
BOND SYSTEM SECURITY AND ACCESS CONTROL MODEL
RUIBING HAO, KYUNGKOO JUN, AND DAN C. MARINESCU

(hao, junkk, dcm@cs.purdue.edu)
Computer Sciences Department, Purdue University, West Lafayette, IN, 47907, USA

ABSTRACT
 Bond is a message-oriented middleware for network
computing on a grid of autonomous nodes. In this paper we
overview the basic architecture of the Bond system and
introduce the security model implemented in the Bond
system. User programs as well as data are subject to the
security constraints imposed by the local operating system.
Bond objects are subject to the access control and the
authentication model discussed in this paper. Secure Bond
objects are allowed to create their own security agents to
implement access control.

KEYWORDS
 Middleware, Security, Access Control

INTRODUCTION TO BOND SECURITY
 Bond is a message-oriented middleware for network
computing. When completed, the Bond environment will
consist of a distributed object infrastructure, a set of servers,
a set of agents, and a set of user objects. A survey of the
Bond architecture is presented in [1-4] and reviewed briefly
here.

 Servers are permanent, their life-time is rather long and
provide system-wide services e.g., Directory Server(DS),
Authentication and Software Distribution(ASD) Server, and
so on. Agents are started upon request, work in conjecture
with one or more objects, and disappear after completing
their function. Examples of agents are Scheduling Agents
and Security Agents[1].

 Each Bond object is uniquely identified by a Bond Id.
Each Bond executable consists of a local directory, a main
thread of control, and a messaging thread with two
mailboxes: an in box and an out box. Once an object is
created it is registered with the local directory. Objects
located at different sites communicate with one another as
shown in Figure 1.

 To locate a remote object B, object A sends a (find)
message to the Directory Server, which in turn multicasts
the request to all the members of the Directory Server
Virtual Network (DSVN). Eventually one of the Directory
Servers locates object B. Object B then sends back the
information necessary to create the Bond Shadow. The
shadow of an object is a light-weight communication

abstraction which supports unidirectional communication.
From this instance on, all messages from A to B are sent to
the shadow of B which acts as a local proxy for the remote
object. A Bond communication act consists of three steps:
(1) Send the message to the local Bond shadow, which will
perform format conversion and security checks, and then
deposit the message into the out box of the local messaging
thread at the sender’s site; (2) Transport the message from
the out box of the sender to the in box of the receiver; (3)
The local messaging thread at the destination will get the
message in the in box of the receiver, parse and deliver the
message to its destination object.

 Each Bond object provides a set of services. These
services are available to other objects by means of message
patterns called Bond sub-protocols[4]. For example, an
object reveals its properties and allows other objects to
modify them by means of the property access sub-protocol.
Each sub-protocol is implemented by exchanging KQML
messages. KQML messages, called performatives, allow to
encode basic abstractions like asking, replying, achieving,
subscribing or notifying[5]. So the most suitable approach
to implement access control of Bond objects is to define and
check the rights to use every type of KQML message. Each
KQML message in Bond consists of a performative field, a
content field and one or more parameter fields.

 Bond uses a two-prong approach to system security.
Bond objects are subject to the security model discussed in
this section while each Bond executable running on a host
relies on the security features of the local system including
password, access rights, quotas, etc.

 Bond is an object-oriented system, therefore we decided
to support object level security [6][7]. We opted for a
uniform model; the security model does not differentiate
among system and user objects. We decided to allow each
object to define and implement its own security, we only
enforce a uniform interface to the security functions. An
object may define its own security agent to implement its
security policy. A group of objects may share a security
agent. The mechanisms used to enforce security cover
authentication and access control policies. The creator of a
Bond object has the option to enforce security. Only a
secure Bond object may request authentication and access
control.

 Secure Object A Directory
Server
Virtual

Network

 Secure Object B

Shadow of B
<TKBA>

(find) (ask)

(tell)
(tell)

FIGURE 1. ACCESS CONTROL

To implement the access control model discussed in the
next section we need to expand the Bond shadow to
contain the access control object, called Bond ticket, for
the destination object and the public key of the destination
object.

ACCESS CONTROL
 Bond is a Message Oriented Middleware. Therefore
we decided to embed access control mechanism into the
Bond communication fabric. Bond objects act in response
to messages and perform functions according to pre-
defined message patterns called sub-protocols. The access
control mechanism is based upon access rights granted by
an object by means of a Bond ticket and enforced by a
Bond Security Agent.

 The access control mechanism requires an extension of
the Bond shadow objects. The access control ticket is
generated at the time when the Bond shadow is created.
The ticket is signed by the issuer to prevent possible
malicious modification at the shadow side.

 Recall that a Bond object A sends messages for object
B to the shadow of B, which in turn delivers the messages
to B (Figure 1). We extend the shadow to contain a copy
of the Bond ticket.

 If the shadow has a copy of the ticket granted by B, it
can filter messages and deliver to B only those which
conform to the access rights in the granted ticket. A Bond
ticket defines the access rights as the ability to send
KQML message with specific sub-protocol, performative,
content and parameters. A Bond object can grant the
access to its services at four levels. The first allows the
use of specific sub-protocol, the second restricts the
performative, the third restricts the contents of the
performative and the fourth further restricts the
parameters.

 For example the ticket granted by B to A may have the
following format:

 subprotocol performative contents parameter

PropertyAccess ask-one get -
PropertyAccess achieve set alpha
AgentControl achieve start-agent WorkSpace

 In this example A can only send to B the following
types of KQML messages:

1. any (ask-one) message in PropertyAccess sub-
protocol, this means B allows A to get the value of
any property of itself;

2. (achieve set alpha); this message allows A to
exercise the property access sub-protocol, and only
can set the value of property alpha of B.

3. (achive start-agent WorkSpace); this message
allows A to exercise the AgentControl sub-protocol,
but can only start WorkSpace on B.

The scheme described above works well if the grantor of
a ticket trusts the grantee. Filtering messages at the source
guarantees that no unwanted messages cross the network.
But we need to provide also a scheme that goes beyond
the trust relationship and enforces the access control
scheme. Such a scheme is based upon security agents. A
security agent is one capable of generating and storing
Bond tickets for one or more Bond objects and enforcing
the access control. Instead of sending a message to the
destination object its shadow will send the message to the
security agent which acts as a proxy at the receiving end
and enforces the access control specified by the ticket.
Now the shadow of the security agent of B is the local
proxy rather than the shadow of B. Messages are filtered
both at the source by the shadow object and at the
destination by the security agent.

 Secure Object A Directory
Server
Virtual

Network

 Safe Object B

 SA(B) Security Agent of B.Shadow of SA(B)
<TKBA> Tickets (TKBA,… ..)

(find) (ask)

(tell)

(tell)

(tell)

FIGURE 2. ACCESS CONTROL FOR A SAFE BOND OBJECT B

 Figures 1 and 2 illustrate the generation of the access
control tickets and the communication path for both
trusted and enforced access control. The scheme which
enforces the access control adds additional overhead and
is less performance but more secure.

AUTHENTICATION
 There are two types of authentication in Bond: the first
is the authentication of Bond users when they sign on, the
second is the mutual authentication between secure Bond
objects. Both of them are done by the Authentication and
Software Distribution (ASD) server.

 ASD server is responsible for: (a) Bond code version
control; (b) Creation and maintenance of Bond user
accounts; (c) Creation and maintenance of Bond security
keys; (d) Authentication.

 User can download the latest version of Bond code
from the Bond HTTP server which coordinates with the
ASD server. The downloaded code is stamped with the IP
address of the requester, the public key of ASD server and
the Bond Version Number. The ASD public key is shared
among all Bond users who start Bond sessions from the

same host. To start a Bond session a user follows the
procedure illustrated in Figure 3.

 Authentication of Bond users is carried out in the
following way. The user starts a workspace that has its
unique Bond Id (BID) and inherits the Bond Version
Number, the ASD public key from the downloaded Bond
code. Then the user provides the Bond User Name, the
Bond Password and specifies if a secure workspace is
desired. The workspace sends as plain text the Bond User
Name, the IP address of the host, and the security flag (it
is set when a secure workspace is desired) as well as the
Bond Version Number, the Bond Id of the workspace, the
password and a new generated session key encrypted with
the downloaded ASD public key. The ASD server
decrypts the encrypted content, uses the Bond User Name
as index to verify the Bond Password. It also compares
the Bond Version number and informs the user about the
need to download and update the code of Bond resident if
outdated. If a secure workspace is desired then a pair of
public and private keys are generated for the workspace
by the ASD server and stored in the BondKey object
indexed by the Bond Id. After a successful login a secure
workspace gets the public/private key pair encrypted with
the session key it sends to ASD server.

Wokspace
ASD

Server

 Sign on request:
<BUN,IP, SECURITY,
E pub(BVN, BID, Pass, Sk)
>

BondUser
<BUN, BP>

BondKey
<BID, Kpub, Kprv>

Fail/Update/ or
<Sk(Kpub, Kprv)>

FIGURE 3. STARTING A BOND SESSION AND SIGN ON

1 2

 (3) BID,
encrypted message

Object A
ASD

Server

 BK
<BID , SKpub, SKprv>

Object B

(4) Decrypted
message

FIGURE 4 . OBJECT AUTHENTICATION

 Another function of the ASD server is to support
object authentication. The basic idea for object
authentication is illustrated in Figure 4. The presumption
of object authentication is that both objects involved are
secure objects, which means each object has a pair of
public and private keys. Assume that both A and B are
secure Bond objects. To authenticate object B, A
generates a random message and asks B to encrypt it
using its own private key (step 1) and send the encrypted
message back, together with its own Bond Id (step 2).
Then A sends the encrypted message to the authentication
server for decryption (step 3) and also compares the
message decrypted by the ASD server (step 4) with the
original random string it had generated. If they are the
same, A can make sure the object it’s talking with is real
B.

IMPLEMENTATION ISSUES
 Each Bond object can choose its own security policy,
it can vary from no security check to very rigorous
security check. But interface of security check method if
it is presented must be uniform. We define Java abstract
classes for all the security functions e.g. security check
and access ticket generation [8]. Each object can make its
own decision to implement these security abstract classes
or not. If implemented, it can also override some methods
by its own implementation. Bond also provides default
security class implementations which user can choose if
they do not want to implement their own. This design
leaves the decision right of security to each object instead
of using a uniform security policy in whole system.

 We defined some abstract security classes in Bond to
fulfill the requirements of what we had discussed in above
sections [6]. For example, abstract security class Cipher
is a class that finishes the function of Encryption and
Decryption. User objects can subclass Cipher to have
their own implementation of Encryption and Decryption.
Bond implements two sub-classes from the abstract
security class Cipher: bondSymEncrypCipher and
bondAsymEncrypCipher. bondSymEncrypCipher is a
Bond class for symmetric encryption and decryption
using a single key algorithm. This single key can be a
password, or a session key in DES.
bondAsymEncrypCipher is a Bond class for asymmetric
public key encryption and decryption using public/private
key pairs.

CONCLUSIONS
 Security is an important concern in any network
computing environment. Object-oriented network
computing environments like Bond are generally more
complex than traditional client-server systems, and the
security issues are more subtle. In this paper we discussed
Bond’s view of security in an object-oriented network
computing environment and presented the security model
used by Bond for access control. In this model, each Bond
object can choose its own security policy, it can vary from
no security check to very rigorous security check. Secure
Bond objects are allowed to create their own security
agents to enforce access control. These functions are
supported by a set of uniquely defined abstract security
classes.

Currently we are investigating a new method of
authentication based on Certification and Delegation,
which can carry out authentication in an elegant and
flexible way.

REFERENCES

[1] L. Bölöni, K.K. Jun, M. Sirbu and D.C. Marinescu,
Seamless Metacomputing with Bond, Purdue
University, CSD-TR #98-010.

[2] L. Bölöni, Bond Objects -- a white paper, Department
of Computer Sciences, Purdue University, CSD-TR
#98-002.

[3] L. Bölöni, K.K. Jun, T. Daniels and D.C. Marinescu,
Message patterns in the Bond Distributed Object
System, Purdue University, CSD-TR #98-004.

[4] L. Bölöni, R.B. Hao, K.K. Jun and D. C. Marinescu,
Bond Sub-protocols, 1998, (in preparation).

[5] T. Finin, et al. Specification of the KQML Agent-
Communication Language, DARPA Knowledge
Sharing Initiative draft, June 1993.

[6] R. B. Hao, L. Bölöni, D.C. Marinescu, Bond System
Security and Access Control Models, Purdue
University, CSD-TR #98-019.

[7] B. Fairthorne, OMG White Paper on Security, OMG
Security Working Group, April 1994.

[8] J. B. Knudsen, Java Cryptography, O’Reilly, 1998.

