
Real-time placement of a wheelchair-mounted robotic arm

Pooya Abolghasemi, Rouhollah Rahmatizadeh, Aman Behal, Ladislau Bölöni
Department of Electrical Engineering and Computer Science

University of Central Florida
{pabolghasemi, rrahmati, lboloni}@eecs.ucf.edu, abehal@ucf.edu

Abstract— Picking up an object with a wheelchair mounted
robotic arm can be decomposed into a wheelchair navigation
task designed to position the robotic arm such that the object is
“easy to reach”, and the actual grasp performed by the robotic
arm. A convenient definition of the notion of ease of reach can
be given by creating a score (ERS) that relies on the number of
distinct ways the object can be picked up from a given location.
Unfortunately, the accurate calculation of ERS must rely on
repeating the path planning process for every candidate position
and grasp type, in the presence of obstacles. In this paper
we use the bootstrap aggregation over hand-crafted, domain
specific features to learn a model for the estimation of ERS.
In a simulation study, we show that the estimated ERS closely
matches the actual value and the speed of estimation is fast
enough for real-time operation, even in the presence of a large
number of obstacles in the scene.

I. INTRODUCTION

Assistive robotics tries to make the life of disabled or
elderly people easier by helping them in the performance
of activities of daily living (ADLs). Although most existing
technologies such as wheelchair mounted robotic arms are
controlled by the user, some level of automation is desired,
especially for people with severe physical and cognitive
disabilities. Many ADLs involve object manipulation where
motion planning is needed for the arm of the robot to reach
an object. In these kinds of tasks, positioning the base of
the robot is important since it strongly affects the ability of
the robot to perform the task. We can divide a manipulation
task into two control tasks: the positioning of the robot base
TP, and the grasping of the object with the robotic arm
TG. These tasks can be executed autonomously or manually
based on the preferences of the user. In this paper we try to
automate the TP task such that the TG task can be performed
effortlessly regardless of autonomous or manual execution.

Let us consider a manipulation task by a mobile robot in
which the goal is to grasp an object c in the presence of a
set of obstacles {o1, . . . , on}. The TG task uses a motion
planning algorithm Agrasp to find a collision-free path to
reach the target. It appears that the task of TP is limited
to finding a position from where Agrasp can successfully
grasp c, and thus TP is strongly dependent on the grasping
algorithm. For instance if the base of the robot moves to
a position from which the arm would not be able to reach
the target object, the base should move to another position.
Humans, however, have an intuitive understanding that some
positions are clearly better than others without having a
specific grasp algorithm in mind. To transfer this intuition

Fig. 1. The arm tries to reach a target object (cup) while avoiding obstacles.
The ease of reach score (ERS) is shown by a heatmap in which blue
represents low ERS, while red shows a high ERS. The arm can easily reach
the target when it is placed on a position with high ERS.

to a robot we define a metric called ease of reach score
(ERS). In Section III the ERS is defined by considering the
number of distinct ways the object can be reached from a
given position for the base of the arm. Defining the ERS
this way separates the positioning task TP from the grasping
task TG and would be useful for both automated and manual
execution of the TG task.

Figure 1 shows the ERS for different positions from where
an arm might try to reach a target (cup). From two positions
a collision-free path to the cup is found and the task would
be executed successfully. However, in positions where the
ERS is low, the manipulation task might fail with a higher
probability. For the remainder of this paper, we assume the
arm to be the JACO arm by Kinova Robotics [1], a light-
weight robotic manipulator with 6 degrees of freedom. The
rehabilitation version of this arm is mounted on a wheelchair
to build a navigation-manipulation system used by many
users with disabilities.

Calculating the ERS is a computationally expensive pro-
cess since it relies on solving the motion planning problem
for all possible poses and grasp approaches. To overcome this
limitation and make ERS suitable for real-time operation, in
Section IV we propose a method to quickly estimate the
ERS. In Section V we show that this technique provides a



good estimate of the ERS value, thus solving the problem of
robot base positioning in real-time.

II. RELATED WORK

Placement of a mobile robot is an important problem since
it fundamentally affects the ability of the robot to execute the
tasks. One approach to address this problem, introduced by
Zacharias, Borst and Hirzinger [2], is to create the capability
map of the robotic arm. A capability map contains the
information describing which regions of the workspace are
reachable from what directions. This map would be useful in
finding a proper robot placement for execution of workspace
linear constrained trajectories [3] [4]. Leidner and Brost [5]
used object centric reasoning to find a correct place and time
of the movement for the base of the humanoid robot Rollin’
Justin for a mobile pick-and-place task.

The inverse reachability approach [6] proposed by
Vahrenkamp, Asfour and Dillmann finds suitable base poses
to reach a target from a particular orientation. However,
when it comes to calculate reachability within a target region
instead of a single target pose, this method is difficult to
use. A technique to generalize the experience of a successful
grasp through exhaustive search from different robot poses is
presented in [7] by Stulp, Fedrizzi and Beetz. The result of
grasps in different positions are classified and used to extract
the best base position for a successful grasp.

In [8] Jamone et al. introduced the Reachable Space Map
which the robot learns autonomously and online during the
execution of goal-directed reaching movements. This map
can be used to estimate the reachability of a fixed object and
to plan preparatory movements.

Yang et al. [9] proposed a methodology for automatic
reaching analysis of wheelchair users in an indoor environ-
ment. Their method is based on a simple model of a person
sitting in a wheelchair and an efficient motion planner.

The presence of obstacles in an environment opens up
new challenges to the existing methods that work based
on inverse kinematics without considering obstacles. The
capability map changes when an obstacle is close to the
robotic arm, because the space needed for the arm such that
its end-effector reaches a particular pose might be blocked
by an obstacle. More recently, we proposed to estimate the
effect of obstacles as a Guassian function [10]. However, we
relax this assumption in this work since it limits the accuracy
of the method.

III. EASE OF REACH SCORE

We approach the problem of positioning a mobile robot
base (in our case, the wheelchair) by finding the best pose
for the base of the arm. Once a proper pose is found for
the arm, the robot base can also be positioned accordingly.
Considering the complexity of a robot arm with high degrees
of freedom and the space it needs to reach a target while
avoiding the obstacles, positioning the arm to make the target
easily reachable is a significant challenge. In this section, we
present a quantitative measure for evaluating how easy it is
to reach a target from a particular location of the arm.

Fig. 2. 17 reachable distinct poses around an arbitrary small target object,
here a cup. The Blue arrow shows the direction in which the arm approaches
the cup. The poses reachable from the bottom of the cup are blocked by
the table.

Let us consider a scenario where a robotic arm positioned
at location (x, y) aims to grasp an object c which is located
at the origin. Note that the orientation of the base of the
arm does not affect the outcome of motion planning since
the JACO base joint can freely rotate 360◦. In addition,
the height of the arm is fixed as the arm is mounted on
a wheelchair. We also assume that the environment contains
a number of obstacles O = {o1, . . . , on} that the arm must
avoid. The obstacles can be approximated with a cuboid with
arbitrary size and pose. In the running example used in this
paper, we assume that the obstacles are placed on a table.
However, our method can be generalized to situations where
the obstacles have arbitrary poses in 3D space. We assume
that the knowledge of the algorithm about the environment
is perfect, i.e. the shape and pose of the obstacles are
known. Note that we did not classify the table in the same
group as other obstacles, since the table is an obstacle for
the wheelchair and other obstacles are limiting the arm
movement and not the wheelchair. The approach we took
was to ignore the presence of the table during the training
phase. However, the influence of the table was re-added in
the estimated ERS by setting the ERS to zero in locations
made unreachable by the table.

From a particular position for the arm, the number of
collision-free paths to the target c can be zero, for instance
when c is out of the reach of the arm. On the other hand,
there are positions from where many collision-free paths can
be found to reach the target from different directions. To
discretize the number of grasp poses, for any small object
that is graspable by a robotic hand (such as a cup), we
consider two grasps different if the approach angle differs by
at least π/4 as shown in Figure 2. Technically, we defined
a region of interest around the target. Defining a region of
interest helps us become independent of the target shape,
because, regardless of the target shape, as long as the arm
can reach many of the poses in the region of interest around
the target, it is highly probable that it can successfully grasp
the target.

We enumerate the number of ways the arm can grasp the
object c from position p = p(x, y) in the presence of the
obstacles O = {o1, . . . , on} and call it Count of Distinct
Grasp Trajectories CDGT (p, c,O). It can be immediately
inferred from the definition that obstacles lower or at best



keep the CDGT the same, because they make a previously
feasible grasp impossible to reach.

∀p ∀on+1 CDGT (p, c,O ∪ on+1) ≤ CDGT (p, c,O) (1)

To grasp an object, a robotic arm needs to approach
it from one direction, try grasping, and if it fails, have
the option to try from another direction. Therefore, it is
advantageous to have the ability of approaching the target
from different orientations. We want to define the Ease of
Reach Score (ERS) such that it captures our intuitions about
the preferences over different positions p(x, y). We define
ERS such that its value would be 0 for positions from where
the grasp is not possible, while 1 for the position from which
the maximum number of grasp poses are reachable. Starting
from these considerations, we will define the ease of reach
score as:

ERS(p, c,O) =
CDGT (p, c,O)

max
p

(CDGT (p, c, ∅))
(2)

Similar to the CDGT, adding new obstacles to the envi-
ronment will lower or at best keep the ERS the same:

∀p ∀on+1 ERS(p, c,O ∪ on+1) ≤ ERS(p, c,O) (3)

The best position for the arm is the one where the ERS is
maximized:

popt = argmax
p

ERS(p, c,O) (4)

There are situations where the object is not reachable at
all, i.e., the ERS would be zero for all possible positions. In
this case, some of the obstacles should be moved in order to
reach the target. Another case also might occur in which the
optimal position for the arm is not reachable because of the
limited number of positions reachable by the wheelchair..

In this paper we do not consider the motion planning
problem for finding a collision free path for the base of
the mobile robot (wheelchair) from its current position to
the desired location. However, one of the advantages of
the proposed method is that it not only finds the location
of maximum ERS, but it also finds the ERS for all loca-
tions. Therefore, other parameters such as the distance to a
candidate wheelchair location can also be considered while
solving the motion planning problem for the wheelchair. For
instance, the final decision might be to accept a position
with a smaller ERS value if it offers other advantages (such
as easier access by the wheelchair).

IV. ESTIMATING THE ERS

In order to find a collision-free path that puts the end-
effector of the arm in a desired pose (one of the defined
poses around the target), we use Rapidly-exploring Random
Trees (RRTs) [11]. To calculate ERS at each position of the
arm we need to solve dozens of motion planning problems
(one for each grasp direction). Even by discretizing possible
positions for the arm to a very coarse grid (eg. 20 by
20) and considering the desired grasp pose set contains
26 approach poses, 20 · 20 · 26 = 10400 motion planning

problems need to be solved. Note that motion planning is a
computationally expensive procedure for an arm with many
degrees of freedom. As we show in next section it takes
several minutes to calculate ERS using exhaustive search. To
overcome this drawback, we propose a method to estimate
ERS in order of seconds to make it practical for real-time
applications.

Let us assume that the robot arm is located at an arbitrary
position (x, y) and its goal is to reach a particular object
while avoiding the obstacles. Obstacles block some of the
space it needs to reach the target. The blocking effect of an
obstacle depends on the size and shape of the obstacle, its
distance to the arm, etc. However, we do not know how much
an obstacle will affect the ERS at a particular location of the
arm. Furthermore, we do not know how the blocking effect
of adjacent obstacles close to the target combine together to
lower the ERS. We propose an approach that starts from the
observation that the ERS for each point in the environment
can be estimated considering some general information about
the point and its surroundings.

In order to find the value of ERS at a certain location of
the arm, we set up a simulation scenario in which a target
object is surrounded by 1 to 9 obstacles. The obstacles in the
environment are approximated using cuboids with random
size and pose. The dimensions of the obstacles can vary
between 10-35cm and their distance to the center of target
can vary between 10-100cm. By running the simulation
multiple times and measuring the ERS at different locations,
we gather the information required for the learning process.
In order to learn how the ERS is affected in different
situations, we hand-crafted a set of features that intuitively
capture the aspects of that situation. In other words, these
features are designed in such a way to classify the points
on a grid with similar ERS values in the same group while
distinguishing between the points which have different ERS
values.

The features we found useful are illustrated in Figure 3
and explained here:
• Distance to the closest obstacle (L1). This feature

captures the Euclidean distance between the closest ob-
stacle and the current position of the arm. It is preferred
for the arm to be positioned in the furthest possible
position from any obstacle. The closest obstacle seems
to be the most important one since it probably has the
largest effect on ERS.

• Distance to the target (L2). The Euclidean distance
between the arm and the target which is very important
since one of the key factors which affects ERS is how
far the arm is located from the target. For instance, when
the arm is located far away from the target, reaching the
target is not possible, i.e. the ERS is zero.

• Angle between L1 and L2 (θ). The angle between L1
and L2 along with the distances L1 and L2 capture the
configuration of the arm, target, and the closest obstacle
with respect to each other. When the obstacle is located
between the target and the arm, the ERS should be lower
compared to the situation where the obstacle is located



Fig. 3. Demonstration of features in an example scene. L1: distance to the
nearest obstacle, L2: distance to the target, L3: widest collision-free path
from the arm to the target, and θ: angle between L1 and L2.

outside the space between the arm and the target. This
feature tries to distinguish these situations from each
other.

• Widest path (L3). It measures the width of the widest
rectangular obstacle-free path from the arm to the target.
This feature tries to estimate how much free space is
available for the arm to operate while reaching the
target. The wider this path is, the more space the arm
has to operate and the result would be a higher ERS.

• Force field. In addition to the closest obstacle, other
ones also affect the ERS more or less. To estimate the
effect of the n closest obstacles, we use a sum of force
fields type formula:

FF (p,O) =

n∑
i=0

V olume(oi)

Distance(p, oi)2
(5)

This formula aims to capture the fact that the larger the
size, number and proximity of the obstacles to the target
object, the more and more difficult is to find a grasp.

These features had been obtained by experimentally test-
ing an initially larger set and eliminating those that had been
found ineffective in reducing the estimation error. In some
problems, gathering large number of samples is not easy
(e.g. [12]). Fortunately in this domain this is not a problem,
thus, we gather enough data by running the simulation 100
times. Then, we calculate each feature for all the points on
the grid to be used later in the learning algorithm.

The cardinality of training data is not merely the number
of training scenes, but the number of scenes multiplied by
the number of candidate arm positions in the scene. For
instance, by discretizing the possible positions for the arm
into a (20 · 20) grid and repeating the simulation to generate
100 scenes, we gather 40,000 training examples. Calculating
the features for each and every point in the environment

provides us with a large number of training samples. This
is one of the advantages of the proposed approach which
makes the learning reasonably fast without requiring too
many simulated environments.

The value of the explained features calculated for each
training example and the resulted ERS forms the input to the
machine learning algorithm. The output would be a predictor
able to estimate the ERS based on the features. We use the
CART algorithm [13] to create 200 regression decision trees.
We use decision trees because of the fact that decision trees
properly handle this kind of non-linear problems without
relying on a large number of training examples. Finally, to
enhance the accuracy of the results, we use the bootstrap
aggregating (“bagging”) method [14] to predict the value of
the ERS.

V. RESULTS

A. Estimation accuracy

In this section we validate the proposed approach, by
investigating how well the approach solves the positioning
problem. We simulate a JACO arm mounted on a wheelchair
in V-REP [15] robotic simulator. The techniques proposed in
Section IV allow us to calculate the estimated value ERSest

while brute force methods allow us to calculate the actual
value ERSact. Figure 4 shows an example scenario with a
target object (cup) and seven obstacles of various sizes and
various orientations. The figure on the top shows the actual
ERS as a heatmap under the obstacles, while the bottom
figure depicts the estimated ERS. A visual inspection of the
figures shows that although not perfect, the approximation
and the actual value of ERS are very close.

Let us now try to develop a useful error metric. One
approach would be to calculate the average error for every
grid point. However, this would be a misleading metric,
because for large number of locations ERS will be trivially
zero (for instance, the ones that are located outside the range
of the arm). If we calculate the simple average, the error
would depend on how far the grid extends from the origin.
Instead, we will define the error metric as being the average
only for locations where at least one of the ERSact and
ERSest are not zero:

P = {p | ERSest(p, c,O) > 0∨ERSact(p, c,O) > 0} (6)

We denote the cardinality of this set of points with #P .
Thus for a given target object c and set of obstacles O we
define the average relevant error ARE(c,O) as follows:

ARE(c,O) =

∑
p∈P

∣∣∣ERSest(p, c,O)− ERSact(p, c,O)
∣∣∣

#P
(7)

The calculation of the ARE is computationally expensive
as it requires the calculation of the ERSact. We performed it
for 700 test scenes as described in Table I. The first column
describes the number of obstacles in the scenes and the
second column shows the total number of test scenes with
that number of obstacles. The table shows that on average



(a) The actual ERS of the cup.

(b) The estimated ERS of the cup.

Fig. 4. An example scene with three obstacles and heatmaps corresponding
to ERSact (upper) and ERSest (lower). In the heatmaps, blue corresponds
to low and red to high ERS values.

the error stays in a moderate range, but in general increases
proportional to the number of obstacles.

From the point of view of a practical robot implementa-
tion, however, the error in the ERS is not of high impor-
tance. The robotic wheelchair needs to position itself such
that the object is easily reachable - the finding of the optimal
position is of a comparatively small importance. We can
divide the errors in the determination of ERS into three
major types:

Type 1: ERSact > 0 ∧ ERSest > 0 ∧ ERSact 6= ERSest

If this type of error occurs, the system might choose a
position which is not exactly the global optima. Practically,
this kind of error is not a major issue as long as the
difference between the actual value and the estimated one is
not considerable. By trying to keep the total error minimized,
the chosen position should fall into a small range of the
optimal position.

TABLE I
THE AVERAGE RELEVANT ERROR ARE FOR 700 TEST SCENES.

Scene description count ARE
1 obstacles 90 0.0276
2 obstacles 79 0.0343
3 obstacles 81 0.0395
4 obstacles 73 0.0435
5 obstacles 67 0.0471
6 obstacles 73 0.0507
7 obstacles 73 0.0544
8 obstacles 73 0.0571
9 obstacles 91 0.0602

Average 0.0458

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. The distribution of Type 2 and Type 3 errors by type in a scene
with three obstacles. The sign denotes locations where both ERSact

and ERSest are positive. The grid points with no sign are the ones where
ERSact = ERSest = 0. Type 2 errors are denoted with 4 while Type 3
errors with �.

Type 2: ERSact > 0 ∧ ERSest = 0
This issue will happen when the system mistakenly es-

timates ERS to be zero while the actual ERS is not zero,
i.e., reaching the target is possible from that location. As
long as the ARE is not a large number, we can assume that
these points were likely not a good choice for the arm to
do the manipulation. However, in highly congested scenes
or in scenarios with constraints on the movement of the
wheelchair where there are limited options for the arm to
select, the presence of Type 2 errors might make the system
mistakenly believe that the problem is unsolvable.

Type 3: ERSact = 0 ∧ ERSest > 0
This type of error relates to the positions where the grasp

is not possible but the estimation suggests otherwise. As a
result, if the wheelchair choose this kind of points to execute
the positioning task TP, it would be impossible to perform the
grasp task TG. Practically, by performing motion planning
for the chosen points, these kind of errors can be avoided.
However, this type of error is the most critical one and should
be minimized.

Figure 5 depicts the distribution of Type 2 and Type 3
errors in a sample scenario with 7 obstacles. The structure
shows that the estimate yielded correct or acceptable values



for the majority of positions (but for feasible and unfeasible
locations). In a few positions in which Type 2 or Type 3
occurs, all of them located at the boundary between the
feasible and unfeasible regions. In practice, the system would
choose positions at the interior rather than at the boundary
of the feasible zone, thus avoiding both types of errors.

B. Performance considerations

Let us now consider the performance speedup achieved
by our technique. The following table summarizes
computational cost of various activities, on a Intel i7-4xxx
series system with 16GB of RAM.

Generating test data for learning (100
sample scenes) – offline

14 hours

Learning – offline 2 min 5 sec
ERSest – proposed method – online 0.96 sec
ERSact - naı̈ve method – online 26 minutes

We generated 100 sample scenes for the learning process
to estimate the ERS. Generating this number of samples
normally takes around 43 hours, however, by dedicating each
core of the CPU to one simulation process, it took 14 hours.
The learning process takes around 3 minutes which is not an
issue since it needs to be done only once. We dedicated 700
sample scenes to the evaluation of our method. Calculating
the ERSest using the proposed method on each test scene
takes only 0.96 seconds on average. On the other hand, the
naı̈ve method of finding the actual value of ERS (ERSact)
at every single location of the arm takes about 26 minutes on
average. We conclude that the estimation technique proposed
provides a good approximation of the actual ease of reach
score ERS for a computational cost four orders of magnitude
smaller than the full calculation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the problem of positioning
a wheelchair mounted robotic arm such that reaching a
target object would be easier while avoiding obstacles. First
we explained a metric called ease of reach score (ERS)
which simply says how easily reachable a target is when
the arm is located in a certain position. Then we argued
that exhaustive search for finding the ERS at each point
is a very computationally expensive process. Therefore, we
proposed an alternative, much faster method to estimate
the value of ERS using machine learning techniques. By
simulating the proposed method in V-REP simulator in which
the wheelchair mounted robotic arm tries to reach a target
object, we showed that the estimation technique provides
sufficient accuracy for practical use.

Future extensions to this work can consider using hu-
man demonstrations instead of brute-force trial and error.
Reinforcement learning with reward shaping (e.g. [16]) can
be used to utilize the sample demonstrations in a more
efficient way. In addition, for dealing with the complexity of
continuous state space, more advanced techniques (e.g. [17])
can be used instead of naı̈vely discretizing the state space.

In many cases, the system will find different locations
with the same ERS. In this situation, other factors such as
the distance between the current location of the wheelchair
and each candidate goal should be considered for decision
making. Finally, to autonomously navigate the wheelchair to
reach the desired pose, recurrent neural networks can be used
to generate the movement trajectory [18].
Acknowledgments: This work had been supported by the
National Science Foundation under Grant Number IIS-
1409823.

REFERENCES

[1] V. Maheu, J. Frappier, P. Archambault, and F. Routhier, “Evalua-
tion of the JACO robotic arm: Clinico-economic study for powered
wheelchair users with upper-extremity disabilities,” in IEEE Interna-
tional Conference on Rehabilitation Robotics (ICORR), pp. 1–5, 2011.

[2] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and System (IROS),
pp. 3229–3236, 2007.

[3] F. Zacharias, C. Borst, M. Beetz, and G. Hirzinger, “Positioning
mobile manipulators to perform constrained linear trajectories,” in
Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and System (IROS), pp. 2578–2584, 2008.

[4] J. Dong and J. Trinkle, “Orientation-based reachability map for robot
base placement,” in Proceedings of IEEE/RSJ International Confer-
ence on Intelligent Robots and System (IROS), September 2015.

[5] D. Leidner and C. Borst, “Hybrid reasoning for mobile manipulation
based on object knowledge,” in Workshop on AI-based Robotics at
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013.

[6] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement
based on reachability inversion,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 1970–1975, 2013.

[7] F. Stulp, A. Fedrizzi, and M. Beetz, “Learning and performing place-
based mobile manipulation,” in International Conference on Develop-
ment and Learning (ICDL), pp. 1–7, 2009.

[8] L. Jamone, L. Natale, G. Sandini, and A. Takanishi, “Interactive
online learning of the kinematic workspace of a humanoid robot,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and System (IROS), pp. 2606–2612, 2012.

[9] J. Yang, P. Dymond, and M. Jenkin, “Reaching analysis of wheelchair
users using motion planning methods,” in Impact Analysis of Solu-
tions for Chronic Disease Prevention and Management, pp. 234–237,
Springer, 2012.

[10] P. Abolghasemi, R. Rahmatizadeh, A. Behal, and L. Bölöni, “A real-
time technique for positioning a wheelchair-mounted robotic arm
for household manipulation tasks,” in AAAI workshop on artificial
intelligence applied to assistive technologies and smart environments
(ATSE), 2016.

[11] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, pp. 995–1001, 2000.

[12] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, A. Jabalameli, and
A. Behal, “Trajectory adaptation of robot arms for head-pose depen-
dent assistive tasks,” in FLAIRS conference, 2016.

[13] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[14] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[15] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira, “Virtual robot
experimentation platform V-REP: a versatile 3D robot simulator,”
in Simulation, Modeling, and Programming for Autonomous Robots,
pp. 51–62, Springer, 2010.

[16] S. A. Raza, B. Johnston, and M.-A. Williams, “Reward from demon-
stration in interactive reinforcement learning,” in FLAIRS conference,
2016.

[17] A. Jackson and G. Sukthankar, “Learning continuous state/action
models for humanoid robots,” in FLAIRS conference, 2016.

[18] R. Rahmatizadeh, P. Abolghasemi, and L. Bölöni, “Learning manip-
ulation trajectories using recurrent neural networks,” arXiv preprint
arXiv:1603.03833, 2016.


