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Abstract

Wheelchair mounted robotic arms can help people
with disabilities perform their activities of daily living
(ADL). The autonomy of such a system can range from
full manual control (both wheelchair and robotic arm
controlled by the human) to fully autonomous (with
both the wheelchair and the robotic arm under au-
tonomous control). Many ADLs require the robot to
pick up an object from a cluttered environment - such
as a glass of water from a table where several other ob-
jects exist. In this paper, we concentrate on the task of
finding the optimal position of the base of the robotic
arm (which is normally a rigid point on the wheelchair)
such that the end effector can easily reach the target (re-
gardless whether this is done through human or robot
control). We introduce the ease-of-reach score ERS, a
metric quantifying the preferences for the positioning
of the base. As the brute force computation of ERS is
computationally expensive, we propose an approach of
estimating the ERS through a mixture of Gaussians. The
parameters of the component Gaussians are learned of-
fline and depend on the nature of the environment such
as properties of the the obstacles. Simulation results
show that the estimated ERS closely matches the ac-
tual value and the speed of estimation is fast enough for
real-time operation.

Introduction
Wheelchair-mounted robotic arms, such as the popular Ki-
nova JACO (Maheu et al. 2011) or the Exactdynamics
iARM and MANUS arms promise to help disabled or el-
derly people in the performance of their activities of daily
living (ADLs). Such activities involve reaching for every-
day objects such as food or drink, personal toiletry, books,
eyeglasses and so on. In their early incarnations, such sys-
tems were thought of simply as a teleoperated system with
the user controlling the wheelchair and/or the arm with a
joystick or a similar type of device. However, with the larger
penetration of such systems, the robotic wheelchair / robotic
arm assembly needs to achieve significant autonomy, bring-
ing such systems into the purview of artificial intelligence.

The desirable degree of autonomy exhibited by such a
system is a complex question. The wheelchair-bound users
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might exhibit various degrees of motor-control or cognitive
disabilities. Their disability levels can change with the pro-
gression of the disease, rehabilitation or aging. Furthermore,
the users might have different preferences for automatic ver-
sus controlled behavior, and different levels of trust in the
robot (Kim et al. 2012).

Let us consider an ADL scenario where a disabled user,
having a motorized wheelchair, with an attached Kinova
JACO robotic arm aims to pick up a glass of water from
the table. This task can be separated in two main compo-
nents: the user must move the wheelchair to an appropriate
position near the table 1. Second, the robotic arm must be
moved such that it grasps the cup and brings it to the user.
Either of these subtasks can be performed under automatic
or manual control (and, in fact, the user might make ad hoc
decisions about what approach to use). If the user performs
both tasks under manual control, in the first phase, the user
will aim to get the wheelchair and robotic arm base to a po-
sition from where the cup is “easy to reach” - a concept that
the users can clearly express preferences about. In the sec-
ond phase, the user moves the arm to actually grab the cup.
This suggests that the “ease-of-reach” metric will be useful
for other scenarios as well, for instance when the wheelchair
movement is automatic but the grasp manual, or vice versa.

The work described in this paper focuses on the
wheelchair positioning part of this task, regardless whether
the actual grasp will be done under human or automatic con-
trol. In order to do this, we need to (a) quantifying the ease-
of-reach in a way that aligns both with human judgement
and motion planning algorithms, and (b) find a way to esti-
mate this metric at a speed suitable for real-time operation.

Related Work
The problem of grasping an unknown object in cluttered en-
vironments has attracted many AI researchers because of its
inherent complexity, for instance, see (Boularias, Bagnell,
and Stentz 2015). The problem of the placement of a mo-
bile robot is important since the ability of a robot to exe-
cute a task depends on the pose of its base. One approach is

1What really matters here is the position of the base of the
robotic arm, but this must be achieved through the movement of the
whole wheelchair. On the other hand, the JACO base joint freely
rotates 360◦, thus the orientation is not relevant.



to create the capability map of the robotic arm (Zacharias,
Borst, and Hirzinger 2007). The information in a capability
map describes which regions of the workspace are reachable
from what directions. This map can be used to find a con-
venient robot placement for execution of workspace linear
constrained trajectories (Dong and Trinkle 2015).

Machine learning approach to generalize the experience
of successful grasp through exhaustive search from differ-
ent robot poses is presented in (Stulp, Fedrizzi, and Beetz
2009). (Jamone et al. 2012) introduce the concept of a reach-
able space map to address the problem of the robot au-
tonomously learning during the execution of goal-directed
reaching movements. (Yang, Dymond, and Jenkin 2012)
analyses the reaching power of a wheelchair user based on
a simple model of a person sitting in a wheelchair and an
efficient motion planner.

The presence of obstacles in an environment creates new
challenges to inverse kinematics methods. Similarly, the ca-
pability map changes when an obstacle is close to the robotic
arm and recreating it is computationally expensive. For in-
stance, in (Stulp, Fedrizzi, and Beetz 2009) the exhaustive
search should be repeated since the grasp map of the en-
vironment changes by adding an obstacle. In this paper, we
present a method based on motion planning which does con-
sider obstacles.

Defining the Ease-of-Reach Score
Let us consider a scenario where a robotic arm positioned at
location (x, y) aims to grasp an object c in an environment
with obstacles O = {o1, . . . , on} that the arm must avoid.
We want to define the Ease-of-Reach Score (ERS) such that
it captures our intuitions about the preferences over different
positions p(x, y). The value of ERS should be 0 for positions
from where the grasp is not possible, while 1 for the position
from which the grasp can be done under “ideal conditions”.
As we want to make the ERS independent of the different
human or machine motion planning algorithms, we will base
our metric on the number of distinct grasps possible from a
given position. For instance, if from a given position we have
10 different ways to grasp the object, it is likely that this po-
sition will be preferred both by the human and the automat-
ically controlled operator. This position would be preferred
to one where there is only one possible grasp that the opera-
tor would need to get exactly right to successfully complete
the task.

Let us now develop a numerical formula for the ERS. We
call Count of Distinct Grasp Trajectories CDGT (p, c,O)
the number of ways the arm can approach an object c to
grasp it from base position p = p(x, y) in the presence of
the obstacles O = {o1, . . . , on}. To discretize the number
of grasp poses, we will consider two grasps to be distinct
if the approach angle differs by at least π/4. For the case
of our running example, Figure 1 shows 17 distinct grasps
for the cylindrical cup. As a note, obstacles lower or at best
keep the CDGT the same, because they make a previously
feasible grasp impossible to achieve.

∀p ∀on+1 CDGT (p, c,O ∪ on+1) ≤ CDGT (p, c,O) (1)

The ideal condition for a grasp is an environment with

Figure 1: The cup placed on the table can be grasped using
17 reachable grasp poses. The blue arrow shows the direc-
tion in which the arm approaches the cup. The grasp poses
from the bottom are blocked by the table.

Figure 2: ERS for a scenario with three obstacles. In the
heatmap, blue represent low ERS, while red represents a
high ERS. The wheelchair is positioned such that the robotic
arm is located at the maximum ERS.

no obstacles and a position from where we can choose the
largest number of possible grasps. Starting from these con-
siderations, we will define the ERS as:

ERS(p, c,O) =
CDGT (p, c,O)

max
p

(CDGT (p, c, ∅))
(2)

The best position for the arm is the one where the ERS is
maximized:

popt = argmax
p

ERS(p, c,O) (3)

Figure 2 shows the ERS for a scenario with three obstacles
and the wheelchair positioned in such a way that the base of
the manipulator is at the maximum ERS. Note that the opti-
mal position might not be reachable (due to the fact that the
wheelchair on which the robotic arm is mounted has its own
limitations, for instance, it might collide with the table).

Estimating the ERS
The brute-force calculation of the ERS requires us to solve
the motion planning problem for every grasp angle and to re-
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Figure 3: ERS for a small object, here a cup, located in posi-
tion p = p(0, 0), computed using brute-force computations.
Blue: low ERS, red: high ERS.

peat this for every point in a grid covering the possible loca-
tions of the robot arm. The computational effort depends on
the resolution of the grid, but even a very coarse grid (eg. 20
by 20) yields 20 · 20 · 17 = 6800 motion planning problems.
We use Rapidly-exploring Random Trees (RRTs) (Kuffner
and LaValle 2000) to find an obstacle-free trajectory to reach
a grasp pose close to the target. Even with this fast method,
calculating the exact ERS before every decision is not a fea-
sible approach for a realtime solution of the TP task.

Calculating the ERS offline is feasible if there is no obsta-
cle to consider. For instance, Fig 3 shows the ERS calculated
using this method for a cup positioned at (0, 0) without any
obstacles around it. As expected, the ERS has a ring shape
- the reach is difficult both if the arm originates too far or
too close to the object. The maximum ERS, for this setup is
reached at the distance of 0.5m from the object. Note that
this calculation needs to be done only once and is valid for
any small object that is graspable by the robotic arm since
ERS is agnostic to the shape of the grasp target. The robot
can store this map, and recall it whenever it needs to perform
the TP task. However, the ERS also depends on the number,
location and size of the obstacles, thus the presence of obsta-
cles leads to a combinatorial explosion of the possible maps.
In our setup with n obstacles and 10 different obstacle sizes,
the number of maps is (10 ·20 ·20)n, that is 1.6 ·107 for two
obstacles and 6.4 · 1010 for 3 obstacles.

It is thus desirable to find a way to quickly estimate the
ERS without the need to compute extensive offline libraries.
The approach we propose starts from the observation that the
maximum ERS is obtained when no obstacles are present,
while each obstacle reduces the ERS.

We shall assume that the ERS-reducing effect of each ob-
stacle can be separated into a blocking function B(p, c, o)
and these blocking functions take effect independently:

ERS(p, c, {o1 . . . on})

≈ max

(
0, ERS(p, c, ∅)−

n∑
i=1

B(p, c, oi)

)
(4)

The max construct is necessary to ensure that the ERS
conforms to the requirement of returning 0 when the grasp

is not possible. Without this construct, in the case of multi-
ple obstacles the value could dip into negative numbers as
each obstacle subtracts its blocking function from the opti-
mal ERS value.

Let us now consider the shape of the blocking function
B(p, c, o). The first observation is that this function will be
translation invariant for the simultanous movement of the
grasp origin p, the object c and the obstacle o. Second, since
the grasp poses defined in ERS and the obstacles are as-
sumed to be symmetric, the blocking function will also be
rotation invariant for rotations centered on the object c.

With respect to the impact of p we expect the blocking
function to be highest for values of p = o, and decrease
as the position of the base is farther away. Thus, a reason-
able approximation can be obtained if we assume that the
blocking function is a Gaussian centered on c, expressed as a
function of dist(p, o). The magnitude and the standard devi-
ation of the Gaussian, however, will depend on the distance
of the obstacle to the target object dist(c, o) and the size of
the obstacle size(o):

B(p, c, o) ≈ f(A, σ, p) = A · exp
(
− (dist(p, c))2

2σ2

)
(5)

where

A = TA(dist(o, c), size(o)) (6)
σ = Tσ(dist(o, c), size(o)) (7)

With these assumptions, the challenge is to determine the
expressions for A and σ. For any particular obstacle we can
express the B(p, c, o) value from Equation 4 as follows:

B(p, c, o) = ERS(p, c, ∅)− ERS(p, c, {o}) (8)

TheB(p, c, o) value from Equation 8 can be calculated by
brute force strategy (on our grid, it requires 2 · 20 · 20 · 17 =
13600 motion planning calculations). We can then use a least
squares fitting method to find the A and σ values for which
the value from Equation 5 most closely approximates the
value from Equation 8:

A, σ = argmin
A,σ

(∑
p

(B(p, c, o)− f(A, σ, p))2
)

(9)

Figure 4 shows an example of this fitting process.
Although with this approach we did not need to exhaust-

ingly consider every combination of multiple obstacles, we
still need to calculate for all combinations of obstacle sizes
and distances from the target. As we could not calculate all
the possible combinations, we run the simulation 1300 times
with random obstacle sizes between 10cm to 50cm and the
distance from the target between 0.2m and 0.75m. Finally,
we used locally weighted regression (Cleveland 1979) to fit
a curve to data containing obstacle features to predict A and
σ.

Figure 5 illustrates the resulting values, by showing
heatmaps for the evolution of the values of σ (a) and A (b).
Fig 5(a) shows that the value of σ decreases as the obsta-
cle is placed further from the target (because by increasing
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(a) The value of blocking function B(p, c, o) com-
puted through brute force computation.
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(b) The Gaussian function f(A, σ, p) obtained by per-
forming a least-squares fit according to Equation 9.

Figure 4: The blocking function of an obstacle and its Gaus-
sian approximation for a small object (cup) located in the
origin and an obstacle of the shape of cube of 21cm, located
at position (0.43m, 0.0m).

the distance, the obstacle can affect a smaller area around
it), and increases with the size of the obstacle. The height
A of the Gaussian, shown in Fig 5(b) has a more complex
behavior. For large obstacles, the height of the Gaussian de-
creases with the distance to the target. For small obstacles,
however, the height increases with the distance to the tar-
get. This behavior is explained if we look at the two graphs
together, as shown in the actual shape of the resulting Gaus-
sians in Fig 5(c), which shows that the small obstacles far
away from the target will have a blocking function in the
shape of a tall but very narrow Gaussian, which only blocks
the specific location.

Note that when the obstacle is closer to the target it will af-
fect more points in its surrounding area. In this case, the fit-
ting algorithm tries its best to cover the whole blocking sur-
face to minimize the error, hence, the fitted blocking func-
tion’s maximum will fall down as it is interpolated with its
surrounding points. In Fig 5(c) you can see the maximum A
when the obstacle is located further from the target since it
affects a smaller area around it. As a result, the maximum
for these obstacles are shown as a thin pulse.
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(a) The value of σ in the Gaussian approximation of
the blocking function. Lighter colors represent a larger
value.
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(b) The value of A in the Gaussian approximation of
the blocking function. Lighter colors represent a larger
value.

(c) The shape of the Gaussian approximations for var-
ious values of the distance and size of obstacles. Note
that the width of the individual Gaussians are not on
the same scale as the distance and size axis.

Figure 5: Parameters of the Gaussian approximation of the
blocking function for A to B.

Results
Accuracy
In this section we investigate how well the proposed ap-
proach solves the positioning problem by implementing it
in the V-REP simulator (Rohmer, Singh, and Freese 2013).
First we need to design useful error metrics. Estimation tech-
niques that measure the absolute error in the ERS or B
functions are not particularly interesting: we are not inter-
ested in specific values of B, only in whether the result al-



(a) The actual ERS of the cup.

(b) The estimated ERS of the cup.

Figure 6: An example scene with three obstacles and
heatmaps corresponding to ERSact (upper) and ERSest
(lower). In the heatmaps, blue corresponds to low and red
to high ERS values.

lows us to solve the positioning problem or not.
Let us first calculate an appropriate error metric for the

ERS values. The technique proposed in previous section al-
lows us to calculate the estimated value ERSest while brute
force methods allow us to calculate the actual valueERSact.
Figure 6 shows an example scenario with a target object
(a cup) and three obstacles of various sizes. The upper fig-
ure shows the actual ERS as a heatmap under the obstacles,
while the lower figure is the heatmap of the estimated ERS.
A visual inspection of the figures shows that although not
perfect, the approximations are reasonably close.

Let us now try to develop a useful error metric. One ap-
proach would be to calculate the average error for every grid
point. However, this would be a misleading metric, because
for a large number of locations ERS will be trivially zero
(for instance, the ones that are outside the range of the arm).
If we calculate the simple average, the error would depend
on how far the grid extends from the origin. Instead, we will
define the error metric as being the average only for loca-
tions where at least one of the ERSact or ERSest is greater
than zero:

P = {p | ERSest(p, c,O) > 0 ∨ ERSact(p, c,O) > 0}
(10)

Table 1: The average relevant error ARE for a collection of
scenes

Scene description ARE
Scene 1 (3 obstacles) 0.086
Scene 2 (3 obstacles) 0.091
Scene 3 (2 obstacles) 0.085
Scene 4 (2 obstacles) 0.039
Scene 5 (4 obstacles) 0.128
Scene 6 (4 obstacles) 0.106
Scene 7 (8 obstacles) 0.206

We denote the cardinality of this set of points with #P .
Thus for a given target object c and set of obstacles O we
define the average relevant error ARE(c,O) as follows:

ARE(c,O) =

∑
p∈P

∣∣∣ERSest(p, c,O)− ERSact(p, c,O)
∣∣∣

#P
(11)

The calculation of theARE is computationally expensive
as it requires the calculation of theERSact. We performed it
for a representative collection of sample scenes as described
in Table 1. The table shows that in average the error stays in
a moderate range, but in general increases with the number
of obstacles.

The robotic wheelchair needs to position itself such that
the object is easily reachable - the finding of the optimal
position is of a comparatively small importance. Therefore,
we can divide the errors in the determination of ERS into
three major types:

Type 1: ERSact > 0 ∧ ERSest > 0 ∧ ERSact 6= ERSest
The practical impact of such an error would be that that

system might not choose the optimal position for reaching
the target object - under normal circumstances this is a very
minor issue.

Type 2: ERSact > 0 ∧ ERSest = 0
In this case, the system would overlook positions from

where the grasp is possible. In most cases, this is not an is-
sue, as these positions were likely not very good anyhow.
However, it can be a problem in highly constrained scenar-
ios - for instance when many obstacles limit the number of
feasible points and/or constraints on the movement of the
wheelchair limit the number of points where the base can be
actually positioned. In these cases, the presence of Type 2 er-
rors might make the system mistakenly believe the problem
to be unsolvable.

Type 3: ERSact = 0 ∧ ERSest > 0
These are positions where the estimate believes that a

grasp is possible but it turns out not to be the case. If the
wheelchair would execute the positioning task TP based on
this estimate, it would find that the grasp task TG is impos-
sible from this location.

Figure 7 represents the distribution of Type 2 and Type 3
errors in a sample scenario with three obstacles. The struc-
ture shows that the estimate yielded correct or acceptable
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Figure 7: The distribution of Type 2 and Type 3 errors
in a scene with three obstacles. The sign denotes loca-
tions where both ERSact and ERSest are positive. The
grid points with no sign are the ones where ERSact =
ERSest = 0. Type 2 errors are denoted with 4 while Type
3 errors with �.

values for the majority of positions (but for feasible and un-
feasible locations). There is a single Type 2 position and a
limited number of Type 3 positions, all of them located at
the boundary between the feasible and unfeasible regions.
In practice, the system would choose positions at the inte-
rior rather than at the boundary of the feasible zone, thus
avoiding both types of errors.

Performance considerations
Let us now consider the performance speedup achieved
by our technique. The following table summarizes the
computational cost of various activities, on an Intel i7-4xxx
series system with 16GB of RAM.

Generating test data for learning (1300
sample scenes) – offline

5 days

Learning – offline 2 min 5 sec
ERSest – proposed method – online 0.82 sec
ERSact - exhaustive search – online 26 minutes

We find that the learning of ERS estimation is compu-
tationally expensive – not so much for the learning process
itself, which takes around 2 minutes, as the generation of the
single obstacle ERS values that form the basis of learning.
This process took about 5 days. Once the values are learned,
the calculation of the ERSest takes only 0.82 seconds, in
contrast to the computation of the ERSact that takes about
26 minutes in average.

Conclusions
In this paper, we considered the task of positioning a
wheelchair mounted robotic arm in preparation for the
grasping of a target object in the presence of obstacles. We
introduced the ease-of-reach score ERS as a metric for the
suitability of certain positions for the base of the robotic
arm. As the calculation of the ERS map for an environ-
ment is computationally expensive, we proposed an approx-
imation technique based on modeling the ERS as a com-

bination of optimal ERS and the blocking functions corre-
sponding to the obstacles. Through the implementation of
the proposed system for the case of a cylindrical cup target
object and symmetrical obstacles, we have shown that the
resulting approximation is sufficiently accurate for practical
use and represents a four magnitude decrease in computa-
tional cost compared to the computation of the actual ERS.
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