
Chapter x

Adaptation and mutation in multi-agent
systems and beyond

Ladislau Bölöni and Dan Cristian Marinescu

1 Introduction

Reconfigurable and mutable systems are an increasingly more popu-
lar. As early as 1975, the Microsoft Basic interpreter for Altair con-
tained self-modifying code, introduced to overcome resource limi-
tations (only 4K of space available for the interpreter). A contem-
porary web browser is a custom application, consisting of a basic
framework with multiple extension API’s and a large number of
plug-ins, codecs, drivers, applets, controls, themes and other add-
ons. These extensions are usually developed by third parties, in-
stalled/uninstalled dynamically during the lifetime of the application,
and frequently changing the behavior of the application in a radical
way. Some of the changes in functionality are desired, or at least ap-
proved by the user: an example of such an extension is the ability
to view new media formats. Frequently, some of the effects are un-
desirable from the user’s point of view: some third party extensions
containspyware, pieces of code which report usage statistics and
other information about the user. Occasionally, viruses and worms
use the very same extension API’s.

While web-browsers are the quintessential user-driven applications,
reconfiguration and mutability are even more important for au-
tonomous agents. Recently, several agent systems with support for
mutability have emerged. Varela and Agha proposed the SALSA lan-

guage based on the actor programming paradigm (Varela and Agha
2001). The SALSA language is compiled to Java and targets dynam-
ically reconfigurable Internet and mobile computing applications.
The SmartApps project (Rauchwerger, Amato and Torrellas 2001)
takes an approach of ”measure, compare, and adapt if beneficial”
for scientific applications, with the restructuring occurring at vari-
ous levels from the selection of the algorithmic approach to compiler
parameter tuning. The Bond agent system (Bölöni and Marinescu
2000a) was one of the first Java based agent systems with support
for strong mutability, introducing a mutation technique calledagent
surgery, which describes the mutations as a series of primitive oper-
ations on a multi-plane state machine.

Reconfigurable and mutable agents have a special importance in
highly heterogeneous systems, such as ad-hoc networks. In such sys-
tems, mutation and mobility are strongly intertwined concepts. For
instance, the resources available on desktop computer and a cell-
phone differ so significantly that agents cannot be migrated from
one to the other without being reconfigured, even if both platforms
are able to run the same language, such as Java. One solution is to
replace the components of the agents with components that satisfy
the constraints imposed by the new host. Another choice is to mi-
grate only part of the agent to the new site, using split and merge
operations.

Although the ability to change an application at runtime is a pro-
gramming technique dating back to the beginnings of computer sci-
ence, there is not yet an universally accepted formal theory or a
software engineering model of mutability. The subject of mutabil-
ity, however is a cross-cutting concern in many fields of computer
science. The goal of this chapter is to provide a review of various
approaches, and to present original research done by the authors.

We review the contributions from various fields, as well as the con-
cepts related to mutability (or at least, an understanding of the alter-

native usages) is necessary. In Section 2, we propose a set of clas-
sification criteria for mutable and reconfigurable applications, and
propose a taxonomy based on this criteria.

One approach is based on formal modeling of the change of behav-
ior as a result of mutation. The choice of the formal model of agency
greatly influences our ability to describe and reason about change.
In Section 3 we compare various models in relation to their ability
to model change. We present a set of results obtained in the context
of the model of a multi-plane state machine of active objects and
discuss the advantages and drawbacks of the approach. As a com-
pletely random mutation is unlikely to be of any practical use, we
are especially interested ininvariantsrelative to operations.

In Section 4 we approach adaptability and mutability from the soft-
ware engineering point of view. Traditional agent oriented software
engineering (AOSE) methodologies are not well prepared to handle
mutable agents. In fact, the software engineering process, tradition-
ally seen as the steps necessary to transform an initial specification
to a final product, needs to be re-thought and evaluated. The method-
ologies need to be extended and modified to handle the challenging
issues raised by mutable agents. We present a proposed set of exten-
sions to the Gaia agent development methodology which supports
the analysis and design of agent systems containing mutable agents.

2 A taxonomy

Mutable and reconfigurable applications can be traced back to the
beginnings of computer science. The number of scientific articles
dealing with reconfigurability can be counted in the hundreds. Thou-
sands of widely deployed applications are using techniques of muta-
bility. Despite of this, there is no general theory of mutation in appli-
cations (and indeed, its desirability and feasibility has not yet been
properly investigated). The lack of a common vocabulary of talk-

3

ing about mutable applications makes it difficult to relate the work
done by researchers in disjoint fields, such as workflow management
(van der Aalst 1999, Han, Sheth and Bussler 1998), user interfaces
(Thevenin and Coutaz 1999), scientific computing (Rauchwerger et
al. 2001, An, Jula, Rus, Saunders, Smith, Tanase, Thomas, Amato
and Rauchwerger 2001) or agents (Varela and Agha 2001, Decker,
Sycara and Williamson 1996, Barber, Goel and Martin 2000). Simi-
larities, which might form the core of a general theory, might go un-
noticed, because The vocabulary used to describe an adaptive work-
flow is significantly different from the one used to describe an adap-
tive user interface.

In spite of the fact that specifications usually do not list mutability
as a desirable property of an application, mutable systems have a
noticeable presence. Mutability was frequently introduced in small
steps in commercial applications, as an answer to general require-
ments, and resulting in increased flexibility1.

The first step towards understanding mutable systems is to attempt
to introduce some order in the terminology of the field. The current
emphasis on semantics in computer science is a sign that researchers
understand the importance of classification (ontologies, taxonomies
or even simple terminologies without relations of terms) in the under-
standing of systems. The next step is to identify some classification
criteria which, besides the obvious benefit of categorizing, allows us
to identify the most important aspects of mutability. Finally, inte-
grating some of the classification criteria into a taxonomy gives an
additional order into the field.

2.1 Alternative names
1A good example is the evolution of web browsers. The ability to dynamically
update the browser with plugins, applets, ActiveX controls or client side scripting
was not part of the initial design of the World Wide Web. These features, under the
influence of business and customer pressure, were introduced step by step, with
many false starts and intermediate versions.

The requirement to develop software which responds to changes in
its local or global environment was handled in many subfields of
computer science. As a result, many names were proposed to denote
the different concepts, creating a virtual Babel of mutable programs.
In this section, we will try to review the different terms used in dif-
ferent fields, without an attempt to completeness.

The adjectiveadaptive appears in many contexts, although with
slightly different meanings.Adaptive workflows(van der Aalst 1999,
Han et al. 1998) are used in terms of workflows, which need to be
changed as a result of a runtime event.

Adaptive user interfaces(Thevenin and Coutaz 1999, Pribeanu, Lim-
bourg and Vanderdonckt 2001, Luyten, Vandervelpen and Coninx
2002) were used for describing user interfaces which adapt to the
capabilities of the device. Depending on the technique of the adap-
tation, this can range from a simple data driven, weak mutability
process (replacing an image based web-page with a text based one)
to component level, hard mutability event (replacing a Swing user
interface with a WAP based one). Other terms proposed were plas-
tic user interfaces, migrateable user interfaces, runtime user interface
transformations.

Runtime software evolutionis used in the recently emerging field of
unanticipated software evolution (Gustavsson and Assmann 2002).

2.2 Classification criteria

We propose five classification criteria targeting the most important
aspects of mutability. They are based upon:

• theamplitude of change: weak vs. strong mutability

• thegranularity : source code, machine code, library, component
level mutation

5

• continuity of interactions: runtime vs. stoptime

• the initiator of the change: externally initiated vs. self initiated
change.

• the mutation technique: extension API, compositional API, re-
verse engineering, data driven, hardware and others.

In the remainder of this section, we discuss all these possibilities in
detail and provide concrete examples. Most of these criteria apply to
agents and to non-agent applications such as interactive programs or
client-server systems. To allow for a larger pool of examples, we will
occasionally refer to non-agent applications as well. This is justified
by the fact that many recent versions of applications traditionally
considered interactive, are outfitted with autonomous, agent-like be-
havior. For example media players such as Microsoft Media Player
or RealOne have agent-like subsystems.

Additional criteria exist. For example, the classification based on
beneficial vs. malicious nature of the change. Unfortunately, decid-
ing on the malicious or beneficiary nature of a mutation is often non-
trivial. Viruses are universally considered malicious, while software
updates are considered beneficiary. However, the externally initiated
upgrade to the version 2.0 of the Tivo digital video recorders re-
moved previously existent functionality. This action was widely con-
sidered malicious by users, but beneficiary to the company. Instead
of asking if a certain mutation is beneficial or malicious, we need to
ask the question: in behalf of whom a certain agent is acting? This
question is a fundamental one in agent research, but it does not relate
(only) to adaptation and mutation.

2.2.1 The amplitude of the change: weak vs. strong mutability

The first classification criteria refers to the amplitude of the change
in the behavior of the system. We call a mutationweakif the modi-
fied system satisfies the same informal requirement specification as

the original one. Examples are mutations which adapt applications to
new resource conditions, extend their capabilities for new data for-
mats or give them new abilities which are in the line of their original
specification. Patches which fix bugs and vulnerabilities in software
are also included here.

In contrast, astrong mutationis changing the specification of the sys-
tem in a radical manner. Examples are agent systems with strong mu-
tability support (B̈olöni and Marinescu 2000a), or hardware devices
modified with modchips(such as the ones transforming the XBox
game terminal in a general purpose Linux computer (XBo 2001).

2.2.2 The granularity of mutation

The granularity of the mutation refers to the size of the smallest
component being changed.Source code level mutationrefers to per-
forming changes in the source code of the applications. This is a
well known technique for interpreted languages such as Lisp or Pro-
log. Recently, many popular applications targeting the Java platform,
such as the aspect oriented programming tool AspectJ (Kiczales,
Hilsdale, Hugunin, Kersten, Palm and Griswold 2001) or code in-
strumentation systems such as JFluid (JFl 2003) are working in this
way. Machine code level mutationrequires transformations in the
executable code of fully compiled languages. The mutation can hap-
pen either on the executable file residing on the filesystem or on the
runtime executable format in the operational memory.Object level
code mutationincludes transformations at the level of compiled but
not linked libraries. Examples includecode obfuscators(Collberg,
Thomborson and Low 1997) ororthogonal persistence systems. A
special case are adaptive libraries such as Standard Template Adap-
tive Parallel Library (An et al. 2001) when one decides during run-
time the actual algorithm to be used.

The most common approach to mutation involves thecomponent
level. The coarse grain components have independent and well un-

7

derstood specifications. Interaction between components happens
through relatively well documented interfaces. Developers of com-
ponents are usually encouraged to minimize the occurrence of side-
effects (which are the most difficult aspect of source code level mu-
tation). Component based mutations for interactive applications in-
clude applets, controls, themes, plug-ins etc. The behavior or strategy
model used by many agent systems can also be the basis for compo-
nent level mutation.

2.2.3 The continuity of interactions: runtime vs. stoptime

An important classification criteria for agent mutation is the ability of
the agent to maintain the set of current interactions. In case ofrun-
time mutation if the agent continues its execution during the mu-
tation. For example, conversation protocols continue uninterrupted.
When the agent or application is stopped and restarted to perform the
mutation we talk about astoptime mutation.

There are instances when the runtime mutation is a basic require-
ment. This is the case of self-healing fault tolerant systems. For in-
teractive applications, such as media players or web browsers, per-
forming updates during runtime is a matter of user convenience. On
the other hand many software update systems require not only to stop
the application, but also to reboot the computer.

2.2.4 The initiator of the mutation

Based on the initiator of the mutation, we classify the mutable sys-
tems in three categories. The mutation isuser initiatedwhen the
change happens as a result of the direct user action. We assume
that the user is fully aware that this action will trigger a modifica-
tion of the program, such as a software upgrade or installation of a
patch. An example of a popular application is the Fortify cryptogra-
phy patch for the Netscape browser (For 1998). In some cases, the
action initiated by the user has undisclosed side effects, as in the
case ofspywareapplications. The second case is when the muta-

tion operation is initiatedexternallyby an agent. Viruses modifying
executables or anti-virus programs removing executable viruses are
examples of this approach. Finally, the mutation can be initiated by
the agent itself. This is typically the case of agents which can adapt
themselves to changing environments such as the SmartApps frame-
work (Rauchwerger et al. 2001), self-healing software or the ubiq-
uitousself-updating software. Other examples areenforced remote
updatessuch as the case of Tivo digital video recorder, the AOL In-
stant Messenger, or the Kazaa peer-to-peer file sharing network.

2.2.5 Mutation technique

Our last classification criteria is based on the techniques used to per-
form the mutation or adaptation operation. The typical weak mutabil-
ity applications useextension API’sthrough which external compo-
nents are attached to the main application. The advantage if this ap-
proach is that the main application can still retain the control through
the application interface. The plugins can run in a controlled envi-
ronment (such as the sandbox model of the Java applets). Another
advantage is that mutation through an extension API isreversible,
which is not true in general for other techniques.

Runtimecomposition API’sallow strong mutation by changing the
structure of the application. To qualify for mutation techniques, a
component model need to allow theruntime assembly of compo-
nents. For example, the C++ class model can be seen as a compo-
nent approach but it is assembled during compile time. Other com-
ponent models such as Microsoft DCOM, KDE KParts or Gnome’s
Bonobo does allow runtime assembly. The assembly model for these
components is a hierarchical document model, held in container ap-
plications. The Java class model on the other hand, allows runtime
modification, provided that custom class-loaders and special access
methods are used. For the Bond agent framework (Bon 2003), the
primitive components are the strategy objects while the assembly
model follows the multiplane state machine model of agency.

9

In absence of an explicit API, mutation can be performed through
reverse engineering. Often this approach is taken for externally initi-
ated mutations on non-cooperative agents. This is the approach taken
by viruses, but also by many legitimate applications, such as code
instrumentation (for the purpose of debugging or performance pro-
filing), or some approaches to orthogonal persistence. One can argue
that thereflection capabilitiesoffered by many modern programming
languages (Java, Python, etc) are in fact low level API’s for reverse
engineering2.

Data-driven reconfiguration techniques exploit the ambiguity be-
tween compiled code and data interpreted as how-to knowledge. Ex-
amples are knowledgebase applications such as Prolog programs,
Jess/Clips knowledgebases, or applications such as the periodic up-
date of the virus databases of anti-virus programs.

Finally, hardware mutation techniques such as modchips or Flash
updates are operating at various levels of the computer hardware.

2.3 A taxonomy of mutations

In proposing the five classification criteria, we attempted to make
them as independent as possible. Nevertheless, not all combinations
represent practical systems. The most frequently encountered com-
binations are presented in the taxonomy tree of Figure 1. This tree is
based on three of the criteria we presented (amplitude, technique and
granularity). The remaining two criteria need special treatment. Con-
tinuity is a property which depends on the effort of the implementor
- runtime mutations are usually preferred, but stoptime approaches
are sometimes employed because of simpler and safer implementa-
tion. The initiator of the mutation applies to individual changes, not
to the mutable system. The initiator of the mutation can be only a hu-
man user or a software agent; non-agent applications do not initiate

2These are, of course, usable only if code obfuscators were not used.

Mutability

Weak Strong

Extension

API
Data driven Compositional

API

Reverse

Engineering
Hardware

Component

level
Machine

code

level

Object

code level

Figure 1. A taxonomy of the most frequently encountered mutability ap-
proaches.

mutations.

2.4 Other classification approaches

The classification presented here is a result of a selection of a number
of classification methods proposed by various researchers.

Gusstavson and Assmann (Gustavsson and Assmann 2002) propose
a classification criteria for runtime software changes based thetech-
nical facetand themotivational facet.

A taxonomy of program transformations for the purpose of code ob-
fuscation is presented (Collberg et al. 1997).

3 A formal description of mutability

3.1 Agent models and mutability
11

Most researchers agree that autonomous behavior is the determining
property of agents. A significant number of constructs have been pro-
posed to describe the behavior of agents. Some of these were custom
designed to describe agent behavior (such as the BDI model), while
others were co-opted from other fields of computer science. Unfor-
tunately, no single model provides a perfect fit from specification
to implementation. There is a consensus of researchers and practi-
tioners that during the development and deployment cycle, multiple
models need to be employed.

Additional complexity arises from the fact that the perception about
the best use of some of the models have changed in the years since
they were first proposed. For example, approaches based on modal
logic (Levesque, Cohen and Nunes 1990, Kinny, Georgeff and Rao
1996, Rao and Georgeff 1995) were originally considered as imple-
mentation models. Due to the complexity of modal logic, current ap-
proaches employ the concept of modal logic mostly as a specification
methodology.

Petri nets, with their well established semantics are arguably the
best framework to verify important properties such as liveness. They
can readily capture concepts of concurrency, synchronization, con-
tention for resources and so on. However, Petri nets are not consid-
ered a good fit as direct implementation models. As specification
languages, Petri nets (in the form of colored Petri nets) are highly
expressive, but many non-technical people find the Petri net descrip-
tions less intuitive than other models (such as the UML activity or
sequence diagrams).

The original statechart model (Harel 1987) is a popular approach for
describing the behavior of real-time systems. But the expressivity of
the model coupled with a lack of consensus on its semantics makes
it rarely used as a basis for formal proofs. Statecharts have been suc-
cessfully used as execution models for real-time systems and they
have also been used for the execution models in agent systems such

as SmartAgent (Griss, Fonseca, Cowan and Kessler 2002a).

The UML activity diagrams, inspired both by Petri nets and state-
charts have proved to be useful in capturing the semantics of busi-
ness processes. In their currently standardized form they are not pre-
cise enough to be a basis of correctness proofs, although significant
research exist towards establishing a precise, unambiguous seman-
tics for UML diagrams (for example, the work of the precise UML
group). Although not employable directly as implementation models,
tools can be built which are directly generating agents from activity
diagrams (for example the DIVA tool generates directly agents for
the OpenCybele platform).

Models based on finite state machine based decomposition of active
objects represent a trade-off between expressivity and complexity.
They can be used to perform formal reasoning, but the results do not
cover the activities encapsulated in the active objects. On the positive
side, these models can directly serve as implementation models.

3.2 A multiplane state machine model of agent
behavior

We consider a formal model of agency based on the decomposition
of the behavior of the agent into a set of active objects arranged in
a multiplane state machine. In order to describe the behavior of the
agents in relation their environment, first a model of the environment
(the agent’s world) needs to be chosen.

The notation used in the following sections is summarized in the
following:

13

Table 1. Models for describing agents, and their suitability for different
stages of agent development, spe

Model / suit-
ability...

for specifica-
tion

for verifica-
tion

as an imple-
mentation
model

Modal logic
(BDI etc)

good fair (complex-
ity)

poor (com-
plexity)

Petri nets fair (complex,
not intuitive)

good fair (complex-
ity)

Statecharts good fair good (spe-
cially for
real-time
systems)

Activity and
sequence dia-
grams (UML
1 and 2)

excellent poor poor

Patterns
(reactor,
proactor,
active object)

good poor excellent

State ma-
chines

good fair (limited
expressivity)

good

K knowledgebase
S strategy
G goal or agenda
M(Q, q0, A, Σ, δ) finite state machine
σ(G,K, t) scheduling function

There are two views of the world we may consider, (a) theview of
an external observerwith a perfect knowledge of the world, who
does not need take any action to acquire its knowledge and (b) the
view of an agent, with an incomplete and imperfect knowledge who

needs to take actions to improve its knowledge about the world and
these very actions change the state of the world. When we define the
goal of the agent, we are thinking in terms of the first view, because
we want to modify the true state of the world. However, the actions
taken by the agent can be defined only in terms of the second view,
the only one available to the agent. For example, astate transformer
functionas in Fagin et. al. (Fagin, Halpern, Moses and Vardi 1995)
pp. 154 is expressed in terms of the view of an observer with perfect
knowledge. Agent strategies are expressed in terms of the view of
the agent.

3.3 Modelling agent behavior

We assume that the knowledge of the agent about the world is cap-
tured in theknowledgebaseK of the agents. We usually see the
knowledgebase of the agents as being amodel of the environment;
the knowledgebase is an approximation of measurable quantities in
the environment. However, a detailed discussion of the representa-
tion approaches is outside the scope of this paper.

Thegoal or agendaof the agentG is a boolean function applied to
the knowledgebase:

G : K → {true, false}

The goal of the agent is defined on the knowledgebase because the
environment is not accessible to the agent. Of course, this leads to
the ability of the agent reach its agenda by self-deceit (modifying the
knowledgebase without modifying the environment). Thus, assuring
that the knowledgebase is a sufficiently good approximation of the
environment is an important part of agent design.

Let K∗ be the set of possible knowledgebases andG∗ the set of pos-
sible agendas. We define astrategyof an agent A as a function which

15

maps the knowledgebase and agenda into a set ofintended actions

S : (G ∗ ×K∗) → α∗

Now, we are ready to introduce a first model of agents:
Definition 1 The AM0 model of an agent is the triplet(G,S,K)
consisting of a goalG, a strategyS and a knowledgebaseK.
Definition 2 We callconcrete agent buildingthe following prob-
lem: given an original knowledgebaseK0 and an goalG find a strat-
egy functionS(G,K) such that the agenda will be satisfied in a finite
time.

3.3.1 Decomposition in the plane. Expressing “change”

From the implementation point of view theAM0 model is a program-
mer’s nightmare, because of the large monolithic strategy functionS.
This function is responsible for handling all the events and generat-
ing all the actions during the lifetime of an agent.
Definition 3 The AM1 model of an agent is the quadruple
(G,S(1), K,M) whereG is the goal,K the knowledgebase andS(1)

is a set of strategiesS(1) = {S(1)
1 , ...S

()1
n }. The finite state machine

M(Q, q0, A, Σ, δ) has the number of states||Q|| = n. The current
state of the state machineqi determines the currently active strategy
S

(1)
i .

Property 1 AM0 andAM1 define the same equivalence classes of
agents.
We let the proof of this property to the reader. We define the
higher order agent modelsAMn recursively. Repetitive applica-
tion of the property leads to the conclusion that every agent model
AMn, ∀n ∈ N+ defines the same equivalence classes of agents as
AM0.

This property raises two questions: if all models are equivalent to
AM0, why introduce more complicated models? The other question

is that theAMn models can be trivial cases (a single plane with a
single state). We don’t have guarantees that we can make a decom-
position of the agent besides this trivial case.

The answer to the first question is that higher order models capture
the natural engineering tendency to assemble solutions from smaller
components. The second question is more subtle: one can certainly
imagine problems which cannot be decomposed in a meaningful way
(for example, none of the model variables has discrete values). What
we can say is that most problems in practice are well suited to be de-
composed into sub-problems. From an engineering point of view the
individual strategies conform to theactive object pattern(Lavender
and Schmidt 1995).

3.3.2 Expressing concurrency

TheAMn model presented in the previous chapter decomposes the
unique strategy of the modelAM0 into a number of strategies active
one at a time. In this section we propose a method for further decom-
position - we decompose the current strategy of theAMn model into
a number of strategies active concurrently.

Definition 4 We call an m-planescheduling functiona function

σ : (G∗ ×K∗ ×t) → {0, 1 . . . ,m− 1}

Thescheduling interval ofσ is a time valuetsched such that

∀n ∈ {0, 1...m− 1},∀K, ∀G,∀t,
∃∆t < tsched such thatσ(G,K, t + ∆t) = n.

This definition basically expresses our notion of a valid scheduling -
there is a time interval in which every plane will be scheduled.

Definition 5 We call amultiplane strategy Smp with the planes
S0, S1 . . . Sm − 1 with the associated scheduling functionσ a func-
tion

17

S(G,K) =

S0(G,K) if σ(G, K) = 0
S1(G,K) if σ(G, K) = 1
. . .
Sm−1(G,K) if σ(G, K) = m− 1

A multi-plane strategy expresses the idea that a strategy function can
perform actions dealing with different parts of the world. TheAMmp

1

agent model uses multi-plane strategies to express its behavior.

Definition 6 The AMmp
1 agent model is a quintuple

(G,S(1)mp, K,Mmp, σ). G is the goal, S(1)mp is a set of first
order multi-plane strategies, K is the knowledgebase. The current
behavior of the agent is determined by a multi-plane strategy
composed ofSm0

0 , Sm1
0 . . . Smm−1

0 .

Definition 7 An agent is not sensitive to the scheduling function if it
is reaching its goal under one scheduling function, it will reach its
goal under any scheduling function.

From a formal point of view, this property is restrictive and diffi-
cult to prove. Nevertheless, this is an assumption made by all the
non-real-time software currently in production. We assume that the
software is not affected by: different processor speeds, scheduling
based on the operating system choices and processor loads, external
interrupts or garbage collection sessions. All these tacit assumptions
are collected in the assumption that the agent is not sensitive to the
schedule. While this does not cover the important subclass of real-
time agents, it does cover the large majority of agents developed to-
day. In the remainder of this section we will assume that the agents
are not sensitive to the scheduling function.

We will denote a special set of states aserror statesand their associ-
ated strategies aserror handlers. We also assume that the transitions
in the finite state machine are labelled, and the labels are associated
with internal or external transition events which trigger the corre-
sponding transitions. We typically assume two labels with reserved
meanings:SUCCESSand FAILURE. We assume that a transition

event for which there is no similarly labeled transition is interpreted
as aFAILURE transition and their target states are error states. We
call a run of an agentsuccessfulif it contains noFAILURE transi-
tion.

3.4 Mutation operators and invariance
properties

We introduce a set ofmutation operationson the multiplane state
machines.

Oas Add a state.
Ors Remove a state with no incoming or outgoing transi-

tions.
Oat Add a transition between two states.
Ort Remove a transition.
Oap Add a plane.
Orp Remove an empty plane.

A change operationC is an ordered list of operationsC =
O1O2...On | Oi ∈ {Oas, Ors, Oat, Ort, Oap, Orp}. The set of oper-
ations iscomplete:

∀Mmp
1 ,Mmp

2 ∃ C, Mmp
1

C−→ Mmp
2 (1)

We can now propose a set ofinvariance properties.

Property 2 Adding a new state to the agent does not change the
behavior of the agent.

Property 3 Adding a new transition to the agent does not change
the behavior of the agent in successful runs. It might turn some failed
runs into successful runs.

Property 4 If we add a new plane to an agent and the output set of
the strategies in the new plane is disjoint from the input set of the

19

existing strategies, for all cases where the original agent achieved
its agenda, the modified agent will achieve it as well.
Corrolary 1 Adding an empty plane maintains the achievability of
the agenda.
Property 5 Removing FAILURE transitions does not affect success-
ful runs.
Property 6 Removing states unreachable from the current state of
the agent, or removing transitions going to and from these states
does not affect the behavior of the agent.
Property 7 Removing states which are reachable only through
FAILURE transitions does not affect successful runs.
One of the difficulties of the model appears when replacing a strategy
with an equivalent one. This very simple and frequently encountered
operation can be performed using only a series of operations (remove
all the incoming and outgoing transitions, followed by the removal
of the state, add the new state, re-add the transitions). Unfortunately
these series of operations break so many of the conditions of the
previous properties that no meaningful invariants can be proved. This
dilemma can not be solved only in the terms of the multiplane state
machine, but the properties of the associated strategy needs to be
considered as well.

We call strategiesS1 andS2 equivalent for a runR, if for all the
states of the run, the strategies generate the same actionS1(G,Ki) =
S2(G,Ki), Ki ∈ R. Two strategies areequivalent for an agentif they
are equivalent for all possible runs of the agent.

We introduce an additional operation:

Oxs Replace the strategyS of an inactive state with a strat-
egyS ′

For this operation we can prove the following property:
Property 8 Replacing a strategy with an strategy equivalent for the
run does not change the behavior of the agent for the run. Replacing

a strategy with a strategy equivalent for the agent does not change
the behavior of the agent.

3.5 How useful are the invariance properties?

To understand the practical usability of the properties presented in
the previous section, we examine three questions. (a) How readily
can agents be reduced to the multiplane state machine model? (b)
How likely is that the transformations satisfy the conditions of the
properties? (c) How strong are the conclusions of the properties?

Regarding question (a) we can state that a large class of agent sys-
tems can be reduced to the multiplane state machine model. Sys-
tems like Bond use theAmp

1 model directly. SmartAgent (Griss, Fon-
seca, Cowan and Kessler 2002b, Griss et al. 2002a) is using a model
very similar which can be easily equated to anAmp

1 . Generally, any
agent systems which is assembling agents based on active objects
(behaviors, strategies etc) can be readily modeled inAmp

1 . On the
other hand, systems which does not employ a component model will
likely contain a less localized execution trace. These systems can still
be modeled as state machines, but the resulting model will necessar-
ily be finer grained, and thus less likely to be useful. The secret of
successfully applying the invariance properties is that the individual
states correspond to the granularity level of the mutation.

Question (b) is more difficult without actually performing a statisti-
cal study of the ways in which mutation is used in agents. The best
we can do, is to make some observations based on typical usages.
The conditions of the properties are relatively relaxed and easily
checkable. The notable exception is Property 4, which requires the
computations of the input and output sets of components; this is very
difficult or impossible to carry out in an automatic way.

The last question is the strength of the conclusions. Some of these re-
sults seem trivial, because they promise a complete lack of change on

21

the global behavior of the agent. Certainly, adding a new state, with
no incoming transition does not change the behavior of the agent.
We call this result weak, because we know intuitively that this will
not be the final state of the changed agent. Nevertheless, results of
the presented type has proven to be very useful in many domains of
computer science. Invariant transformations are an important compo-
nent in both static (software) and dynamic (hardware) code optimiza-
tions. These techniques perform invariant transformations such as
loop unrolling, reordering of independent instructions etc. to achieve
faster program execution. In a different example, the extreme pro-
gramming paradigm (Fowler, Beck et al. 1999, Beck 1999) employs
a technique calledrefactoring which leads to improvement in the
code structure through a series of invariant operations In static (non-
runtime) software evolution, refactoring a system means to change
its structure while retaining its semantics. Refactorings are attractive
because they are a means to clean up a system, to facilitate main-
tenance and testing, and prepare functional changes. They have the
advantage that they split software evolution inharmless operations
(refactorings) whose effects can be checked by program analyzers
or regression testing, anddifficult operationsthat change semantics,
but cannot be easily regression tested. Most of the operations in the
properties presented can be thought as the equivalent of the refactor-
ing operations.

Another weakness in the results of properties are the limitations of
the multiplane state machine model. Although it supports concur-
rency, it does not take into account resource contentions. One result
of this is the rather strong set of conditions of Property 4 regarding
the disjointness of input and output sets. Moving to a model which
handles resource contentions (such as Petri nets) and developing a set
of similar properties for them would significantly extend the power
of the theory (but it would create other problems in the practical ap-
plications).

4 A software engineering perspective on
adaptive and mutable agents

With the gradual adoption of agent systems in commercial soft-
ware development it became obvious that the established software
methodologies, such as object-oriented analysis and design, are in-
adequate or insufficient for the analysis and design of agent systems.
The agent oriented software engineering (AOSE) field emerged to
fill this gap.

Some proposed methodologies, such as (Wooldridge, Jennings and
Kinny 2000), are building upon the existing object oriented method-
ologies and techniques, e.g., design patterns. There are a number
of efforts underway to extend the UML language and the associ-
ated software methodology for agent oriented programming ((Odell,
Parunak and Bauer 2000, Caire, Coulier, Garijo, Gomez, Pavon,
Leal, Chainho, Kearney, Stark, Evans and Massonet 2001, Arai
and Stolzenburg 2002)) or for modeling the knowledge-base of the
agents (Cranefield, Haustein and Purvis 2001, Heinze and Sterling
2002). Many methodologies are drawing inspiration from the Belief-
Desire-Intention model (Kinny et al. 1996, Padgham and Winikoff
2002). Other approaches are building on techniques for knowledge
engineering (Brazier, Keplicz, Jennings and Treur 1995) or on for-
mal methods and languages, e.g., the extensions for the Z lan-
guage (Luck, Griffiths and d’Inverno 1997). The Tropos methodol-
ogy (Bresciani, Perini, Giorgini, Giunchiglia and Mylopoulos 2001)
is adapting ideas from techniques developed for business process
modeling and reengineering (the i* notation (Yu and Mylopoulos
1994)), at the same time retaining the mentalistic notions of belief-
desire-intention and related models. Some agent systems have de-
veloped their own analysis and design approaches, targeted to the
particularities of the agent system such as Cassiopeia.

The introduction of mutable agents creates new problems for the

23

agent analysis and design methodologies. The analysis step needs
to take in consideration of the possibility of the agent being signif-
icantly modified during its lifetime. The design step needs to offer
information about which agents should be mutated, at what moment
of their life-cycle, and what kind of mutation should be performed.
Generally, the methodological discipline is more important for the
case of mutable agents.

We now discuss the effect of mutable agents on one of the popular
agent design methodologies, the Gaia approach (Wooldridge et al.
2000). The Gaia methodology, with its roots in object oriented ap-
proaches such as FUSION, is a good fit for FIPA compliant agent
systems such as Bond,as long as they do not mutate. In fact, the
authors of (Wooldridge et al. 2000) explicitly spell out among the
applicability requirements that (a) the organizational structure of the
system is static and (b) the abilities of the agents and the services
they provide are static, do not change during runtime. Several ex-
tensions proposed to the Gaia methodology extend the scope of the
methodology. The ROADMAP methodology (Juan, Pearce and Ster-
ling 2002) extends Gaia with formal models of knowledge, role hi-
erarchies and representation of social structures. It also extends the
permission attributes to allow roles to change the definition or at-
tributes of other roles, although it does not cover the issue of how
the modified agents are represented. Our goal is to investigate the
feasibility of the removal of these constraints and the changes in the
methodology implied by this removal.

We emphasize that no methodology can handle randomly mutating
agents. Fortunately, the most frequently encountered operations can
be classified in a set of well-understood classes:

• Adding new functionality (roles) to the agent.

• Removing functionality from an agent

• Adapting the agent to new requirements or a different set of avail-
able resources.

• Transferring a functionality from an agent to a different agent

• Splitting an agent (for instance for the purpose of load balancing).

• Merging agents

4.1 Adding new functionality to the agent

In terms of the Gaia methodology, adding new functionality to the
agent is equivalent to saying that the agent will be able to function
in new roles, while maintaining the previously existing ones. More
formally, considering the reconfiguration evente, we can say that if
the agent was able to fulfill a set of rolesR = {r1, . . . rn} before the
event, and after the event, it will be able to fulfill a set of rolesR′

with R ⊂ R′.

The corresponding structural definition in theAMmp
1 model, em-

ployed by the Bond system, is that the extending functionality is an
agent surgery operation, which transforms agentA to agentA′ and
for every run R where the agentA is successful, the agentA′ will be
successful as well. In (B̈olöni and Marinescu 2000b), we demon-
strated that elementary surgical operations, such as adding states,
adding transitions, and removing transitions labelledFAILURE,
maintain this property. In addition, the surgical operation of adding a
plane can also maintain this property subject to a set of disjointness
conditions.

There is a good mapping between the Gaia concept of roles and the
structural implementation. Just as the agent might not be taking on a
certain role, although it would be qualified to do it, the agent might
not perform certain runs. Thus we can say that through adding new
functionality to the agent by agent surgery, the agent acquires the

25

ability to fulfill new roles. The nature of these roles needs to be
clearly spelled out.

The attributes associated with the roles in the Gaia methodology will
also be maintained: theresponsibilities, permissions, activities, and
protocols. As these attributes are applied to the agent in a cumulative
way, an important goal of the analysis process of an agent surgery
operation is to determine that there is no conflict between the at-
tributes of the agents, that is, the invariant of the agents are properly
maintained.

A different question, which needs to be answered by the analysis
process, is the opportunity and moment in the agent life-cycle when
the new functionality needs to be added to the agent. The answer to
this question is not an explicit point in the life-cycle of the agent,
but a trigger, a specific set of conditions under which the mutation
becomes desirable.

While one might argue that the agents can be designed so that they
can fulfill all the possible roles needed during its lifetime. This ar-
gument ignores the cost associated with having such a multifaceted
agent. To put this in a different context, not all the workers of a com-
pany need to be qualified for all the professions. Nevertheless, it is
a frequent occurrence that a worker needs to be sent to additional
training so that he or she can fulfill new roles. In many cases, these
events can be quite accurately predicted and even planned. Similar
considerations apply to agents.

For a concrete example of how the diagrams of the Gaia method can
be annotated to handle reconfigurable agents, let us turn to the air-
line industry for an example. During a flight, the number of (human)
agents on the airplane are playing a set of well defined roles: pas-
senger, pilot, stewardess and so on. There are, however, exceptional
situations, such as an emergency landing in which cases some of the
passengers are required to take on new roles, such as to assist the

crew in opening the doors.

The agent model diagram of this situation is shown in Figure 2. In
this approach, the exceptional situation is modeled as the mutation
trigger. The new state of the agent is modeled in the Gaia agent di-
agram as a new agent type. Mutated agent types are marked in the
diagram with the letter M. The mutation operation is specified using
a thick arrow with the ”+” label attached (indicating that the mutation
retains all the previous roles of the agent3).

(M)EmergencyDoorOpenerAgent

PassengerAgent

Customer DoorOpener

80..140

5..8Trigger:

EmergencyLanding
+

Figure 2. Agent model for an airplane emergency situation

Another diagram which needs to be adapted to handle the needs of
the reconfigurable agents is the acquaintance model. While the Gaia
acquaintance model does not deal with the details of the interaction,
mutations on the agents can frequently change the acquaintances as
well. The example presented in Figure 3 also deals with a fictional
situation on an airplane. The sudden symptoms of sickness on some
passengers and a stewardess triggers a request from a stewardess
which makes a passengers step into the role of a doctor. This cre-
ates a new interaction pattern, between the doctor and the sick stew-

3Strictly speaking, the ”+” label is not needed on the agent model diagram, because
the operation can be inferred from the role inheritance lines. It is however useful
on the other diagrams where the role inheritance is not present.

27

ardess and the sick passenger. These acquaintance lines would have
not existed if the mutation would not have happened.

PassangerAgent

Trigger:

has(Symptoms)

(M)PassengerDoctorAgent

(M)SickPassangerAgent

StewardessAgent

(M)SickStewardessAgent

Trigger:

has(Symptoms)

Trigger:

has(MD) and

isRequested

?
+

?

Figure 3. Interaction diagram the situation of a sickness on an airplane

4.2 Removing functionality from an agent

There can be several reasons for removing functionality from an
agent. One of them is the course-grain equivalent ofgarbage col-
lecting. At some moment in the agent’s life-cycle we might find that
some of the roles of the agent will never be activated. The ability
to perform roles which will not be activated usually implies some
kind of waste of resources. Examples are memory and disk space
occupied, network bandwidth by polling for messages which will
never arrive, processor time for maintaining data structures which
will never be queried. It is therefore useful to periodically perform
a role-based garbage collection process on the agent. While the pro-
cess is related to the garbage collection process in programming lan-
guages automated programming languages such as Java, there are
also some specific differences.

• The garbage collection process happens at the level of compo-
nents and subsections of the knowledgebase (instead of allocated

memory chunks).

• Active components (code) can be also garbage collected.

• The internal structure of the agents can greatly simplify the
garbage collection process. For example, for agents based on a
multiplane state machine model, the garbage collection process
can be reduced to a reachability analysis on the state machines.

• The probability that a garbage collection step will recover some
resources is generally lower, then in the case of garbage collect-
ing memory in applications. Moreover, the benefits of role-based
garbage collection will tend asymptotically to zero, unless some
other mutation operations in the meanwhile new components.

The role-based garbage collection can happen in any time during
the agent’s lifetime. However, the life cycle of agents provides some
natural points where the side effects of the garbage collection process
are minimal. Such points are: after every transition (for state machine
or Petri net based agents), before checkpointing, before moving (for
mobile agents) and after every mutation.

Another scenario for removing functionality from agents, is to trig-
ger specialization in groups of large agents. In this case an agent fac-
tory generates agents with the ability to perform a set of tasks. The
agents are then specialized through removing their ability to perform
a certain subset of tasks (Figure 4). The specialization mutation can
be either performed under the control of a remote agent, or it can be
performed by the agent itself, based on the initial experiences of its
life-cycle. This approach is very natural for distributed solution of
problems with the ”divide and conquer” approach, such as the pop-
ular Contract Net protocol (Smith 1980). Another application is the
emergence of communication patterns. There is solid evidence that
the visual and auditory pathways of mammals are generated using a
similar method in the early stages of life. The hardware industry had

29

chosen a similar approach for the zone codes of DVD drives. The
DVD drives are manufactured as generic devices, which are capa-
ble to play DVDs from any zone. During the first several uses, the
DVD drives decides on a particular zone coding, and it permanently
removes its own ability to play DVDs from other zones.

Execution Communication
User

Interface Scheduler

A

(M)Computation

Steering

(M)Application

Wrapper

Generic Agent

--

Figure 4. Specialization of generic agents through removal of roles.

4.3 Adapting to new requirements

Another very important subclass of agent mutations are when an
agent is reconfigured and adapts to changing environment. A typi-
cal case is when the reconfiguration is needed after migration to a
new host. Another example, which does not involve migration, when
an agent running on a host computer needs to adapt between the al-
most complete control over resources (when the user is not logged
in) with only minimal resource allowances (when the user is logged
in and working).

Expressed in the terms of the Gaia methodology, the agents imple-
ment the same set of roles with a different set of attributes.

• The responsibilitiesand theprotocols implemented by the role

will remain unchanged during this operation4.

• The permissions associated with the role will be different. The
Gaia methodology collects under the concept ofpermissionsno-
tions such as resource usage and security permissions. The analy-
sis process assures that the permissions required by the agent after
the transformation are satisfied.

The goal of the agent analysis and design is to determine the op-
portunity and the nature of the agent mutation. The opportunity for
migration can be expressed in terms of hard and soft triggers. Ahard
trigger is a boolean function which tells us if an agent cannot fulfill
the requirements of its role in a given context. Asoft trigger, on the
other hand, is a cost-benefit analysis of the agent which might sug-
gest a mutation if this leads to an increased performance of an agent.
Generally, hard triggers are leading to changes with implementations
with lower resource usage, while soft triggers are biased towards
implementations with higher performance and associated higher re-
source (permission) requirements.

User interface

Portable

Platform bound

Java

Python

Graphical

UI

Comman

d line UI

Java

Widgets

Native

widgets

Swing

AWT

Eclipse

SWT

Figure 5. Design decision tree

The adaptation scenarios can be described in the terms of a design
decision tree. In the Gaia approach (as in many other software en-

4This is a relatively crude approximation which assumes that the functionality of
an application is completely specified by the original specification.

31

gineering approaches) the designer moves from an initial, very high
level specification, to an increasingly more specialized choice. These
choices for adesign tree, which will be assumed to be a separate one
for every role the agent can play. For the example given in Figure
5, The choices are all valid approach to create a user interface of
the program. During the design process, a set of decisions are made
to determine the permissions (in the resource usage sense) of the
program. The leaf nodes typically correspond to the actual imple-
mentation of a program, but of course, not all the potential choices
are actually implemented. For an agent which does not require re-
configuration, only one branch of the design tree is explored. Once
the decision is made, the design tree is not used in the actual opera-
tion of the agent, although it might be kept, implicitly in the design
documentation.

For a reconfigurable agent, more than one leaf node is fully instanti-
ated. We need to emphasize that this involves the same analysis and
programming steps as for any other agent. However, in this case, the
design tree has a practical utility during the lifetime of the agent.
Let us assume an agent which is executed with a Swing based, fully
graphic user interface, and needs to be migrated to a Personal Digital
Assistant. A simple check of the permissions of the role will tell us
that the current implementation will not work and a reconfiguration
operation is needed.

The role, therefore will be moved backwards in the design tree. At
every steps releasing the assumptions made at the given point, until
the assumptions on the current point in the tree do no conflict with
the new context of the agent. Normally, however, we are usually at
a more or less abstract specification level, which on its own, is not
runnable. Therefore, we will start to move toward the leafs of the de-
cision tree again, this time however making decisions according to
the new context. Our goal is to reach a fully implemented leaf node
which conforms to the current set of permissions. The required trans-
formation will be, therefore, one which transforms from the original

design choice into a new design choice.

4.4 Splitting and merging agents

Splitting and merging agents are operations which are surprisingly
easily implementable in many agent systems. Moreover, very com-
pelling application scenarios can be found to justify them. The rea-
son why this technique is not more frequently used in applications
is because there is no accepted software engineering methodology
to specify them. Also, splitting and merging is not a mechanically
intuitive concept such as agent mobility5.

The software engineering process for the splitting and merging
agents involves most of the notions presented in the previous sec-
tions. We need to identify thetriggersof the split and merge muta-
tion. The agent model identifies agent types involved into the split
and merge operations.

In Figure 6 we present an agent model for an agent which represents
a military unit6. The military unit can split into two components, the
reconnaissance unit and the cover unit. This implies a distribution of
the roles between the two split units. We should note that some of
the roles (such as the communication role) will be are replicated in
the two split units.

5Agent mobility, in practice involves: stopping an agent, serializing it, transferring
data and code over the network, signalling back that the transfer was successful,
destroying the agent in the original location, restarting it on the new location. It is
quite obvious that this is a complex, and not entirely intuitive process which has
little to do with movement in the mechanical sense. However, the power of the
metaphor made people accept the notion of mobile agents easier because most of
us can visualize it.
6Many readers might consider that a military unit is better modeled using an agent
society. This, however, a matter of choice. From a point of view of battlefield
simulation, small military units can be more conveniently modeled as a single
agent. Many researchers pointed out the significant similarities between modeling
individual agents and modeling agent societies.

33

We have introduced two new elements in the agent model, the split
operator and the merge operator. Each of them are labelled with the
trigger of the split and merge operations respectively.

Reconnaissance Fight Cover Communicate

A

(M)B (M)C

S

M

Figure 6. The agent model for splitting and merging operations

5 Conclusions

Mutable and reconfigurable software is increasingly more popular. It
is driven by the needs of users to have their applications adapt to the
changing global or local environment. These requirements appear in
an amplified form for software agents. The software environment of
agents is much more dynamic then the relatively controlled environ-
ment in which server applications or desktop programs live.

Reconfigurable agents however, are bringing additional challenges
to the already complex problems of modeling agents and reasoning
about them, and the emerging field of agent based software engineer-
ing. We found it interesting, that the actual implementation of muta-
ble and reconfigurable agents is the field which seems the most ad-
vanced today - in this case, the practical implementations run ahead
the theoretical foundations.

In this chapter we provided a review of the field of mutable and re-
configurable agents from various perspectives. We attempted to or-
ganize the various implementation methods by providing a classifi-
cation for mutable and reconfigurable agents - at the same time tying
it to the larger field of reconfigurable software. We discussed the
various approaches which can provide a formal model for reasoning
about mutable agents. We presented some results based on a multi-
plane state machine model, and discussed their strengths and limita-
tions. Finally, we discussed the challenges posed by mutable agents
for the agent oriented software engineering and have presented an
approach for extending Gaia, one of the popular AOSE approaches
towards handling mutable agents.

References

An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas,
N., Amato, N. and Rauchwerger, L.: 2001, STAPL: An adap-
tive, generic parallel C++ library,Proceedings of the 14th
Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC).

Arai, T. and Stolzenburg, F.: 2002, Multiagent systems specifica-
tion by UML statecharts aiming at intelligent manufacturing,
Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, ACM Press, pp. 11–
18.

Barber, K. S., Goel, A. and Martin, C. E.: 2000, Dynamic adaptive
autonomy in multi-agent systems,JETAI12(2), 129–147.

Beck, K.: 1999, Extreme Programming Explained: Embrace
Change, Addison Wesley.

Bölöni, L. and Marinescu, D. C.: 2000a, Agent surgery: The case
for mutable agents,Proceedings of the Third Workshop on Bio-

35

Inspired Solutions to Parallel Processing Problems (BioSP3),
Cancun, Mexico.

Bölöni, L. and Marinescu, D. C.: 2000b, A component agent model -
from theory to implementation,Second Intl. Symp. From Agent
Theory to Agent Implementation in Proc. Cybernetics and Sys-
tems, Austrian Society of Cybernetic Studies, pp. 633–639.

Bon: 2003, Bond webpage, URLhttp://bond.cs.ucf.edu .

Brazier, F., Keplicz, B. D., Jennings, N. R. and Treur, J.: 1995, For-
mal specification of multi-agent systems: A real-world case,
First International Conference on Multi-Agent Systems (IC-
MAS’95), AAAI Press, San Francisco, CA, USA, pp. 25–32.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and Mylopou-
los, J.: 2001, A knowledge level software engineering method-
ology for agent oriented programming,in J. P. M̈uller, E. An-
dre, S. Sen and C. Frasson (eds),Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, ACM Press, Mon-
treal, Canada, pp. 648–655.

Caire, G., Coulier, W., Garijo, F. J., Gomez, J., Pavon, J., Leal, F.,
Chainho, P., Kearney, P. E., Stark, J., Evans, R. and Massonet,
P.: 2001, Agent oriented analysis using Message/UML,AOSE,
pp. 119–135.

Collberg, C., Thomborson, C. and Low, D.: 1997, A taxonomy of ob-
fuscating transformations,Technical Report 148, Department
of Computer Science, University of Auckland.

Cranefield, S., Haustein, S. and Purvis, M.: 2001, UML-based ontol-
ogy modelling for software agents.

Decker, K., Sycara, K. and Williamson, M.: 1996, Intelligent adap-
tive information agents,in I. Imam (ed.),Working Notes of the
AAAI-96 Workshop on Intelligent Adaptive Agents, Portland,
OR.

Fagin, R., Halpern, J. Y., Moses, Y. and Vardi, M. Y.: 1995,Reason-
ing about knowledge, MIT Press.

For: 1998, Fortify for netscape, URLhttp://www.fortify.
net .

Fowler, M., Beck, K. et al.: 1999,Refactoring: Improving the Design
of Existing Code, Addison Wesley.

Griss, M. L., Fonseca, S., Cowan, D. and Kessler, R.: 2002a, SmartA-
gent: Extending the JADE agent behavior model,Proceedings
of the Agent Oriented Software Engineering Workshop, Confer-
ence in Systemics, Cybernetics and Informatics, ACM Press.

Griss, M. L., Fonseca, S., Cowan, D. and Kessler, R.: 2002b, Us-
ing UML state machines models for more precise and flexible
JADE agent behaviors,Proceedings of the Agent Oriented Soft-
ware Engineering Workshop, AAMAS, ACM Press.

Gustavsson, J. and Assmann, U.: 2002, A classification of runtime
software changes.

Han, Y., Sheth, A. and Bussler, C.: 1998, A taxonomy of adaptive
workflow management,CSCW-98 Workshop – Towards Adap-
tive Workflow Systems.

Harel, D.: 1987, Statecharts: A visual formalism for complex sys-
tems,Science of Computer Programming8(3), 231–274.

Heinze, C. and Sterling, L.: 2002, Using the uml to model knowl-
edge in agent systems,Proceedings of the first international
joint conference on Autonomous agents and multiagent sys-
tems, ACM Press, pp. 41–42.

JFl: 2003, JFluid web page, URLhttp://www.sunlabs.com/
projects/jfluid .

37

Juan, T., Pearce, A. and Sterling, L.: 2002, ROADMAP: Extending
the Gaia methodology for complex open systems,Proceedings
of the first international joint conference on Autonomous agents
and multiagent systems, ACM Press, pp. 3–10.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W. G.: 2001, An overview of AspectJ,Lecture Notes
in Computer Science2072, 327–355.

Kinny, D., Georgeff, M. and Rao, A.: 1996, A methodology and
modelling technique for systems of BDI agents,in W. V.
de Velde and J. W. Perram (eds),Agents Breaking Away: Pro-
ceedings of the Seventh European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, (LNAI Volume 1038),
Vol. 1038 ofLNAI, Springer-Verlag, p. 56.

Lavender, R. G. and Schmidt, D. C.: 1995, Active object: an object
behavioral pattern for concurrent programming,Proceedings of
Pattern Languages of Program Design,.

Levesque, H. J., Cohen, P. R. and Nunes, J. H. T.: 1990, On act-
ing together,Proceedings of the Eighth National Conference
on Artificial Intelligence, American Association for Artificial
Intelligence, pp. 94–99.

Luck, M., Griffiths, N. and d’Inverno, M.: 1997, From agent the-
ory to agent construction: A case study,in J. P. M̈uller, M. J.
Wooldridge and N. R. Jennings (eds),Proceedings of the
ECAI’96 Workshop on Agent Theories, Architectures, and Lan-
guages: Intelligent Agents III, Vol. 1193, Springer-Verlag: Hei-
delberg, Germany, pp. 49–64.

Luyten, K., Vandervelpen, C. and Coninx, K.: 2002, Migratable user
interface descriptions in component-based development,Pro-
ceedings of the 9th International Workshop on Design, Specifi-
cation, and Verification of Interactive Systems.

Odell, J., Parunak, H. and Bauer, B.: 2000, Extending UML for
agents,in G. Wagner, Y. Lesperance and E. Yu (eds),Agent-
Oriented Information Systems Workshop at the 17th National
conference on Artificial Intelligence, pp. 3–17.

Padgham, L. and Winikoff, M.: 2002, Prometheus: A methodology
for developing intelligent agents,Proceedings of the first inter-
national joint conference on Autonomous agents and multia-
gent systems, ACM Press, pp. 37–38.

Pribeanu, C., Limbourg, Q. and Vanderdonckt, J.: 2001, Task mod-
elling for context-sensitive user interfaces,Lecture Notes in
Computer Science2220, 49–??

Rao, A. S. and Georgeff, M. P.: 1995, BDI agents: from theory to
practice,in V. Lesser (ed.),Proceedings of the First Interna-
tional Conference on Multi–Agent Systems, MIT Press, San
Francisco, CA, pp. 312–319.

Rauchwerger, L., Amato, N. M. and Torrellas, J.: 2001, SmartApps:
An application centric approach to high performance comput-
ing, Proc. of the 13th Annual Workshop on Languages and
Compilers for Parallel Computing (LCPC), August 2000, York-
town Heights, NY., pp. 82–92.

Smith, R. G.: 1980, The contract net protocol: High-level communi-
cation and control in a distributed problem solver,IEEE Trans-
actions on Computers29(12), 1104–1113.

Thevenin, D. and Coutaz, J.: 1999, Plasticity of user interfaces:
Framework and research agenda.

van der Aalst, W. M. P.: 1999, Generic workflow models: How to
handle dynamic change and capture management information?,
Conference on Cooperative Information Systems, pp. 115–126.

39

Varela, C. and Agha, G.: 2001, Programming dynamically recon-
figurable open systems with SALSA,ACM SIGPLAN Notices
36(12), 20–34.

Wooldridge, M., Jennings, N. R. and Kinny, D.: 2000, The Gaia
methodology for agent-oriented analysis and design,Au-
tonomous Agents and Multi-Agent Systems3(3), 285–312.

XBo: 2001, Xbox on linux, URL http://xbox-linux.
sourceforce.net .

Yu, E. S. K. and Mylopoulos, J.: 1994, From E-R to “A-R” - mod-
elling strategic actor relationships for business process reengi-
neering,in P. Loucopoulos (ed.),Proceedings of the13th In-
ternational Conference on the Entity-Relationship Approach,
Springer, Manchester, UK, pp. 548–565.

