of time, equal allocation results in multiple fires that keep getting
worse (because of less than required number of firefighters allo-
cated to them). The cluster approach performs better since by allo-
cating multiple firefighters to some fires, those particular fires can
be quickly extinguished and the firefighters can then be allocated to
other fires.

As expected, the preburning of the buildings causes the attained
score to get lower. The impact of preburning on the attained score
also gets comparably higher with the increased number of available
firefighters. This indicates that there is higher penalty for delayed
action when the number of available firefighters is relatively large.
We also observe that the effect of preburning is relatively small for
uniform allocation approaches even with large number of available
firefighters. This can be attributed to the fact that these approaches
already result in quite suboptimal allocations and the worsening
state of the buildings does not effect their eventual outcome.

5. CONCLUSIONS AND FUTURE WORK
In this paper we developed a methodology for optimizing coali-

tion formation for execution of tasks which evolve in time, respond
nondeterministically to the actions of the agents, and the execution
reward changes in time. We have shown that the algorithm devel-
oped following the methodology outperforms a series of heuristics
in a simulation study involving firefighter allocation in a disaster
environment.

Clearly, the main future challenge is the scaling of the approach
for large problems without significant loss in the quality of the
generated policy. While we have informally proposed some ap-
proaches which increase the scalability of the method, a more rig-
orous approach for the specification and validation of these approx-
imate methods is part of our future work.
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