
An object-oriented approach for semantic understanding of messages in a
distributed object system

Ladislau Bölöni, Ruibing Hao, Kyungkoo Jun, and Dan C. Marinescu
(Email: boloni, hao, junkk, dcm@cs.purdue.edu)

Computer Sciences Department
Purdue University

West Lafayette, IN, 47907, USA

Abstract

In message-oriented distributed object system, cooper-
ating objects exchange messages and various functions are
carried out as a side effect of message exchanges. As ob-
jects range from an icon on the screen to a full featured
server, the set of messages they can understand is also dif-
ferent. An object may not know the properties of all the
objects it is communicating with. Objects may acquire new
functionality at runtime and this makes the problem even
more difficult.

This paper presents message handling in the Bond dis-
tributed object system. Bond uses KQML as a communi-
cation language allowing every object to parse every mes-
sage. The solution for the semantic understanding of mes-
sages are the subprotocols - highly specialized, closed set
of commands. Being object instances themselves, subproto-
cols can be generated dynamically or stored into persistent
storage. Objects implement the handling of subprotocols
in their class definitions. Objects can be extended at run-
time with probes to understand new subprotocols or, in some
cases, can dynamically generate or learn new subprotocols.

Keywords: distributed object systems, KQML, message
oriented middleware

1. Introduction

The success of the World Wide Web provided the im-
pulse to develop a World Wide Web for cooperating objects
[7]. This new approach to distributed computing relies on
new technologies, object oriented design, network program-
ming languages like Java, and architecture frameworks like
CORBA.

Distributed object systems rely on a networking
paradigm which is usually either remote method invocation
or message passing. Other paradigms, like virtual shared

memory or tuplespaces (like Linda [3] or JavaSpaces) were
also proposed. Message passing and remote method invoca-
tion are dual, the same functionality that can be achieved by
with one of them, can be provided by the other. As a practi-
cal implementation however they impose different program-
ming styles, and thus influence the design of the systems. It
is generally accepted that message passing is advantageous
for asynchronous, loosely coupled systems, while remote
method invocation allows programmers to (partially) hide
the difference between local and remote objects for syn-
chronous, tightly coupled systems.

A critical issue in the design of distributed object sys-
tems is interface discovery. As new objects are created their
usefulness to the community is determined by the ability
of existing objects to interact with the newly created ones.
Any member of the community wishing to interact with the
newly created object invokes an interface discovery service
and learns how to interact with the object. In a remote
method invocation system like CORBA the interface dis-
covery is based upon an interface repository service that
provides the names and types of the methods and their pa-
rameters required for the method invocation. Once an ob-
ject is created, it uses this service to advertise its interfaces
to the entire object community.

A similar problem exists for message-oriented dis-
tributed object systems. In layman’s terms, a message ori-
ented interface defines the language the object understands.
The recipient of the message cannot possibly understand the
syntax and semantics of an arbitrary message. Understand-
ing the syntax is a relatively minor problem, and can be
solved using a suitable meta-language like KQML [5], FIPA
[11] or most recently, XML [9]. However, the problem of
semantic understanding still has to be addressed.

This article proposes the notion of subprotocols, a solu-
tion for the semantic understanding of messages. It is im-
plemented in the Bond distributed object system [1]. The
contribution structured as follows, the problem of message



understanding, the ontology–based solution in KQML, the
motivation and the idea of subprotocols are introduced in
Section 2. The three methods of implementing subpro-
tocols, statically, dynamically through probes and runtime
generation are introduced in Section 3. Conclusions are
drawn in Section 5.

2. Abstractions for message understanding

2.1. Interface-based message understanding

Interfaces are the basic method for method understand-
ing for remote method invocation systems. An interface
represent a collection of methods implemented by (or mes-
sages understood by) a server object. While the actual im-
plementation can differ, the interface represents essentially
a contract between the server and the client object, where
the client relies on the fact that the server implements a set
of functions with the corresponding signatures.

Interfaces can be described using interface description
language, IDL. IDL’s normally describe the syntax of in-
teraction (the signatures of the methods involved). Never-
theless a certain amount of semantic is also involved in the
interface contract, without being formally specified - devel-
opers rely on the fact that functions like add(Object)
and delete(Object) perform the operations given by
their name.

Interfaces are a natural solution for remote method in-
vocation systems like CORBA, RMI [10] or DCOM [8].
While usually used in a static definition way, interfaces can
be learned on the client side using interface repositories.
Component object models like enterprise Java Beans allow
dynamic aggregation of interfaces on the server side.

2.2. Ontology-based message understanding

The basic message understanding paradigm for multi-
agent systems is relying on common ontologies. We present
the approach taken in the KQML inter–agent communica-
tion language.

KQML, Knowledge Querying and Manipulation Lan-
guage, is a product of the Knowledge Sharing Effort sup-
ported by DARPA, NSF, and AFOSR, for organization and
coordination of autonomous agents, [5].

KQML messages, called performatives encode basic
abstractions like asking, replying, achieving, subscribing
or notifying. There are several classes of performatives:
informative like tell and deny, database performatives
e.g. insert, and delete, basic query performatives
as evaluate, reply, ask-if, ask-about,
ask-one, ask-all, sorry, effector performatives
like achieve and unachive, notification performatives

as subscribe and discard, networking performa-
tives as register, unregister, forward,
broadcast, pipe and facilitator performatives e.g.
broker-one, broker-all, recommend-one,
recommend-all, recruit-one, recruit-all.

An advantage of KQML is that messages can be eas-
ily interpreted by humans. Debugging a distributed sys-
tem is still a very difficult task, and the ability to identify
the source, the destination and relation to other messages is
very helpful.

KQML is a meta-language in the sense that understand-
ing its syntax is not equivalent to understanding the seman-
tics of the message. Of course, the performative itself is
giving a hint on the nature of the message, thus allow cer-
tain services like brokers or forwarders to be implemented
which can function without having a full understanding of
the KQML message.

In a typical deployment scenario, the parameters of a
KQML performative (and specially the :content param-
eter) are statements written in a specialized command lan-
guage, or even in a full featured interpreted programming
language like Prolog. This language may be specified in the
:language parameter of the message. The message can
specify an ontology, in the :ontology parameter. The on-
tology is the background knowledge needed to understand
the message, typically implemented in the form of a knowl-
edge base.

Ontology-based message understanding is the natural
choice for systems based on logical programming lan-
guages like Prolog. For these cases the content field of a
KQML message can be directly interpreted by the inter-
preter in the context of the current ontology.

2.3. Subprotocol-based message understanding

The Bond distributed object system is built on a message
oriented structure, using KQML as messaging language. In-
tended as an inter-agent communication language by its de-
signers, KQML is used in Bond as an inter-object commu-
nication language. All Bond objects can receive and send
messages.

KQML allows us to express the attitude communicated
by a message (question, command, answer and so on), yet
the full understanding of the semantics of a message would
require a full featured programming language and force us
to embed a new interpreter for Prolog or Scheme in every
Java based Bond program - a very serious overhead. (Java
is not interpreted in this sense of the word: Java statements
should be compiled to bytecode before executing, so there
is no simple way to execute a string written in Java).

Another possible alternative is to design our own com-
mand language to be used in every message. This also im-
plies a major overhead - Bond objects range from a simple



icon on the screen, to full featured agents or servers. An-
other problem is the extensibility of the language. The users
should be able to create their own objects with new seman-
tics based on the object-oriented library provided by Bond.
The agent framework provides the best arguments for the
need of some objects to acquire new properties at runtime.
An agent is a program capable to independently perform a
well defined set of actions in order to pursue its own agenda,
and also it has to be controlled by other agents in a specific
way. The object-oriented agent framework allows the run-
time creation of agents by loading the control finite state
machine, agenda and strategy from an object database and
combining them in various ways. This also implies that the
corresponding commands should be generated during run-
time and learned by the controlled agent and the controlling
authority.

Our solution to these problems is the introduction of sub-
protocols. Subprotocols are small, closed subsets of KQML
commands. In programming languages terminology we can
think of them as small, specialized languages. The attribute
closed in this definition means that commands in a subpro-
tocol do not reference commands outside the subprotocol,
and the reply or acknowledgment is always a member of
the same subprotocol with the question. The only excep-
tions are the (sorry) and (error) KQML performa-
tives, possible replies to messages of any subprotocol.

Subprotocols generally contain the messages needed to
perform a specific task. Examples of generic Bond subpro-
tocols are property access subprotocol, agent control sub-
protocol or security subprotocol (see Table 1). An alter-
native formulation would be that subprotocols introduce a
structure in the semantic space of the messages.

Subprotocols differ from interfaces in that they do not
necessarily reflect a client-server approach, but can capture
a more complicated sequence of messages e.g. publish-
subscribe, multiobject interaction. On the other hand, sub-
protocols do not need an underlying knowledge base like
ontology-based understanding.

To create a fully functional distributed system, a typical
object should implement a number of subprotocols. We call
a message pattern (analogous to design patterns [4]) the to-
tality of messages a distributed object system should use in
order to accomplish a certain task.

Subprotocols are self-describing: independently of there
method of implementation, a subprotocol object can be al-
ways created, which lists the messages in the subprotocol,
their parameters and description. Subprotocol objects then
can be passed over the network and they provide the means
for object to learn new subprotocols.

Two objects can communicate using messages which are
members of the subprotocols implemented by both objects.
Every Bond object implements at least the property access
subprotocol which allows to remotely interrogate and set

the properties of an object. The set of subprotocols imple-
mented by an object is also a property of the object. If two
objects want to communicate without having any previous
knowledge about the other, the first thing to do is to inter-
rogate the SubprotocolsImplemented property. Af-
ter this, they can communicate using the intersection of the
subprotocols implemented by both of them.

Subprotocols are not a complete solution for the under-
standing of messages, they just push the problems one level
higher. As an analogy, in human communication, if the
answer to “Parles vous francais” is “Oui”, than we are as-
suming that from that moment, everything we say in French
will be understood by our partner. Similarly, if an object an-
swered that he does speak “AgentControl”, we must assume
that it will perform correctly in response to commands like
“start”, “checkpoint” or “migrate”. While objects can be ex-
tended with new subprotocols, or even subprotocols can be
generated during runtime, there must exist either a human-
written code which interprets the subprotocol (in the case of
probes) or a previous convention which governs the rules of
the runtime generation of subprotocols (like the multi-plane
state machine structure at the core of Bond agents).

3. Understanding subprotocols

In the following we discuss the three ways for a Bond
object to understand a subprotocol: static implementation,
acquiring the ability to understand subprotocols by probes
and generating and learning new subprotocols.

3.1. Subprotocols as static properties

Subprotocols are intrinsic properties of Bond classes and
objects inherit subprotocols from their ancestors. The ob-
ject hierarchy presented in Figure 1 indicates also the sub-
protocol implemented in the corresponding classes. For ex-
ample every Bond object understands the property access
subprotocol and every Bond agent understands the agent
control subprotocol. The handling of the commands in
these subprotocols is implemented by the methods of the
corresponding objects. The messaging thread of a Bond
executable delivers every incoming message to the say()
function of the corresponding object. If the message is not
understood, it is usually passed to the say() function of
the immediate ancestor in the object hierarchy. This is ba-
sically a chain of responsibility design pattern, where the
chain of responsibility basically is the say() functions
of the ancestors of the object. Every Bond object inher-
its all the subprotocols implemented by the objects above
it in the Bond object hierarchy, but this inheritance can be
overwritten by the programmer. For example, the sched-
uler agent object implements the scheduling subprotocol
and inherits the agent control subprotocol implemented by



bondMonitoringProbe
(Monitoring)

bondFSMState

bondFSMTransition

bondSubProtocol

bondVirtualNetwork

bondProbe

bondSecurityAgent
(Security)

bondDefaultSecurityAgent

bondSecurityProbe
(Security)

bondKQML

bondFiniteStateMachine

bondExecutable

bondObject
(PropertyAccess)

bondServer bondAgent
(AgentControl)

bondResident

bondDispatcher

bondDirectoryServer
(DirectoryAccess)

bondPersistentStorageServer
(PersistentStorage

Access)

bondASDServer

bondMonitor
(Monitoring)

bondScheduler
(Scheduling)

bondExecutor

Figure 1. The upper part of the Bond object hi-
erarchy. In parenthesis there are the subpro-
tocols implemented in the class definitions
of each object. Every object understands the
property access subprotocol, implemented in
bondObject

the bondAgent, and the property access subprotocol im-
plemented by the bondObject.

Figure 2 shows two examples of messages delivered to a
bondScheduler object, which extends a bondAgent,
which in turn extends a bondExecutable, which in turn
extends a bondObject (see Figure 1). The subprotocols
specified at each level are specified in parenthesis. The
bondScheduler object does not understand a monitor-
ing message (it does not inherit a monitoring subproto-
col), so after being passed all the way in the hierarchy, the
say() function of the bondObject class answers with
sorry indicating that it does not understand it.

3.2. Acquiring new subprotocols through probes

The subprotocols presented in the previous section are
intrinsic properties of the objects. However in some in-
stances subsets of objects from different classes need to
understand the same subprotocol. For example agents and

bondScheduler agent

bondScheduler.say()
(Scheduling)

bondObject.say()
(Property

Access)

bondExecutable.say()

bondAgent.say()
(AgentControl)

Agent control
 message

Monitoring
message

(sorry)

reply

Figure 2. Message processing by a Bond
scheduler agent. An incoming message is
handled by the say() function of each ob-
ject and, if not understood, it is passed to the
say() function of the parent. In parenthe-
sis we indicate the subprotocol implemented
by the corresponding say() function. The
processing sequence is then presented for
two messages: an agent control message,
understood by every object which inherits
from bondAgent and a monitoring message,
which is not understood by this instance of
the bondScheduler object.

servers involved in a critical experiment need to authenti-
cate all messages, any object can be monitored. The imple-
mentation of the monitoring or security subprotocol in all
objects would place a serious overhead.

The Bond system implements the concept of probes to
dynamically add a new subprotocol to the object. Probes
are objects which understand a certain subprotocol and are
attached to objects as dynamic properties. The message de-
livery object of the Bond system automatically modifies the
chain of responsibility for the handling of messages when
a probe is attached or removed. Regular probes are at-
tached at the end of the chain of responsibility, so only mes-
sages which are not handled statically by the object itself are
reaching them. There are two types of special probes: the
preemptive probe and the autoprobe. Preemptive probes are
inserted at the top of the chain of responsibility and act as
filters. They can be used for the implementation of object-
level firewalls [6], for logging and accounting, for authen-
tication, for queuing or traffic shaping etc. An example of
use of a preemptive probe is presented in Figure 4. The
lightweight autoprobe uses the reflection features of Java
and an instantiation table to instantiate and install on de-



mand a probe able to understand a message the first time
when the message of the given subprotocol arrives. For ex-
ample the Resident object should be able to understand a
large variety of messages, from monitoring to agent con-
trol. The use of the autoprobe allows the agent factory, a
relatively complex object to be instantiated only when and
if a message in the agent control subprotocol is received by
the Resident object. This process is presented in figure 5.

bondScheduler agent

bondScheduler.say()
(Scheduling)

bondObject.say()
(Property
Access)

bondExecutable.say()

bondAgent.say()
(AgentControl)

Monitoring
message

Monitoring probe
(Monitoring)

Reply to monitoring
message

Figure 3. The effect of probes. In this ex-
ample, a bondScheduler is extended with a
monitoring probe. The extended object un-
derstands the monitoring sub-protocol and is
capable of providing a meaningful reply to a
monitoring message.

In the Figure 3 we have the same scheduler agent, this
time extended with two probes, a monitoring probe imple-
menting the monitoring subprotocol, and a security probe
implementing the security subprotocol. An incoming mes-
sage in the monitoring subprotocol is passed down in the
inheritance hierarchy without being processed. At the
bondObject level, after establishing that the incoming
message does not belong to the property access subprotocol,
the object checks its dynamic properties looking for probes
which implement the subprotocol of the message. In our
case, the monitoring probe implements the required subpro-
tocol, so the message is delivered to it, and from there the
probe will take care of processing the message. If there is
no probe implementing the subprotocol, the object replies
sorry.

This construction is roughly similar in scope to the Dec-
orator design pattern in [4], it allows to dynamically extend
the functionality of an object without subclassing. However
the implementation is different - instead of a wrapper which
captures the function call, we have a dynamically appended
object which is consulted only in the case when the message

bondScheduler agent

bondScheduler.say()
(Scheduling)

bondObject.say()
(Property
Access)

bondExecutable.say()

bondAgent.say()
(AgentControl)

Message +
auth.codeSecurity

probe

Message

Figure 4. Extending an object with preemptive
probes. In this example, a security probe is
used to authenticate the message. If the mes-
sage contains authentication code, it is ver-
ified and stripped from the message. Then
this message is delivered to the object. If
the message can not be authenticated, it will
not be delivered to the object. Thus, security
probes allow the separation of the security
aspect from the objects behavior.

does not make sense for the object itself. The difference in
implementation is due to the message oriented nature of the
objects: the higher flexibility and looser coupling between
objects communicating by messages.

Another object-oriented structure which allows objects
to acquire new functionality after ”programming time” is
the notion of a mixin [2]. Mixins are generally implemented
as abstract classes, with reserved functions for future func-
tionality. As such, the programmer needs at least a rough
idea about the nature of the functionality with which the
object may be extended. In our special case, the probes of-
fer a larger flexibility, of course at the cost of the additional
processing time to syntactically and semantically interpret
the messages.

3.3. Generating and learning new subprotocols

Both the static implementation and dynamic acquisition
of subprotocols is based on subprotocols defined by the hu-
man designer of the objects and referring to a semantics
known at compile time.

In modern distributed programming however, function-
alities or services may be created dynamically, on demand.
This required that the semantics of the subprotocol is cre-
ated at the moment of the creation of the associated func-



Resident

Subprotocol/probe lookup
table

Autoprobe

Message
(AgentControl)

Agent
Factory

Creating new probe for
AgentControl

Figure 5. Using the autoprobe to instantiate
probes on demand. The resident receives
a message in the AgentControl subprotocol.
As this message is not understood neither by
the Resident itself, nor by its existing probes,
it is delivered to the autoprobe. The auto-
probe instantiates a new probe to handle the
message, based on a subprotocol/probe table
and delivers the message to the new probe
(in this case, the agent factory). Subsequent
AgentControl messages will be delivered to
the new probe.

tionality. Moreover, in the case of mutable programs the
subprotocol itself can be modified together with the modi-
fication of the functionality. In both cases, the subprotocol
thus created or modified can be understood by other objects
by a learning procedure.

In the following we present the generating and learning
of the subprotocols for Bond agents. The structure of the
Bond agent framework is presented elsewhere, [1], we will
summarize here only concepts which are relevant for sub-
protocol generation and learning.

Bond agents are active objects which follow their agenda
by generating actions according to some strategy active in
the given moment. The main components of a Bond agent
are a multiplane state machine which defines the internal
states of the agent and the transitions between the states, to-
gether with strategy objects which define the behavior of the
agent in various states. Transitions from a state to another
are triggered by internal events generated by the agent it-
self or external events caused by messages sent to the agent.
The totality of these messages define the subprotocol of the
agent. The semantics of these messages is described by the
transitions triggered by them.

The agent is a composed object, assembled from loosely
connected active components into a data structure (the mul-
tiplane state machine). This operation is performed by an

agent factory based on a text mode description in a lan-
guage called blueprint. This data structure can also be
modified during runtime, an operation called agent surgery,
described by a surgical blueprint.

Figure 6 presents the sequence of steps for the creation
of a new agent. The process starts with the beneficiary ob-
ject sending a message to the agent factory requesting the
creation of the agent. The blueprint of the agent is either
provided by the beneficiary or retrieved from a blueprint
repository.

The agent factory assembles the new agent based on the
blueprint, instantiating the strategies from a strategy reposi-
tory. The subprotocol of the agent is defined by the structure
of the agent. The subprotocol object is created using a re-
flection procedure on the agent structure and is transferred
to the beneficiary, which thus learns the subprotocol of the
agent. Other objects or agents can learn the subprotocol of
the agent in a similar way.

As the structure of Bond agents can be surgically mod-
ified, the subprotocol can be modified too during the life-
cycle of the agent. In these cases the learning process has
to be repeated.

F

Model
of
the

world

Agenda

Agent
Factory

Strategy
repository

Blueprint
repository

Bene-
ficiary
Object

Subprotocol object

request to create agent

load blueprint

request
blueprint

request
strategies

loading of
strategies

assembling the
agent

reflection
learning of the

new subprotocol

Figure 6. The sequence of operations needed
to create an agent and the corresponding
control subprotocol

4. Example: agent control subprotocol

The Bond system uses more than twenty subprotocols
(not counting the dynamically generated subprotocols of the
agents). Table 1 lists some of the general purpose subproto-
cols used Bond.

We present in more detail the agent control subproto-
col, which governs the operations related to the life-cycle
of agents. The messages of the agent control subprotocol
are listed in Table 2. The agent control subprotocol is im-



Subprotocol Function
Property access Supports read/write access to all

properties of a Bond object.
Security Used to establish trust relationship

amongst Bond objects.
Monitoring Allows a SystemMonitor agent to

obtain information about the cur-
rent state of the object.

Agent control Allows a Bond object to start, stop
and control a remote agent.

Scheduling Supports scheduling of a contract
Persistent Stor-
age

Allows Bond objects including
BondWorkSpace to be save to or
load in from the Persistent Storage
Server

Data Staging Allows Bond objects to move
files and directories between hosts
which has Bond resident running on
it

Registration Allows Bond Executables to regis-
ter to SystemMonitor and Directory
Server

Table 1. General purpose subprotocols used
in the Bond system

plemented in Bond by the bondAgentFactory object.
This object is usually used as a probe appended on the resi-
dent. For external objects this means that they can send their
messages to the resident, which understands agent control
through the probe. If a developer wants to implement its
own version of the agent factory, he has to implement the
subprotocol completely. Still the subprotocol functionality
should not be confused with the complete implementation
of every detail referred in some messages of the the sub-
protocol. If a specific agent factory does not implement
surgery, it still has to correctly recognize what was required
from him, and it should provide a correct (negative) answer.

5. Conclusions

In this paper we present an approach to message under-
standing in a distributed object system, based on subproto-
cols. Subprotocols are more flexible than interfaces, impose
comparably small changes to the object oriented program-
ming style, and they can be used in situations where the
ontology approach is not applicable.

The techniques presented in this article form the ba-
sic message understanding technique of the Bond system
developed at the Computer Sciences Department of Pur-

Perfor–
mative

:content Parameters Description

achieve assemble-
agent

:blueprint
address

requires the agent fac-
tory to create an agent
based on the blueprint at
address

tell agent-
created

:bondID
bondID
:address
address

confirms the creation of
a new agent and trans-
mits its id and address to
the beneficiary

achieve modify-
agent

:blueprint
address
:agent id

requires the agent fac-
tory to perform surgery
on the agent id using the
surgical blueprint at ad-
dress.

achieve migrate-
from-here

:agentid
agentid
:remote-
address
remote
address

sent by the beneficiary,
initiates the migration
process between two
agent factories

achieve migrate-
agent

:agentid
agentid
:modelid
modelid

send by the agent fac-
tory at the original loca-
tion to the agent-factory
at the remote location,
contains the generated
blueprint of the agent to
be migrated.

tell migrated :agentid
agentid

the remote agent fac-
tory reports the success-
ful creation of the agent.
Triggers the disposal of
the original agent at a lo-
cal site.

achieve checkpoint :checkpoint
file file-
name

checkpoints the current
state of the agent in the
file filename

achieve checkback :checkpoint
file file-
name

restores a previously
saved agent state from
file filename

achieve start-agent starts the execution of
the agent

achieve stop-agent performs a soft stop on
the agent.

achieve kill-agent kills the agent
ask-
one

get-state asks the agent about it’s
current state

tell state :state state a reply for the get-state
message

Table 2. The agent control subprotocol



due University. The Bond system is released under an
open source license (LGPL) and can be downloaded from
http://bond.cs.purdue.edu.

Acknowledgments
The work reported in this paper was partially supported

by a grant from the National Science Foundation, MCB-
9527131, by the Scalable I/O Initiative, and by a grant from
the Intel Corporation.

References

[1] L. Bölöni and D. C. Marinescu. An Object-Oriented
Framework for Building Collaborative Network Agents. In
H. Teodorescu, D. Mlynek, A. Kandel, and H.-J. Zimmer-
man, editors, Intelligent Systems and Interfaces, Interna-
tional Series in Intelligent Technologies, chapter 3, pages
31–64. Kluwer Publising House, 2000.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In
N. Meyrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and
Applications / Proceedings of the European Conference
on Object-Oriented Programming, pages 303–311, Ottawa,
Canada, Oct. 1990. ACM Press.

[3] N. Carriero, D. Gelernter, and J. Leichter. Distributed data
structures in linda. ACM Transactions on Programming
Languages and Systems, 8(1), Jan. 1986.

[4] E.Grama, R. Helm, R. Johnson, and J.Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Inc, 1995.

[5] T. Finin et al. Specification of the KQML Agent-
Communication Language – plus example agent policies
and architectures, 1993.

[6] R. Hao, K. Jun, and D. C. Marinescu. Bond System Secu-
rity and Access Control Models. In Proceedings of IASTED
Conference on Parallel and Distributed Computing, pages
520–524. ACTA PRESS, 1998.

[7] R. Orfali, D. Harkey, and J. Edwards. Instant CORBA. John
Wiley & Sons, 1997.

[8] R. Sessions. COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[9] S. St. Laurent. XML: a primer. IDG Books, San Mateo, CA,
USA, second edition, 1999.

[10] Sun Microsystems. Java RMI.
[11] FIPA Specifications. URL http://www.fipa.org.


