A Genetic Approach to Planning in Heterogeneous Computing Environments

Han Yu, Dan C. Marinescu, Annie S. Wu
School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, Florida, 32816, USA
hyu, dem, aswu@cs.ucf.edu

Howard Jay Siegel
Department of Electrical and Computer Engineering
and Department of Computer Science
Colorado State University
Fort Collins, Colorado, 80523-1373, USA
hj@colostate.edu

Abstract

Planning is an artificial intelligence problem with a wide
range of real-world applications. Genetic algorithms, neu-
ral networks, and simulated annealing are heuristic search
methods often used to solve complex optimization problems.
In this paper, we propose a genetic approach to planning
in the context of workflow management and process coor-
dination on a heterogenous grid. We report results for two
planning problems, the Towers of Hanoi and the Sliding-tile
puzzle.

1. Introduction and Motivation

Most human activities require some form of planning;
thus, it is not surprising that planning is a subject of inter-
est to the artificial intelligence (AI) community. Solving
any complex task requires planning, thus, planning is very
important in practice as well. Given a set of actions, the
objective of planning is to construct a valid sequence of ac-
tions, or a plan, to reach a goal state starting from the cur-
rent state of the system. An intuitive example of planning is
the process of solving a puzzle, given the set of pieces with
different geometric shapes, scattered on the floor.

Computational grids are heterogenous infrastructures
linking many computers together and presenting individual
users the image of a large virtual machine capable of per-
forming complex tasks. Planning allows us to create mul-
tiple activity graphs, or process descriptions in workflow
terminology, and to exploit the resource-rich environment

provided by a computational grid. The middleware compo-
nent of the grid infrastructure includes a set of services to
discover available resources and to optimize the use of re-
sources both from the grid and from the user’s perspective.
Certain tasks performed by the middleware are referred to
as societal services. Examples of societal services are co-
ordination, planning, brokerage, persistent storage, and au-
thentication.

The objective of planning in the context of the execu-
tion of complex tasks on a grid is to construct an activity
graph describing a transformation of input data into a dif-
ferent set of data, the desired result. Once this graph is con-
structed, its description can be provided to a coordination
service and then the execution of all the programs involved
is supervised by the coordination service. Rather than have
a user construct the graph by hand, then select a site A to
execute say program .4, wait for the results to be produced,
then use a file transport protocol to move them to site B
where program B could execute, and so on, the process can
be fully automated. Of course, the same result could prob-
ably be archived using a script, but the static nature of the
script makes handling of dynamic resource allocation prob-
lem much more difficult. For example, assume that site B in
our previous example is overloaded and there are alternative
sites B;,i = 1,2,...n, capable of executing program B at
lower costs and provide the results earlier. A static script is
incapable of taking advantage of the full range of alterna-
tives to carry out a computation, while planning does. Of-
ten, users may also require changes in the actual sequence of
data transformation. For example, one may wish to increase
the accuracy of some computation by filtering or noise re-



duction. The computation steering ! could also be a reason
for dynamic altering of the activity graph.

Let us elaborate on the planning process. Data is trans-
formed as a result of the execution of a set of programs,
corresponding to the nodes of the activity graph. We as-
sume that we have ontologies describing data, programs,
and hardware resources. An ontology is a description of
the concepts and relationships among them for an agent or
a confederation of agents; sometime the scientific commu-
nity calls this meta-information. The description of each
program includes a set of pre-conditions such as: the type,
format, amount, and possibly a history of the input data 2;
the location of the binary and source code; libraries used
by the program; and the physical resources required by the
program to execute (specified typically as a lower limit or a
range of values, e.g., more than 1 GB of main memory, 1 to
3 TB of disk space). In addition to pre-conditions, we have
post-conditions describing attributes of the results produced
by the program, such as: the type, the format, the volume,
and the location. A similar description can be built for hard-
ware resources and for data.

An informal description of planning in a computational
grid environment is the following steps. First, given a set of
initial data and a set of desired results, construct an activity
graph to produce the results given the initial data. Then
submit the graph description for execution by a coordination
service. The graph description can be modified during the
execution in response to either information regarding the
status of various grid resources or as a result of explicit user
desires.

Similarly, in a service grid, multiple versions of services
may be provided; planning provides automated means to
compose them in a coherent manner. In both cases, plan-
ning is an off-line activity; it precedes the execution of the
complex task. Therefore, the time required for planning is
not a major concern and the genetic approach discussed in
this paper is entirely feasible.

Planning may also be done on-line when timing con-
straints are not violated and resources are not wasted. There
are several reasons why a generic activity graph may change
dynamically during the enactment of a particular case. The
change may be mandated by the change in availability of
resources necessary for the execution of individual tasks in

!'The ability to examine partial results and eventually make changes that
affect the evolution of a computation, e.g. change a parameter file.

2 Assume that some 2D image data was collected with a camera with
resolution x, transformed using a histogram equalization algorithm with
parameter y, then filtered using a high pass filter with frequency z, then
Fourier transformed using an algorithm that required zero-filling up to size
w. When we decide to use either program A, or B, or C for the next stage
of processing, we would like to know the genealogy, or the history of the
data. Program A could require a resolution higher than x, B could do a
filtering in the Fourier domain that would cancel the effect of the histogram
equalization, and so on. The history of the data would help in the next stage
of planning. The preconditions of either A or B would not be satisfied.

the generic activity graph. In this case, the time required
by the planning algorithm is of concern and may limit the
applicability of our approach. Another reason for change
may be the desire to improve the quality of the solution: for
example, task o, may be replaced by a sequence of tasks
[ and +y that are capable of providing a better solution than
task . In this case, we may be able to afford to go through
a process of re-planning depending upon the duration of the
tasks involved and the benefits of the change.

Thus, we believe that a planning method that offers the
possibility of dynamically creating activity graphs [13] is an
important component of the workflow management system
needed to coordinate the execution of complex tasks in the
resource-rich environment provided by a computational or
service grid. Genetic algorithms (GAs) have been used in
the past for task scheduling in heterogenous systems where
an activity graph is provided and the objective is to find an
optimum resource allocation scheme (e.g., [4, 11, 19, 20]).
Creation of an activity graph for dynamic workflow man-
agement as a result of a planning process is a considerably
more difficult problem.

There are several formal definitions of a planning prob-
lem. We are particularly interested in STRIPS-like domains
[6]. In such domains, the change of system state is given by
operations which are defined by preconditions and postcon-
ditions. We define a planning problem to be a four-tuple

I = (P,0,I,0).

P is a finite set of ground atomic conditions (i.e., ele-
mentary conditions instantiated by constants) used to define
the system state. O = {O0;}, where 1 < i < |0O]
is a finite set of operations which can change the system
state. Each operation has three attributes: a set of precondi-
tions OF", a set of postconditions OF***, and a cost C(0;).
Z C P is the initial state and G C P is the goal state. A
plan A is a finite sequence of operations. An operation may
occur more than once in a plan. An operation is valid if and
only if its preconditions are a subset of the current system
state. A plan A solves an instance of II if and only if every
operation in A is valid and the result of applying these op-
erations leads a system from state 7 to a state that satisfies
all the conditions in the goal state G.

Planning is generally more difficult than a typical search
problem. Planning involves larger search spaces, the exis-
tence of solution is not guaranteed, and last but not least,
the size of the optimal solution cannot be easily antici-
pated. General search strategies such as breadth first search,
though applicable to planning problems, rarely find good
solutions efficiently. General planning algorithms such as
forward- and backward-chaining are based upon determin-
istic search methods. To find a good solution, these al-
gorithms require a search over the entire problem space.
Therefore, forward- and backward-chaining perform well



only on small problems with a very limited search space.

GAs are one type of heuristic search method often used
to solve difficult optimization problems. GAs are in-
spired by a fundamental principle of natural selection, the
survival-of-the-fittest. A genetic algorithm evolves a fixed
size population throughout generations. Each individual in
the population encodes a candidate solution to a given prob-
lem. Initially, these solutions are randomly generated. With
each new generation, the GA evaluates the performance of
every individual with a fitness function that gives a numeric
value as the result of evaluation. Selection of the individu-
als is based on their fitness. Good solutions have a higher
chance of surviving in the population. Selected individu-
als are subjected to crossover and mutation to explore new
search spaces without completely losing the existing solu-
tions that have been evolved. A newly generated population
is found. The GA then repeats these evolutionary steps to
generate the next population.

In this paper, we propose a non-deterministic approach
to planning based upon a GA. Our approach differs from
traditional GA applications in several ways. First, we en-
code the solution as a sequence of floating point numbers
to eliminate the existence of invalid operations. Second, we
apply three different crossover mechanisms to form new so-
lutions. Third, we divide the search into a number of phases,
every phase is an independent GA run and the final solution
is the concatenation of the best solutions from individual
phases. Experimental results show that our approach is able
to solve the 7-disk Towers of Hanoi problem and a 4 x 4
Sliding-tile puzzle.

This paper is organized as follows. Section 2 provides an
overview of the current research in the area of planning al-
gorithms and genetic approaches to planning. In Section 3,
we report on our algorithm; we discuss the solution en-
coding in Section 3.1, the population initialization in Sec-
tion 3.2, the fitness evaluation in Section 3.3, the genetic op-
erators in Section 3.4, and our multi-pase approach to plan-
ning in Section 3.5. In Sections 4.1 and 4.2 we present our
experiments related to the Towers of Hanoi problem and to
the Sliding-tile puzzle. Finally, we discuss our conclusions.

2. Related Work

A comprehensive analysis of the complexity of domain-
independent planning algorithms is found in Erol et al. [5].
The authors study the conditions for the decidability of a
planning problem and show that, when planning is decid-
able, the time complexity of a domain-independent plan-
ning algorithm depends on a large number of variables.

The Graphplan approach exploits the fact that the opera-
tion space is much smaller than the state space of a planning
problem [1]. The algorithm first generates a planning graph
showing all the possible operations at every time step. Op-

erations that interfere with one another can coexist in the
graph. The search for a plan is based on this graph. Ex-
perimental result shows that Graphplan outperforms other
general planning algorithms in some problem domains.

Jonsson et al. study the efficiency of universal planning
algorithms [8]. They conclude that universal planners that
run in polynomial time and polynomial space cannot satisfy
even the weakest types of completeness. However, if one
of the polynomial requirements is removed, constructing a
plan that satisfies completeness becomes a trivial problem.
They also propose Stocplan, a randomized approach to uni-
versal planning under a restricted set of conditions. They
show that this approach can construct plans that run in poly-
nomial time and use polynomial space and also satisfy both
soundness and completeness for these problems. Experi-
ments reveal that the performance of Stocplan is competi-
tive with Graphplan.

Another approach to planning is to partially reuse exist-
ing plans. This approach consists of two steps, plan match-
ing and plan modification. Nebel and Koehler [16] analyze
the relative computational complexity of plan reuse versus
planning from scratch. The study shows that the problem
of plan reuse is intractable and the efficiency of this ap-
proach is not guaranteed. Generally, reusing an existing
plan is harder than planning from scratch. This approach is
expected to work better only when the new planning prob-
lem is sufficiently close to the old one. Plan matching, as
a necessary step in this approach, can be the bottleneck in
computation time.

A different direction of planning research is focused on
domain-specific planning. Korf and Taylor report on the
Sliding-tile puzzle and discuss useful search heuristics for
this problem [10]. They present the work on an accurate ad-
missible heuristic function in the ZDA* search algorithm.
The heuristics used include the linear conflict heuristic, last
moves heuristic, and corner-tile heuristic. These heuristics
are shown to improve the search performance of the ZD.A*
search algorithm.

A proposal to use disjoint pattern database heuristics in
an evaluation function is discussed in [9]. First, the sub-
goals are split into disjoint subsets so that an operation af-
fects only the subgoals in one subset. The values obtained
for each subset are then combined to form the result of the
heuristic evaluation function. This technique was used to
search for a solution of the Sliding-tile puzzle and of Ru-
bik’s cube. In both cases, it resulted in a decrease of the
number of nodes traversed during the search.

Bonet and Geffner [3] show that a heuristic search plan-
ner is competitive with the Graphplan or the SAT planners.
They introduce two planners, HSP and HSP2; HSP is a hill-
climbing planner and HSP2 is a best-first planner. Both
planners are forward state planners. This approach assumes
that subgoals are independent; therefore, the function is ad-



missible and never overestimates the cost.

All of the above approaches except Stocplan are deter-
ministic approaches that tend to require large coverage of
a search space in order to generate a good result. Problem
specific heuristics can be used to reduce the size of a search
space; however, heuristics for one class of problems may
not be applicable to other classes of problems. Evolutionary
computation (EC) has emerged as a competitive technique
in planning research. Because of an element of random-
ness in their implementation, the search results of EC meth-
ods are not consistent over different runs and these methods
are not guaranteed to find an optimal solution. EC methods
include genetic programming (GP) that is discussed below
and the GA that we use.

Muslea [15] presents a GP approach to planning. Sin-
ergy is a general linear planning system built on the GP
paradigm. Experiments are performed on a single and 2-
Robot Navigation problem and on the Briefcase problem.
Results indicate that Sinergy can handle problems that are
one or two orders of magnitude larger than the ones han-
dled by UCPOP [17], a partial order planner. This approach
works only on problems with conjunctive goals.

Another example of a GP based algorithm, called Gen-
Plan, is presented in [21]. This approach uses a linear struc-
ture to encode the solution. Experiments on two domains
show that GenPlan can solve the same problems as Sinergy
but with fewer generations. The authors also report on five
GP seeding strategies in [22] and show that these strate-
gies improve the search quality on the Blocks World do-
main problems. Seeding partial solutions and keeping some
randomness in the initial population appear to benefit GP
performance.

Scheduling and process coordination on a computational
grid is a relatively new area of research [2, 12, 13, 14].
However, we could not find any results on applying meth-
ods of planning to grid computing.

3. GA planning

In this section, we describe our genetic approach to plan-
ning problems. We present a method for solution encoding,
then we discuss the fitness evaluation, the genetic operators,
and a multi-phase approach to GA planning.

3.1 Solution Encoding

The solution to a planning problem is encoded as a se-
quence of genes, where each gene represents a single oper-
ation in the plan. The simplest way to encode such a plan is
to use direct encoding: each operation is represented by an
integer and the sequence of integers encodes the sequence
of operations in a plan. Because not all operations are valid

in every system state, a direct encoding may result in invalid
operations.

We use an indirect encoding method. Each gene is rep-
resented as a floating point number x, 0 < x < 1. Every
number in the solution is mapped to a valid operation for
the corresponding system state. The result of this mapping
depends on the value of the floating point number and the
set of valid operations in a given system state. For example,
assume that in a given state there are four valid operations,
01, O3, O3, and O4. Then a floating point number z is
mapped as follows:

000 <z <02 — O

025 <z <050 +— O

050 <z <07 +— O

0.7 <z < 100 +— O4.

This method ensures that all the genes in a solution will
represent valid operations. Thus, the operation represented
by a gene depends on the floating point number and the set
of operations that are valid for the given system state.

We allow the GA to evolve variable length individuals
and set an upper bound, MaxLen, on the individual length.
The value of MaxLen should be chosen to ensure GA search
quality while not incurring too much computation time.

<
<

3.2 Population Initialization

The members of the initial population are randomly gen-
erated. The lengths of the initial population of solutions are
set to reasonable values.

3.3 Fitness Evaluation

The goal of the planner is to find a solution that satisfies
the following three criteria: (a) no invalid operation is al-
lowed in a solution; (b) the sequence of operations leads the
system from the initial to the goal state; and (c) the cost of
the solution is minimized. Accordingly, the fitness function
has three components: the match fitness f,,, the goal fitness
fg, and the cost fitness f..

The match fitness function, fr,, 0 < f, < 1,evalu-
ates how well the operations in the solution match their cur-
rent system state. In a preliminary implementation, when
we use the direct encoding method, we go through every
operation from the beginning to the end of a solution to cal-
culate the match fitness. We start from the first operation
and check if it is a valid operation. If yes, we change the
system to the state after this operation is performed. Other-
wise, the system stays at the current state. We perform the
same check on each succeeding operation until we finish all
of the operations in the solution. Match fitness is calculated
as:



_ number of valid operations
~ total number of operations in a solution’
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Because we use indirect encoding and all operations are
valid, the match fitness is always 1. We do not need to check
the matching of operations to system states. However, we
still need to change the system state as a result of each op-
eration.

The goal fitness function, f4, 0 < fy < 1, evaluates
the quality of matching between the final state of the solu-
tion and the goal state. A better match results in a higher
goal fitness. The goal fitness is dependent on the character-
istics of the planning problem.

The cost fitness function, f., 0 < f. < 1, evaluates
the total cost of the solution. The cost of a solution depends
upon the cost of individual operations and is problem spe-
cific. The cost may be related to the latency of an operation,
the number of arithmetic operations, the amount of data to
be transferred, and so on. A solution with low cost has a
high cost fitness. In the very simple case when all the oper-
ations have the same cost, the cost fitness is given by:

fo= MaxLen — individuallength
c MaxLen

@

The overall fitness function reflects the three figures of
merit:

f=axfo X fm+bxfe, 3)

where a and b are weights and @ + b = 1. As the match
fitness is always equal to 1 in our approach, it is unnecessary
to include it in the fitness calculation. As a result, we use
the following function in the experiment.

fzaxfg+(1—a)xfc. 4)

The fitness evaluation time has a significant impact on
the overall execution time of a GA. A well designed fitness
function is critical to improving the efficiency of a GA.

3.4 Selection and Genetic Operators

3.4.1 Selection

Tournament selection is used to select the individuals for
the next generation. In this selection scheme, we randomly
pick up two individuals from the current population at each
time and compare their fitness values. The individual with
the higher fitness value wins and remains in the population.

3.4.2 Crossover

We implement three different crossover mechanisms: ran-
dom, state-aware, and mixed. In each case, the children
created replace their parents.

Random crossover is similar to GA one-point crossover.
We randomly pick two individuals from the selected par-
ents and randomly select one crossover point on each par-
ent. The two parents exchange portions of their genetic code
relative to the two crossover points. Two children are cre-
ated; each inherits a portion of the genetic code from both
parents.

A potential problem with random crossover is that the
selected crossover points can be associated with different
system states. Because we use an indirect encoding method,
the mapping from floating point numbers to operations is
dependent on the system state, see Section 3.1. Therefore,
it is likely that the genes to the right of the crossover points
will be mapped to a different sequence of operations after
crossover although they are still represented by the same
floating point numbers.

State-aware crossover is a novel approach that addresses
the problem of state mismatching in random crossover. We
randomly select a crossover point from the first parent. We
restrict the crossover point of the second parent to those that
match the first crossover point. Two states match if the same
genetic code will be mapped to the same sequence of oper-
ations from these two states. If no such crossover can be
found, we do not perform the crossover and both parents
are included in the population of the next generation. State-
aware crossover attempts to preserve partial solutions that
have been evolved in the search.

Mixed crossover combines random and state-aware
crossover. We randomly select the first crossover point and
check if state-aware crossover can be performed. If yes, we
perform the state-aware crossover on the two parents. Oth-
erwise, we randomly select the second crossover point and
carry out a random crossover.

3.4.3 Mutation

Every gene has equal probability of being mutated. In every
mutation, a new randomly generated floating point number
replaces the old one.

3.5 The Multi-phase GA

We propose to build a solution to a planning problem in-
crementally using a multi-phase approach. We divide the
GA search into multiple phases. Each phase is an indepen-
dent GA run and consists of a fixed number of generations.
In the first phase, we take the initial state of the system as
the state where the search starts. When a phase ends, the
best solution found in this phase is stored and the final state



of the solution is taken as the initial state for the search dur-
ing the next phase. The GA search ends when a valid solu-
tion is found at the end of one phase, or after a predefined
number of phases. The final solution of a GA run is the
concatenation of the best solutions from all the phases.

The procedure of a multi-phase GA consists of following
steps.

1. Start GA. Initialize population.

2. While the stopping condition is not met do

(a) While fewer than the specified number of gener-
ations are evolved in the current phase do

i. Evaluate each individual in the population.
ii. Select individuals for the next generation.

iii. Perform crossover and mutate operations on
selected individuals.

iv. Replace old with new population.
(b) Select the best solution for this phase and keep it.

(c) If a valid solution is found, go to the next step.
Otherwise, randomly initialize population and
start the next phase. Set the start state as the final
state of the best solution in the previous phase.

3. Construct the final solution by concatenating the best
solutions from all the phases.

4. Experimental Results

We tested our GA approach to planning on two classical
planning problems, the Towers of Hanoi and the Sliding-
tile puzzle. Each experiment was run multiple times and
the average performance is reported here. Each individual
run of the GA was executed using a different random seed.

4.1 Towers of Hanoi

In Towers of Hanoi problem, there are three stakes, A,
B, C, and n disks, Dy, Da, ..., D, of increasing size. D,
is the smallest disk and D,, is the largest disk. Initially, all
of the disks are on stake A. The goal is to move all of the
disks to stake B in a minimum number of steps. In each
step, only one disk can be moved from one stake to another
stake. Larger disks are not allowed to be moved on top of
smaller disks. The minimum number of steps to reach a
goal has been proven to be 2" — 1. Figures 1 and 2 show
the initial and goal states for the 5-disk Towers of Hanoi
problem.

In our experiments, we set the size of initial individuals
to the length of the optimal solution, 2™ — 1. To evaluate the

Figure 1. The initial state of the 5-disk Towers
of Hanoi problem.

Figure 2. The goal state of the 5-disk Towers
of Hanoi problem.

goal fitness, we give different weights to disks with different
sizes: D; has a weight of 2¢~!. The total weight of all n
disks is 2" — 1. The goal fitness is calculated using the
following equation:

total weight of all disks

on stake B in the final state

The cost fitness is given by equation 2. For the Towers of
Hanoi problem, the value of MaxLen is 10 x (2™ — 1).

In this experiment, we use random crossover and test
both the single-phase GA and multi-phase GA approaches
with the same number of generations. Table 1 shows the pa-
rameters for this experiment. For the single-phase GA the
maximum number of generations allowed is 500; for the
multiple-phase GA every phase contains 100 generations
and the maximum number of phases allowed is 5.

We performed ten (10) runs (where each run uses a dif-
ferent initial population) in each case and picked the indi-
vidual with the highest goal fitness in each run. Then we
averaged the fitness and the length of these individuals. We



Parameter Value

Population size 200
Number of generations 500
Crossover rate 0.9
Mutation rate 0.01

Selection scheme Tournament (2)
Weight of f, 0.9
Weight of f. 0.1

Number of disks 5,6,and 7
Number of phases in multi-phase GA 5

Table 1. Parameter settings used in the Towers of Hanoi planning experiments.

also calculated the average number of generations required
to find a solution. Table 2 summarizes our results.

Our data show that the multi-phase algorithm performs
better than the single phase GA. The multi-phase GA can
find a valid solution in every run for the 5-disk and 6-disk
cases. Although the multi-phase GA cannot find a valid so-
lution in some runs for the 7-disk case, it evolves a solution
that has higher goal fitness than the single-phase GA. In the
6-disk case, the multi-phase GA can find a valid solution in
two phases (i.e., 200 generations), slightly faster than the
single-phase GA.

The multi-phase algorithm evolves longer solutions than
the single-phase GA. This is probably because the limit of
individual length in multi-phase is larger than the one for
single-phase GA. In our experiments, every run can have up
to five phases, so the maximum allowed individual length in
multi-phase algorithm is five times higher than the one for
the single-phase GA.

Still, the multi-phase algorithm is not guaranteed to find
a valid solution as the problem size scales up. The problem-
specific definition of the goal fitness is partially responsible
for this undesirable feature of the algorithm. Even though
we give more credit to large disks in evaluating the goal
fitness, a partial solution might go into to a state where all
disks except the largest one are on stake B. This solution
will receive a goal fitness slightly less than 0.5. This state,
however, is even farther from the goal state than the initial
state. Indeed, to reach the goal, all these disks have to be
moved away from stake B before the largest disk can be
moved to disk B. This difficulty indicates to us that good
heuristic functions still play important roles in improving
the performance of our approach.

4.2 Sliding-tile Puzzles

Sliding-tile puzzles consist of a number of moving
blocks and a board on which the blocks can slide. Such
problems are sometimes used in Al textbooks to illustrate
heuristic search methods. For example, Russell and Norvig

[18] discuss the so called 15-puzzle seen in Figure 3. Given
some initial state, say the one in Figure 3(a), the goal is
to reach the goal state seen in Figure 3(b) by moving the
blocks without lifting them from the board. Solutions do
not exist for every possible combination of initial and goal
states. Johnson and Story showed in a paper published in
1879 that a solution exists only when the starting configu-
ration is an even permutation of the goal configuration [7].

15 14 13 12 1 2 3

11 10 9 8 4 5 6 7

7 6 5 4 8 9 10 1

3 2 1 12 13 14 15
() (b)

Figure 3. (a) An initial state of the 15-puzzle.
(b) The goal state.

In this experiment we set the initial size of a solution
as m, where n is the number of blocks in every
row or column. This expression is the number of compar-
isons needed to sort a set of n? values. While the Sliding-
tile puzzle is not the same as a sorting problem, e.g. there
are restrictions on the tiles that can be exchanged, we be-
lieve that this expression gives a reasonable size with which
to start the GA. Previous GA studies have found evidence
that a variable length GA will evolve to a necessary solution
length regardless of the initial individual lengths [23].

The distance between the current state and the goal state
is given by the Manhattan distance of all tiles [18]. The
upper bound on the distance between any two states in a
n X n problemis (n — 1) x 2 x (n* —1), where (n — 1) x 2
is the longest distance that a single tile may need to move



GA Number Average Average Size | Average Number of Generations
Type of Disks | Goal Fitness | of Solution to Find a Solution
Single-phase 5 1.0 72.3 429
6 0.916 421.3 201.6
7 0.618 628.0 328.6
Multi-phase 5 1.0 153.4 100
6 1.0 571.8 200
7 0.773 799.8 429

Table 2. Experimental results for the Towers of Hanoi problem.

and n? — 1 is the number of tiles. The goal fitness is:

Manhattan distance
between final state and goal state
(n—1)%2x(n?>-1)

fo=1- ©)

The cost fitness is given by equation 2. For the Sliding-tile
puzzle, the value of MaxLen is 10 x %

In this problem, we test all three crossover mechanisms
with up to five individual phases in each run. Table 3 shows
the parameter settings for the Sliding-tile puzzle experi-
ments.

We perform 50 GA runs for each experiment and select
the individual with the highest goal fitness in every run as
the solution. In addition to fitness and individual length, we
also recorded the number of runs required to find a valid
solution and the average computation time for each run. Ta-
ble 4 summarizes our results.

The performance of the three crossover types are very
close. All of them can find a valid solution in 48 out of
50 runs for the 3 x 3 case. As the problem size grows, the
search performance degrades sharply. The average size of
the solutions increases faster than linearly as the number of
tiles increases. The computation time depends heavily on
the individual length.

We further investigate the contribution of multiple
phases to the search of solution. We record the number of
runs required to find a valid solution in each phase for the
3 x 3 case. Table 5 lists the result for all three crossover
mechanisms.

In most of the runs, a valid solution is found within
the first two phases. State-aware and mixed crossover can
find a solution faster than random crossover. Of the three
crossover mechanisms, state-aware and mixed crossover
have a greater probability of finding a valid solution in the
first phase. Random crossover does not search as fast as the
other two crossover mechanisms, but using multiple phases
helps it to find a valid solution before the end of second
phase with a very high probability.

5. Summary

We propose a novel genetic approach to planning. In our
algorithm, we use an indirect encoding method to prevent
invalid operations in the solution and we test three different
crossover mechanisms to combine the partial solutions dur-
ing the search. In addition, we propose a multi-phase plan-
ning algorithm; we divide the search process into a number
of serially independent GA runs so that the solution can be
built incrementally. The results of experiments conducted
on two planning problems, the Towers of Hanoi and the
Sliding-tile puzzles, show that our algorithm is capable of
finding valid solutions under a number of cases. However,
as problem sizes increase, our approach, like all other so-
lutions known in the literature, experiences difficulties in
finding a solution. Our results confirm that an accurate goal
fitness function is essential to achieving good search perfor-
mance.

Based on our literature search, GenPlan appears to be
one of the most similar approaches to ours. Both are evo-
lutionary in nature and use a linear representation. Nev-
ertheless, there are significant differences between the two
approaches. First, GenPlan uses a direct encoding method
and it allows solutions to contain invalid operations. More-
over, operations can have arguments. Both operations and
their arguments can be evolved during the search. This ap-
proach gives GenPlan more freedom to encode and evolve a
solution but, at the same time, increases the difficulty of the
search due to its increased search space. Second, GenPlan
uses larger population size and fewer generations than our
approach, which suggests that the performance of GenPlan
relies more on the genetic diversity than the evolutionary
power of GP.

Our work is one of the earliest studies of genetic algo-
rithms applied to planning problems and certainly one of
the first if not the first of planning applied to dynamic work-
flow management on a grid. There are ample opportunities
for research in these areas. We plan to explore multi-phase
structures in solution representation, structural goal forma-
tion, and more accurate goal fitness functions. We believe
that these studies will give us a better understanding of the



Parameter Value
Population size 200
Number of generations 500
Crossover type Random / State-aware/ Mixed
Crossover rate 0.9
Mutation rate 0.01
Selection scheme Tournament (2)
Weight of f, 0.9
Weight of f. 0.1
Board size (n) 3and 4
Number of phases in multi-phase GA 5

Table 3. Parameter settings for the Sliding-tile puzzle experiments.

Type of Number Average Average Size | # Runs That Find a Average
Crossover | of Tiles | Goal Fitness | of Solution Valid Solution Time (seconds)

State-aware 9 0.995 106.96 48 57.70
16 0.927 865.40 0 415.27

Random 9 0.995 182.52 48 82.35
16 0.935 831.70 1 408.86

Mixed 9 0.995 131.32 48 60.33
16 0.928 922.06 1 434.13

Table 4. Experimental results for the Sliding-tile puzzle.

Phase | Random | State-aware | Mixed
1 7 33 36
2 40 13 11
3 1 0 1
4 0 2 0
5 0 0 0

Table 5. The number of runs when a valid solution is found in each phase for the random, state-aware,
and mixed crossover strategies.



nature of planning problems and improve the performance
of our approach.
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