
Computer Persona - An Approach For
Interacting with Large Number of Computer

Like Devices

Ladislau Bölöni and Majid Ali Khan

University of Central Florida, Orlando FL 32816, USA,
lboloni@cpe.ucf.edu, ma680109@pegasus.cc.ucf.edu

Abstract. In this paper we propose a software organization, which al-
lows users to treat a set of computer-like devices as single computer
persona. The computer persona covers a static set of devices (called the
permanent range) but it can also dynamically extend or leave rented or
disposable devices (the temporary range). The mental model of the users
will be of a single entity whose capabilities are extended with the de-
vices currently in its range and which she is accessing through devices of
various capabilities.

Implementing a computer persona requires the techniques of speech act
based user interfaces, mobile and mutable agents and data staging / data
fusion.

1 Introduction

Our approaches for developing software were designed with the scarcity of hard-
ware in mind. From the mainframes where multiple users were sharing a single
computer, we have evolved to the personal computer mantra of one user to one
computer. Currently, however, we are living in a world where there are tens of
computers or computer-like devices for every user, and this number can easily
reach hundreds in a couple of years. One of the main difficulties in utilizing the
possibilities of these devices is the natural human tendency to give attention to a
limited number of entities. It was proposed that the number of entities a human
can maintain in its short-term memory is about 6-7. Even somebody who inter-
acts with many persons per day, there are a limited number of persons with which
he can have non-routine interactions. On the other hand, we can interact with
a large number of objects, which can be seen as simply members of their class
and used according to their class properties. Our mental image of computers is
closer to a person than to an object. In fact, users frequently anthropomorphize
a computer or application by modeling it as a computer persona.

Unfortunately, the proliferation of computer personas presents the same
problems as the interaction with multiple humans. In this paper we propose an
approach which allows us to utilize the capabilities of a large number of devices
by allowing them to be modeled by the user as a single computer persona.



The paper is organized as follows. In section 2 two scenarios illustrate the
possibilities of the approach. The architecture of a computer persona is discussed
in section 3. Section 4 puts the persona approach in the context of various other
approaches to deal with large number of computers. A prototype for a subset of
the computer persona is presented in section 5. We conclude in section 6.

2 Scenarios

In this section we present two scenarios to illustrate how the computer persona
approach adds value to a set of computer-like devices.

Scenario: Business traveler. The business traveler is an extreme example
of a completely mobile workplace. While we feel that this example is over-used,
the lives of most of us involve some level of mobility. We will use the business
traveler example as a representative of a larger class of similar problems.

A business traveler is carrying a limited number of portable devices: typi-
cally a laptop, a PDA and a cellular phone. However, during her travels, she
interacts with a large number of computer-like devices (sometimes called the
computational ecosystem), which are used on a rental basis. Instead of learning
to interact with devices on a case-by-case basis, and configure them according to
her preferences, the traveler can extend her computer persona to these devices.

While flying to a remote location the traveler is using the computer integrated
with her seat to review her presentation. Her computer persona is extended to
the seat computer during the flight, but it is removed as soon as she leaves
the plane. At the remote airport she rents a car, and extends her persona to
its board computer. This includes personalization data but also voice interface
based versions of her applications. She can listen to her e-mails or review her
presentation through the car speaker. She can also use the car audio system for
voice communication, her voice mail commands, address book and communica-
tion provider account will be available. Arriving at the hotel, the hotel room also
contains a number of computer-like devices on which the computer persona can
be extended: the air-conditioning, the TV set, the phone.

We will stop here with this scenario. Our conclusion is, that as the number of
computer-like devices grows in our environment, a large number of them will be
used in rental or disposable mode. The persona model of operating them solves
the difficult problem of learning and configuring a large number of devices.

Scenario: Fire emergency. Our next scenario involves an emergency sit-
uation. Let’s assume that a fire occurred in a large building and a team of
firefighters is working to save lives and contain the damage. The fire fighter
team naturally has its own computerized support and communication devices.
However, a number of additional devices already present in the building can be
used to help in fighting the fire and saving lives. The thermostats of the air
conditioning system can be used to report the temperature in each room. A
child monitor system can detect the presence of a distressed person. The smoke
detectors can be used to create a map of affected areas. The GPS device in the
pocket of a trapped person can be used to detect her location in the building.



The information from a number of devices can be correlated such that it gives
an estimation of the structural stability of the building.

None of these uses require any new capabilities from the devices. The reason
why this scenario seems futuristic today is the difficulty to reprogram the devices
such that they can be used in the ways presented above. Also, the fire fighters do
not have time to learn about the existence of these devices or their user interface.
In our parlance, the computer persona of the firefighter team is extended over
a number of devices, which are treated as generic programmable devices with
different capabilities. The fire fighters are still accessing the same persona, which
they have used in their training and other missions, with the difference that the
computer persona is now extended over a new set of devices.

3 The architecture of the computer persona

A computer persona is a distributed and dynamic set software entities, which
interacts with other computer devices and persons as a single entity. Towards
users, it presents an interface with a continuity of user interaction, even if the
devices through which the interaction happens change.

Rental car

Personal car

PDA

Cellular phone

Server

Personal
computer

Hotel room &
devices

Home &
devices

Temporary
connections

Unreliable or
unsecure

connection
Permanent,

secure
connections

Temporary
range of the

computer
personaPermanent

range of the
computer
persona Current

interaction
points

Fig. 1. The networking architecture of a computer persona

Figure 1 shows the operation of a computer persona. The permanent range
is the set of computers and computer-like devices, which the user physically



owns. We include here the services rented on a long-term basis. Examples of
these devices are personal computers, PDAs, cell phones, embedded computers
in personal cars, or subscriptions to online services such as Yahoo, or the suite of
.NET enabled services. The set of applications run by these devices is relatively
constant, thus the computer persona is implemented mainly through techniques
of user modeling and data staging.

In contrast, the temporary range of the computer persona contains rented or
disposable devices. There is a requirement for code mobility, mutation and cus-
tomization as the persona extends to these devices. In the case of rented devices,
appropriate measures need to be taken that the persona uninstalls all personal
applications and destroys all personal data from the rented device. This can not
be performed under the control of the remote server, because the existence of a
connection to the rest of the persona can not be guaranteed at the termination
of the rental period. It is perfectly possible that the computer persona becomes
communicationally fragmented during its lifecycle. This underlies the necessity
of using agent technologies, where individual devices can pursue their agenda
in an autonomous manner, while at the same time having an awareness of the
environment.

Creating a computer persona requires the coordination of various techniques
of the fields of software engineering, mobile and mutable agents, distributed
systems, knowledge representation, networking and security. In this paper we
will discuss two of the most technically challenging steps in the lifecycle of the
computer persona, (a) migrating the point of contact between the devices of the
permanent range and (b) extending the computer persona into the temporary
range.

3.1 Migrating the point of contact

We choose to describe the interaction between the computer persona and the
user in terms of speech acts and conversations. Speech act theory was origi-
nally developed to describe human communication. An important application
of speech act theory is the design of agent communication languages such as
FIPA ACL or KQML. The individual speech acts / messages can be assembled
into conversations [1], also called interaction protocols (in the FIPA parlance) or
message patterns. The speech act model can be extended in a straightforward
manner to the interaction between a human user and an agent.

In a computer persona, what the user sees is that speech-acts are portable
across the changing interaction points. The computer persona needs to maintain
the set of ongoing conversations happening through the current set of interaction
points. If an interaction point is abandoned, the computer persona needs to map
the ongoing conversations to one of the currently existing ones. Certainly, there
might be cases when a conversation needs to be interrupted, because either there
is no interaction point at all, or the conversation can not be continued at the
remaining ones. For example, an instant messaging session can be continued with
a voice interface, but a picture browsing session needs to be interrupted until
the interaction will happen through a device with a visual display.



The change of interaction points is usually under the control of the user.
However, the persona can initiate a change in the interaction point, for instance,
to establish an interaction point (e.g. by ringing the cellphone or posting an
alarm on the PDA) or to move the interaction to a more desirable channel (for
example, it might suggest the transfer to a cheap residential internet connection
from an expensive wireless one as soon as this becomes feasible).

Thus, the main challenge when a user is changing its point of contact inside
the permanent range of the computer persona is how to maintain and continue
existing conversations.

Device 1 Device 2

Persona Manager
Agent 1

Migration +
mutation

Persona Manager
Agent 2

DAXApplication AX

Application B

Mobile application
C

Mobile application
C'

DAY Application AY

Data transfer +
conversion

Fig. 2. Migrating the point of contact inside the permanent range

Figure 2 shows the sequence of actions which takes place when the user moves
its point of contact from Device 1 to Device 2. We assume that these devices are
heterogeneous and running different computing platforms. For instance, Device
1 might be a desktop computer running Linux, while device 2 can be a Personal
Digital Assistant (PDA) running Windows CE.

The operation of the persona is coordinated by the persona manager agents,
PMAs. The PMAs maintain a model of the user, including personal data, pref-
erences, and the current interaction point. The PMAs can detect, and in some
cases, predict, the change of the current interaction point.

On Device 1, the user was interacting with three applications: AX, B and
C. Application AX is a native application of the device, which operates on the
data set DAX. Device 2 has an alternative native implementation AY, partially
equivalent to application AX on Device 1. When the point of contact is moved
from device 1 to device 2, the application AX is notified by the local PMA, it
saves its data to the dataset DAX and terminates. The dataset is then trans-
ported to device 2 under the control of the PMA and, if necessary, converted to
the format of application AY, DAY.

We assume AX and AY to be legacy applications which are not aware that
they are participating in a computer persona. Thus it falls on the PMA to assure
the seamless operation of the devices. There are several difficulties:

(a) Partial compatibility of the data formats and lossy conversion.
This leads to a data management / data fusion problem. Customizing data



management techniques for the particular requirements of computer persona
and developing new techniques is one of our future research objectives.

(b) Managing the conversations. The data transfer is just one of the
elements of the puzzle. To achieve the single persona illusion, we need to maintain
the continuity of the conversation. This is difficult, because legacy applications
either do not model their interactions as a conversation, or do not expose it as
such. Many applications however maintain their state information as a session.
The session information can be transported and converted between different
applications1.

Application B is a simpler case. There is no equivalent application on Device
2 (for instance, B is a audio player and Device 2 has no audio capabilities). The
MAS will signal the application that the contact has terminated. The action of
the application B takes depends on the local policy, which can range from no
action, to the termination of application.

Let us now move to the application C which is a mobile and mutable agent.
In contrast to applications AX and AY, the reaction of the agent is to migrate
to device 2 and to adapt to the requirements of the new platform. Let us as-
sume that C is a Java agent based on the Jade/LEAP agent platform with the
Bond extension libraries. On the desktop environment of device 1, with the Java
Standard Edition platform, the agent has a full featured Swing user interface.
On the Personal Java environment of device 2, the agent needs to run a simpler,
AWT based user interface. Depending the other features or possibilities of the
platform, other mutations might be needed. An example of such an agent is
presented in Section 5.

3.2 Extending a computer persona to the temporary domain

When a computer persona is extended to a device in the temporary range, a new
set of problems need to be faced. First, the persona needs to find an entry point to
the new device. This is usually a account with program execution and file transfer
rights, such as an ssh account. The first component of the computer persona
transferred to the new location is the Discovery Agent (DA), which identifies the
capabilities of the device, the native applications and potential security threat.
The DA is in itself a mutable application. As in the moment when originally
migrated to the target device its knowledge of the device is limited, the DA
starts as a very small agent and is built out through successive agent surgery
operations, as the resources are discovered. After the discovery is complete, a
customized persona manager agent is transferred to the device. The first actions
of the PMA are the installation of custom applications for which the user has

1 A session is a weaker concept than a conversation. Let us assume that both AX
and AY are word processors. Maintaining a session means that the user will find
on device 2 the application opened with the same documents as he left AX on the
device 1. Maintaining the conversation would mean that if he was in the middle of
a search-replace operation, he would find the search-replace dialog open with the
same values and the same location of the search.



licenses and the customization of the existing applications. At this moment, the
new device becomes part of the computer persona and will participate in the
lifecycle of the persona exactly as the devices in the permanent range.

A complementary set of tasks needs to be performed by the PMA at the mo-
ment when the computer persona leaves the temporary device. All the changed
data needs to be transferred to devices in the remaining range of the persona
(and preferably, to the persistent range). The custom applications have to be
uninstalled, and the personal data deleted. The computer persona leaves the
device by shutting down and deleting the persona manager agent.

4 Related work

4.1 Alternative approaches

The computer persona is not the only approach by which the problems posed
by the proliferation of computer-like devices can be dealt with.

Generic devices. This approach proposes to make devices generic, without
the possibility of personalization. A good example of this is a public telephone,
which is used on a rental basis, but can not be personalized. The users see these
devices as objects, without the need of individualized attention. This approach
is basically trading the benefits of personalization for the simplicity of the user
interface. It assumes the existence of a widely accepted, simple interface. While
appropriate for some devices, this approach underutilizes the capabilities of the
devices.

Invisible computer. The invisible computer [2] or ubiquitous computing
[3] approach proposes devices which can seamlessly blend into an environment
(disappearing user interfaces). We include here a number of related approaches,
like pervasive computing, amorphous computing [4] or context aware comput-
ing. which in many cases propose significant departures from the current way
computers are used. A large number of pointers towards various approaches to-
gether with proposed applications in agent systems are provided in [5]. Most of
these approaches are adding value while effectively hiding from the user the fact
that they are computer devices. This solves the information overload problem,
because we don’t need to form mental images in addition to the ones we are
already accustomed with.

Server based approaches and thin clients. In these approaches the thin
clients are acting as proxy for a server. All the relevant computation happens at
the server side, thus the actual load on the client is minimal. The result is similar
to the persona approach in the fact that multiple devices are represented by a
single mental image. One example would be a world in which all applications
are rented as services from the internet.

All these approaches have their place in the computing landscape. The ap-
proach we propose, in general, allows for a better utilization of the resources,
because it treats all devices as full-featured computers. There is no require-
ment for continuous reliable connectivity (which is required by the server based



approach). A persona organization would also perform a more graceful degra-
dation of the perceived performance than a purely server based approach. This
advantage, however, is paid with the higher complexity of migration of code and
data (a general graph, instead of the star-shaped data migration pattern of the
server based approach). Compared with the ”invisible computer” approach, the
persona approach is a less radical departure from the traditional user interface
model.

4.2 Mobile and mutable agent systems

Mobile agents are autonomous programs that move through a network, and
maintain their identity through this move. There are two major approaches for
agent mobility. The strong mobility approach assumes that agents can move
at any point during their execution and they are usually relying on specially
designed programming languages (eg. Telescript) or on special versions of the
Java JVM. One example of the last one is the NOMADS agents system [6] which
is relying on the Aroma VM. Agents implementing weak mobility can migrate
only at special checkpoints, and usually rely on freezing and thawing operations
to prepare their internal state for migration (Aglets, AgentTcl, Jade, Bond).

As we have shown in the Section 3, mobile agents are a natural solution for
maintaining conversations while changing interaction points.

Mutability is the ability to change an application during its runtime in order
to either adapt to changing environments or to respond to changing expectations.

Recently several agent systems emerged with support for mutability. Varela
and Agha [7] proposed the SALSA language based on the actor programming
paradigm. The SALSA language is compiled to Java and targets dynamically
reconfigurable Internet and mobile computing applications. The SmartApps ap-
proach [8] proposes an approach of ”measure, compare, and adapt if beneficial”
for scientific applications, with the restructuring occurring at various levels from
the selection of the algorithmic approach to compiler parameter tuning. The
Bond agent system was one of the first Java based agent systems with support
for strong mutability. In [9] we have proposed a mutation technique called agent
surgery. In [10] we have shown how certain classes of surgical operations on
agents can be shown to maintain the original agenda of the agent. The basic
operations of agent surgery like splitting and merging agents, and reconciliation
of the knowledge bases are exactly the operations which (together with code
mobility) are likely to appear in the operation of a computer persona.

In heterogeneous systems, mutation and mobility are strongly intertwined
concepts. The difference in the resources available on desktop computer and a
cell-phone (for example) is so big that agents cannot be migrated from one to the
other without being significantly reconfigured. The solution is to migrate only
part of the agent to the new location (using split and merge operations), and
replace components of the agents with components that satisfy the constraints
of the new location. The operation of extending a computer persona to new
computer like devices involves both code mobility and code mutation.



Fig. 3. Screenshot of the transportable chat application on the desktop computer (left)
and after migration to the PDA (right)

5 Persona prototype: chat application

To study the practical problems of implementing a computer persona, we started
by implementing an interactive chat / instant messaging application with sup-
port for mutability and mutation, which can maintain the continuity of the
conversation while the interaction point changes. This application corresponds
to application C from Figure 2. This application can be used as a template for
applications of interactive control, such as a computation steering console for the
computational grid.

The implementation is based on the JADE/LEAP Agent Development Envi-
ronment [11] which was complemented with a development version of the Bond 3
agent framework [12]. The application was tested on three platforms: two desk-
top environments (Microsoft Windows XP and Linux/KDE), where we used
the Java 2 Standard Environment version 1.4.1, and a HP iPAQ PDA running
Pocket PC 2000, where the Personal Java 1.2 by Insignia was used. The proto-
type application can be downloaded from the Bond webpage [12].

The main difficulties of the implementation involved maintaining the con-
versation state and bridging of the platform heterogeneities. The user interface
differences between the Win32 API and the KDE/Qt architecture were bridged
by the platform independent Java Swing toolkit. On the Ipaq however, the Per-
sonal Java environment does not support Swing user interfaces. Furthermore, the
serialization data format was found to be incompatible between the two Java im-
plementations. As discussed in section 4.2, this problem can be solved by using
mutable agents. When migrating from the desktop platforms to the PDA, the
implementation of the Swing user interface is removed through a mutation op-
eration and a different user interface plane added which implements an AWT
based user interface. The identity of the agent and its full conversational state
is maintained though this operation, although the PDA interface has a more



limited functionality. When migrating from the PDA platform to the desktop
environment, an inverse process takes place. Figure 3 shows screenshots of the
same agent on a Windows machine (left), and after the mutation and migration
to the PDA (right).

6 Conclusions and future work

In this paper we have presented the computer persona, an approach for handling
the interaction between the human user and a large number of computer-like de-
vices. The persona approach opens interesting new possibilities for organization
of the human-computer interaction, but it also poses a number of theoretical and
practical research problems. The maintenance of data across the persona entity
leads to problems of data staging and data fusion. The mutability aspect poses
problems of application integrity. The security aspects of the computer persona
should be considered for any real-world deployment.

References

1. Smith, I., Cohen, P., Bradshaw, J., Greaves, M., Holmback, H.: Designing conver-
sation policies using joint intention theory. In: Proceedings of International Joint
Conference on Multi-Agent Systems (ICMAS-98). (1998)

2. Norman, D.A.: The invisible computer. (MIT Press)
3. Weiser, M.: The computer for the 21st century. Scientific American 265 (1991)

84–104
4. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F., Nagpal,

R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43 (2000) 74–82

5. Servat, D., Drogoul, A.: Combining amorphous computing and reactive agent-
based systems: a paradigm for pervasive intelligence? In: Proceedings of the first in-
ternational joint conference on Autonomous agents and multiagent systems, ACM
Press (2002) 441–448

6. Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R., Mitro-
vich, T.S.: An overview of the nomads mobile agent system. In: Proceedings of
ECOOP’2000, Nice, France. (2000)

7. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with
SALSA. ACM SIGPLAN Notices 36 (2001) 20–34

8. Rauchwerger, L., Amato, N.M., Torrellas, J.: SmartApps: An application centric
approach to high performance computing. In: Proc. of the 13th Annual Work-
shop on Languages and Compilers for Parallel Computing (LCPC), August 2000,
Yorktown Heights, NY. (2001) 82–??

9. Bölöni, L., Marinescu, D.C.: Agent surgery: The case for mutable agents. In: Pro-
ceedings of the Third Workshop on Bio-Inspired Solutions to Parallel Processing
Problems (BioSP3), Cancun, Mexico. (2000)

10. Bölöni, L., Marinescu, D.C.: A component agent model - from theory to imple-
mentation. In: Proceedings of the AT2AI Workshop, Vienna, Austria, April 2000,
to appear. (2000)

11. Jade webpage. (URL http://sharon.cselt.it/projects/jade/ )
12. Bond webpage. (URL http://bond.cs.ucf.edu)


