Software engineering challenges for mutable agent
systems

Ladislau Bo6loni
Yongchang Ji

Majid Ali Khan
Dan C Marinescu

Xin Bai Guogiang Wang

School of Electrical and Computer Engineering
University of Central Florida
Orlando, Florida, 32816, USA
Iboloni@cpe.ucf.edu, ma680109@pegasus.cc.ucf.edu,
{xbai, gwang, yji, dcmy@cs.ucf.edu

ABSTRACT

In this paper we address mutability, an important feature of
agent societies operating in heterogeneous computing envi-
ronments. We present the Bond system, a FIPA compliant
agent framework, with support for mutability. We propose a
set of extensions to the Gaia agent-oriented design and anal-
ysis methodology. These extensions allow the methodology
to handle certain important classes of mutable systems.

1. MUTABILITY

Mutation is a term used in genetic algorithms and evolution-
ary computing to indicate random changes of the chromo-
somes. Throughout this paper we use the term mutation to
indicate controllable and well specified changes of a program
at runtime. The executable of a mutable program could be
self-modifiable or could be modified by an external entity.

As early as 1975, the Microsoft Basic interpreter for Altair
contained self-modifying code, to fit into the limited ad-
dress space available. Reconfigurable and mutable systems
are an increasingly frequent occurrence in today’s comput-
ing landscape. The ubiquitous web browser consists of a
basic framework with multiple API’s allowing the user to
configure and extend the browser. Extensions such as plug-
ins, codecs, drivers, applets, controls, and themes change
the functionality of the browser, e.g., allow the user to view
new media formats. Extensions are installed and uninstalled
dynamically during the lifetime of the application. Exten-
sions are usually developed by a third party. In addition to
the desired changes of functionality, an extension may have
undesirable side effects. For example, it may contain spy-
ware. Spyware is code built into an extension to report back
to some external entity usage statistics and/or private user
data. Occasionally, viruses and worms make use of the very
same extension API’s to penetrate a system.

While web browsers are the quintessential user driven appli-
cations, reconfiguration and mutability are even more im-
portant for autonomous agents. Several agent systems sup-
porting mutability emerged recently. Varela and Agha [9]
proposed the SALSA language based on the actor program-
ming paradigm. The SALSA language is compiled to Java
and targets dynamically reconfigurable Internet and mo-
bile computing applications. The SmartApps approach pro-
posed by Rauchwerger [8] takes an approach of ”measure,
compare, and adapt if beneficial” for scientific applications.
Restructuring occurs during various stages from the selec-
tion of the algorithm to compiler parameter tuning. The
Bond agent system [3, 11] was one of the first Java based
agent systems with support for strong mutability. A series of
primitive operations performed on a multi-plane state ma-
chine supports reconfigurability of Bond agents. This mu-
tation technique is called agent surgery [1].

Reconfigurability presents both an opportunity for develop-
ing more powerful software systems but can be also a Pan-
dora’s box. One way to study the effects of a reconfiguration
is to identify and enforce invariants which are maintained
during an operation. One such invariant is that a success-
ful run in the original agent should also be successful in the
modified agent. Other invariants can cover resource man-
agement, error handling, and security aspects.

Reconfigurable and mutable agents have a special appeal for
highly heterogeneous systems where mutation and mobility
are strongly coupled with one another. For instance, the
resources available on a laptop and on a cell-phone differ
so widely that agents cannot migrate from one to the other
without being significantly reconfigured. The solution is to
migrate only part of an agent to the new location and re-
place some of its components with ones compatible with the
new environment. Of course, the systems must support a
common environment, e.g., Java.

The remainder of this article is organized as follows. The
Bond agent system, a FIPA compliant agent system with
support for mutation is presented in Section 2. In Section
3, we discuss how one of the popular agent design method-
ologies, Gaia, can be extended to support mutable agents.
A summary is presented Section 4.

2. THE BOND AGENT SYSTEM

The Bond agent system (currently at version 3) is a FIPA
compliant agent development environment. It is built on
top of the Java Agent Development Environment (JADE)
framework and extends its functionality in several ways in-
cluding: ease of development using a declarative approach,
better introspection capabilities, and support for mutabil-
ity through agent surgery. The other important component
of an agent is its knowledgebase which contains the agents
knowledge about the world and about itself, including its
agenda. Bond knowledgebase is implemented using the the
Protégé-2000 ontology editor. All Bond agents share a ba-
sic core ontology. Individual agents can also use custom
domain-specific and agent-specific ontologies. The salient
features of Bond system are:

e Support for development of behaviours (called strate-
gies) for multi-plane state machine

e Support for creating and modifying the multiplane state
machine using a declarative approach using the Python
based Blueprint agent definition language .

e Graphical User interface for monitoring state machine’s
current status

e Support for Belief, Desire, Intention (BDI) model

A high level architecture of the Bond system is shown in Fig-
ure 1. The input provided to the Bond system the descrip-
tion of the agent in the Blueprint agent description language.
Each state of this state machine has associated a strategy
from strategy database. To enable automatic runtime as-
sembly or mutability, Bond strategies extend the Jade be-
haviors with meta information concerning their roles, re-
source utilization, pre- and post-conditions, and other data.
The Bond strategy database is an indexed and machine
searchable collection of strategies. The multi-plane state
machine of the individual agent is assembled from strategies
pre-existent in the strategy database based on a description
in Blueprint.

2.1 The Blueprint agent description language
A Blueprint specification is a set of declarative statements
that describe the internal structure of the agent, i.e. its
knowledgebase, set of planes, set of states within each plane
and the transitions between these states etc. Besides de-
scribing the initial multi plane state machine configuration
of the agent, it can also be used to specify surgical operations
on the agent by adding or removing states/transitions from
the state machine by modifying the blue print description.

An sample Blueprint description for a component of a task
engine is presented below. The structure of the multi plane
state machine constructed based upon this specification is
shown in Figure 2.

includeKnowledgeBase ("TaskComputation")

createPlane ("ApplicationScheduler")
s = bond.strategydb.GreedyApplicationScheduler

(agent, ’Computation’)
addFirstState(s, ’scheduler’)
s = bond.strategydb.DummyStrategy(agent)
addState(s,’dummy’)
addTransition(’scheduler’,’dummy’ ,SUCCESS)
addTransition(’scheduler’,’dummy’ ,FAILURE)

createPlane("IntentionExecutor")

s = bond.strategydb.SwingExecutor (agent)

addFirstState(s, ’swingExecutor’)

s = bond.strategydb.WaitAndTransitionStrategy

(agent, 1000, SUCCESS)

addState(s,’transition’)

s = bond.strategydb.DummyStrategy (agent)

addState (s, ’dummy’)

addTransition(’swingExecutor’,’transition’
»SUCCESS)

addTransition(’swingExecutor’,’dummy’ ,FAILURE)

addTransition(’transition’,’swingExecutor’
,SUCCESS)

2.2 Mutations in Bond: Agent surgery

Agent surgery is a technique to change the behavior of a
running agent. As noted earlier the structure of an agent is
specified using by a Blueprint. Runtime modifications, add
or remove states, and transitions from a plane, can be per-
formed by surgical operations of this structure. For exam-
ple, the Blueprint presented above specifies an agent whith
a Swing based user interface. To adapt this agent for a de-
vice which does not support the Swing API we can perform
the surgery described by the following surgical Blueprint:

setPlane("IntentionExecutor")

s = bond.strategydb.AWTExecutor (agent)
addFirstState(s, ’awtExecutor’)
addTransition(’awtExecutor’,’transition’,SUCCESS)
addTransition(’awtExecutor’,’dummy’ ,FAILURE)
addTransition(’transition’, ’awtExecutor’,SUCCESS)

removeTransition(’swingExecutor’,’transition’
,SUCCESS)

removeTransition(’swingExecutor’,’dummy’ ,FAILURE)

removeTransition(’transition’,’swingExecutor’
,SUCCESS)

removeState (’swingExecutor’)

The surgery modifies the IntentionExecutor plane. The
Swing execution engine is seamlessly replaced by AWT ex-
ecution engine. Such surgical operations will frequently be
required to make an agent conform to a volatile environment
in which it has to operate.

3. SOFTWARE ENGINEERING CHALLEN-
GES FOR MUTABLE AGENT SYSTEMS

As agent systems migrate from research laboratories to the
world of commercial software development and enterprise
computing, new design and analysis techniques must be de-
veloped. It becomes increasingly clear that the established
software methodologies, such as object-oriented analysis and
design, are inadequate or insufficient for the analysis and de-
sign of agent systems. Software engineering methodologies
specifically designed for agent systems become necessary.

Agent framework

—‘ Knowledge-base Active components Agent N
Agent Bond description ?
JavaSpaces s Bond agent
e
I 1 Multiplane /
Relational DB Bond state
backend Bond ontology \—— strategy machine Python | Jess
I [framework
CLIPS/Jess
backend JADE behavior JADE agent
Protege-2000 fr b f b
Persistent
Storage JADE services: "
directory, AMS JADE messaging coranlr'\r?LIJ/liliS;ion
]

Figure 1: The design of the Bond system

scheduler

dummy

* Suo cess/Fanura-—Vé GridScheduler

IntentionExecutor

dummy

Success-\
?4— Failur_fSuccess—PC)

swingExecutor

transition

Figure 2: The finite state machine model: Active states are grayed out

Some of these new developments, such as [5, 7, 10], are
building upon the existing object oriented methodologies
and techniques, e.g., design patterns. Other approaches are
building on techniques for knowledge engineering [4] or on
formal methods and languages, e.g., the extensions for the Z
language [6]. Some agent systems have developed their own
analysis and design approaches, targeted to the particulari-
ties of the agent system such as Cassiopeia.

The introduction of mutable agents creates new problems for
the agent analysis and design methodologies. The analysis
step needs to take in consideration of the possibility of the
agent being significantly modified during its lifetime. The
design step needs to offer information about which agents
should be mutated, at what moment of their lifecycle, and
what kind of mutation should be performed. In fact, the
methodological discipline is more important for the case of
mutable agents.

We now discuss the effect of mutable agents on one of the
popular agent design methodologies, the Gaia approach [10].

The Gaia methodology, with its roots in object oriented ap-
proaches such as FUSION; is a good fit for FIPA compliant
agent systems such as Bond, as long as they do not mutate.
In fact, the authors of [10] explicitly spell out among the
applicability requirements that (a) the organizational struc-
ture of the system is static and (b) the abilities of the agents
and the services they provide are static, do not change dur-
ing runtime. Our goal is to investigate the feasibility of the
removal of these constraints and the changes in the method-
ology implied by this removal.

We emphasize that no methodology can handle randomly
mutating agents. We limit our discussions to the two most
important mutation operations:

e Adding new functionality (roles) to the agent.
e Adapting the agent to new requirements or a different

set of available resources.

Space limitations prevent us to address important scenarios,

such as: removing functionality, splitting agents, or merging
agents.

3.1 Adding new functionality to the agent

In terms of the Gaia methodology, adding new functionality
to the agent is equivalent to saying that the agent will be
able to function in new roles, while maintaining the previ-
ously existing ones. More formally, considering the recon-
figuration event e, we can say that if the agent was able to
fulfill a set of roles R before the event, and after the event,
it will be able to fulfill a set of roles R’ with R C R'.

The corresponding structural definition in the AM{"? model,
employed by the Bond system, is that the extending func-
tionality is an agent surgery operation, which transforms
agent A to agent A’ and for every run R where the agent A
is successful, the agent A’ will be successful as well. In [2],
we demonstrated that elementary surgical operations, such
as adding states, adding transitions, and removing transi-
tions labelled with FAILURE, maintain this property. In
addition, the surgical operation of adding a plane can also
maintain this property subject to a set of disjointness con-
ditions.

There is a good mapping between the Gaia concept of roles
and the structural implementation. Just as the agent might
not be taking on a certain role, although it would be qualified
to do it, the agent might not perform certain runs. Thus we
can say that through adding new functionality to the agent
by agent surgery, the agent acquires the ability to fulfill new
roles. The nature of these roles needs to be clearly spelled
out.

The attributes associated with the roles in the Gaia method-
ology will also be maintained: the responsibilities, permis-
sions, activities, and protocols. As these attributes are ap-
plied to the agent in a cumulative way, an important goal
of the analysis process of an agent surgery operation is to
determine that there is no conflict between the attributes of
the agents, that is, the invariant of the agents are properly
maintained.

A different question, which needs to be answered by the
analysis process, is the opportunity and moment in the agent
lifecycle when the new functionality needs to be added to the
agent. The answer to this question is not an explicit point
in the lifecycle of the agent, but a trigger, a specific set of
conditions under which the mutation becomes desirable.

While one might argue that the agents can be designed so
that they can fulfill all the possible roles needed during its
lifetime. This argument ignores the cost associated with
having such a multifaceted agent. To put this in a differ-
ent context, not all the workers of a company need to be
qualified for all the professions. Nevertheless, it is a fre-
quent occurrence that a worker needs to be sent to addi-
tional training so that he or she can fulfill new roles. In
many cases, these events can be quite accurately predicted
and even planned. Similar considerations apply to agents.

3.2 Adapting an agent to new requirements
Another very important subclass of agent mutations are
when an agent is reconfigured to adapts a changing envi-

ronment expressed with a changing set of resources. The
most typical one is that the reconfiguration needed after
migration to a new host computer. Another example, which
does not involve migration, when an agent running on a host
computer needs to adapt between the almost complete con-
trol over resources (when the user is not logged in) with only
minimal resource allowances (when the user is logged in and
working).

Expressed in the terms of the Gaia methodology, the agents
will implement the same set of roles with a different set of
attributes.

e The responsibilities and the protocols implemented by
the role will remain unchanged during this operation®.

e The permissions associated with the role will be differ-
ent. The Gaia methodology collects under the concept
of permissions notions such as resource usage and se-
curity permissions. The analysis process is responsible
to assure that the permissions required by the agent af-
ter the transformation are satisfied by its new context.
For example, it has to be assured that the memory and
processor power requirement are satisfied.

As in the case discussed in the previous section, the goal of
the agent analysis and design is to determine the opportu-
nity and the nature of the agent mutation. The opportunity
for migration can be expressed in terms of hard and soft trig-
gers. A hard trigger is a boolean function which tells us if
an agent can not fulfill the requirements of its role in a given
context. A soft trigger, on the other hand, is a cost-benefit
analysis of the agent which might suggest a mutation if this
leads to an increased performance of an agent. Generally,
hard triggers are leading to changes with implementations
with lower resource usage, while soft triggers are biased to-
wards implementations with higher performance and asso-
ciated higher resource (permission) requirements.

The adaptation scenarios can be described in the terms of a
design decision tree. In the Gaia approach (as in many other
software engineering approaches) the designer moves from
an initial, very high level specification, to an increasingly
more specialized choice. These choices for a design tree,
which will be assumed to be a separate one for every role
the agent can play. For the example given in Figure 3, The
choices are all valid approach to create a user interface of the
program. During the design process, a set of decisions are
made to determine the permissions (in the resource usage
sense) of the program. The leaf nodes typically correspond
to the actual implementation of a program, but of course,
not all the potential choices are actually implemented. For
an agent which does not require reconfiguration, only one
branch of the design tree is explored. Once the decision is
made, the design tree is not used in the actual operation of
the agent, although it might be kept, implicitly in the design
documentation.

For a reconfigurable agent, more than one leaf node is fully

!This is a relatively crude approximation which assumes
that the functionality of an application is completely speci-
fied by the original specification.

Graphical

Portable

Platform bound

d line Ul

Python

Widget Swing

AWT

Eclipse
SWT

Native
widgets

Figure 3: Design decision tree

instantiated. We need to emphasize that this involves the
same analysis and programming steps as for any other agent.
However, in this case, the design tree has a practical utility
during the lifetime of the agent. Let us assume an agent
which is executed with a Swing based, fully graphic user
interface, and needs to be migrated to a Personal Digital
Assistant. A simple check of the permissions of the role will
tell us that the current implementation will not work and a
reconfiguration operation is needed.

The role, therefore will be moved backwards in the design
tree. At every steps releasing the assumptions made at the
given point, until the assumptions on the current point in
the tree do no conflict with the new context of the agent.
Normally, however, we are usually at a more or less abstract
specification level, which on its own, is not runnable. There-
fore, we will start to move toward the leafs of the decision
tree again, this time however making decisions according to
the new context. Our goal is to reach a fully implemented
leaf node which conforms to the current set of permissions.
The required transformation will be, therefore, one which
transforms from the original design choice into a new design
choice.

4. SUMMARY

This paper explores mutable agents, and the software engi-
neering challenges posed by their design and analysis. The
evolutionary aspect of such agent imposes an even stronger
requirement for a disciplined development process.

We present an extension to one of the popular agent devel-
opment methodologies (Gaia) for the design and analysis of
populations of mutable agents. We focus on two important
subclasses of mutations: (a) add new functionality to an
agent and (b) reconfigure an agent to adapt to a new set of
resource requirements while maintaining its functionality.

An unexpectedly good fit between the Gaia design method-
ology and mutable agents seems to exit. While new ques-
tions need to be answered and new invariants must be veri-
fied, we found no need to introduce new high level concepts.
This is a good omen for the reconfigurable agent technology.
The populations of changeable and mutable agents might be

manageable.

5. ACKNOWLEDGEMENTS

The research reported in this paper was partially supported

by National Science Foundation grants MCB9527131, DB10296107,
ACI0296035, and EIA0296179.

6. REFERENCES

[1] L. Boléni and D. C. Marinescu. Agent surgery: The
case for mutable agents. In Proceedings of the Third
Workshop on Bio-Inspired Solutions to Parallel
Processing Problems (BioSP3), Cancun, Mexico, May
2000.

[2] L. Boloni and D. C. Marinescu. A component agent
model - from theory to implementation. In Second Intl.
Symp. From Agent Theory to Agent Implementation
in Proc. Cybernetics and Systems, Austrian Society of
Cybernetic Studies, pages 633—-639, April 2000.

[3] L. Boléni and D. C. Marinescu. An object-oriented
framework for building collaborative network agents.
In H. Teodorescu, D. Mlynek, A. Kandel, and H.-J.
Zimmerman, editors, Intelligent Systems and
Interfaces, International Series in Intelligent
Technologies, chapter 3, pages 31-64. Kluwer
Publising House, 2000.

[4] F. Brazier, B. D. Keplicz, N. R. Jennings, and
J. Treur. Formal specification of multi-agent systems:
A real-world case. In First International Conference
on Multi-Agent Systems (ICMAS’95), pages 25-32,
San Francisco, CA, USA, 1995. AAAI Press.

[5] D. Kinny, M. Georgeff, and A. Rao. A methodology
and modelling technique for systems of BDI agents. In
W. V. de Velde and J. W. Perram, editors, Agents
Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a
Multi-Agent World, (LNAI Volume 1038), volume
1038 of LNAI, page 56. Springer-Verlag, 1996.

[6] M. Luck, N. Griffiths, and M. d’Inverno. From agent
theory to agent construction: A case study. In J. P.

[10]

[11]

Miiller, M. J. Wooldridge, and N. R. Jennings, editors,
Proceedings of the ECAI’96 Workshop on Agent
Theories, Architectures, and Languages: Intelligent
Agents I1I, volume 1193, pages 49—-64. Springer-Verlag:
Heidelberg, Germany, 12-13 1997.

J. Odell, H. Parunak, and B. Bauer. Extending uml
for agents. In G. Wagner, Y. Lesperance, and E. Yu,
editors, Agent-Oriented Information Systems
Workshop at the 17th National conference on Artificial
Intelligence, pages 3—17, 2000.

L. Rauchwerger, N. M. Amato, and J. Torrellas.
SmartApps: An application centric approach to high
performance computing. In Proc. of the 18th Annual
Workshop on Languages and Compilers for Parallel
Computing (LCPC), August 2000, Yorktown Heights,
NY., pages 82-92, 2001.

C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. ACM
SIGPLAN Notices, 36(12):20-34, 2001.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
gaia methodology for agent-oriented analysis and
design. Autonomous Agents and Multi-Agent Systems,
3(3):285-312, 2000.

Bond webpage. URL http://bond.cs.ucf.edu.

