
9
Middleware for Process

Coordination

Software agents provide a promising alternatives for Internet workflow management.
Agents can manage resources, act as case managers, brokers, matchmakers, monitor
the environment, or serve as enactment engines.

In this chapter we dissect an agent-based framework capable to support process
coordination. First, we discuss the message-oriented distributed object system, then
we introduce the component-based architecture for building agents.

Our thinking and design choices were influenced by existing systems and, when-
ever possible, we adopted ideas and integrated implementations fitting our agent
model. We integrated with relative ease JESS, a Java Expert System Shell from
Sandia National Laboratory, [20], and a tuple space, the TSpaces from IBM, [28].

At the time of this writing the Bond system consists of about 100; 000 lines of Java
code and 700 Java classes grouped into core, agents, and applications
packages.

Throughout this chapter we discuss our basic design philosophy, introduce the
concepts, and discuss the implementation of various components. Whenever neces-
sary we list the relevant source code or the pseudo-code and comment the functions
provided. To fully understand the system the reader needs to examine the actual
source code.

9.1 BOND CORE

In our view an agent is an active mobile object with some level of intelligence. Active
means that the object has one or more threads of control, mobile means that the object

279

280 MIDDLEWARE FOR PROCESS COORDINATION

may migrate from one site to another, intelligence means that the object has some
degree of learning, planning, and/or inference capabilities. From this definition of
agents it follows that we need first to construct an infrastructure for distributed objects
and then build an agent framework on top of this infrastructure.

A basic design choice for a distributed object systems is the communication
paradigm, a system may use remote method invocation, or message passing or pos-
sibly both. The two paradigms are dual, the same functionality that can be achieved
with one of them, can be provided by the other. Systems supporting asynchronous
communication typically use message passing while those supporting synchronous
communication use remote method invocation.

Several general-purpose distributed-object systems are based upon remote method
invocation, e.g., implementations of CORBA [42], like Visibroker [53] from Inprise
or Orbix [43], from IONA, Java RMI [48] or Microsoft’s DCOM. There are also
few message-oriented distributed systems, like MSMQ from Microsoft, or iBUS [29]
from SoftWired.

The bond.core package implements a message-oriented distributed object sys-
tem, [2]. This section covers Bond objects, communication, and message handling.

9.1.1 Bond Objects

A Bond program is a flat collection of Bond objects. A Bond object extends the
standard Java object with:

(i) A unique identifier: every Bond object is assigned a unique identifier for the
lifetime of the object. An entire collection of Bond objects can be identified by an
alias.

(ii) Dynamic properties: Bond objects may have dynamic properties created at run-
time, in addition to the regular fields of a Java object.

(iii) Communication support: all Bond object are capable to receive messages.

(iv) Registration with a local directory: Bond objects are registered at the creation
time with a local directory. They can be found using either the unique identifier or
an alias. Lightweight Bond objects are registered on demand.

(v) Serialization and cloning: all Bond object are serializable and clonable, while
only some Java objects are. The serialization and cloning functions are overwritten
to accommodate the unique id of Bond objects.

(vi) Multiple inheritance: the Bond system extends the Java object model with mul-
tiple inheritance using a preprocessor of Java files.

(vii) A visual editor: all Bond objects can be visually edited.
We now discuss basic properties of Bond objects.

9.1.1.1 Bond Identifiers. Every Bond object has a unique identifier, bondID
generated by its constructor as follows:

bondID= ‘‘bondID’’ + bondIPaddress + commEnginePort +
localMillisecondSinceStartOfResident + timeAndDate

BOND CORE 281

Here “+” stands for string concatenation, "bondID" is a string, bondIPaddress
is the IP address of the host where the Bond system is running, commEnginePort
is the port number of the Bond Communication Engine, the next string gives the time
in milliseconds since the local Bond Resident was started, and timeAndDate is
a string giving the hour, minute, second, day, month and year when the object was
created. The resident and the communication engine are discussed in Sections 9.1.1.2
and 9.1.2.7, respectively.

This algorithm is fast and guarantees the uniqueness of the bondID.
The bondID remains the same throughout the lifetime of an object, it is invariant

to operations such as: saving and loading the object to/from persistent storage or
transferring to/from remote locations.

In Bond we have a flat namespace, the bondID does not carry information about
the type or role of the object. A flat name-space cannot be used for routing during
communication, or for classifying objects a useful feature for directory services.
While these difficulties are real, they are inherent to the problem, not to the naming
scheme.

A hierarchical naming scheme like IP-addresses cannot be used for a distributed
object system supporting mobility because the id of the object should be the same
after migration. On the other hand, most Bond objects remain at their creation site,
thus the host information, contained in the bondID can be used as a way of speeding
up the search. In this case, when the object is not found at the resident sub-field in
its id, a global directory search is carried out.

Bond is a message-oriented system and each object identified by its uniquebondID
can receive messages. The say() method discussed in Section 9.1.3.4 is used to
deliver a message to an object.

9.1.1.2 Bond Resident. A Bond resident, bondResident is a container ob-
ject hosting all Bond objects located within a given virtual machine. Every Bond
resident contains a local directory, bondDir, implemented as a singleton object
[18] and a Communication Engine, bondCommEngine, see Section 9.1.2.7.

The constructors for a Bond executable and for a resident are:

public class bondExecutable extends bondObject
implements Runnable {

public bondExecutable() {}
public bondExecutable(boolean reg) { super(reg); }
public void run(){} }

public class bondResident extends bondExecutable {
public bondResident() {dir.addAlias("Resident", this);}

}

Other objects are loaded dynamically as needed, using dynamic probes, presented
in Section 9.1.3.3. For example, whenever a message for an object called an Agent
Factory arrives, the object is loaded and the message is passed to it. Agent Factories
are discussed in Section 9.2.

282 MIDDLEWARE FOR PROCESS COORDINATION

A resident can be configured as a client, some type of server, e.g. Authentication,
Persistent Storage, Directory Server, or as host for a number of agents.

The procedure called to initialize the Bond system is:

public static void initbond() {
bondConfiguration.initSysProperties();
loader = new bondLoader();
dir = new bondDirectory();
com = new bondCommunicator();
conf = new bondConfiguration();
bondMessage.initMessage();
return;

}

A configuration file specifies the options requested by the user and a resident is
configured accordingly. Section 9.1.3.6 addresses this issue in more detail.

9.1.1.3 Local Directory and Aliases. Bond objects are registered automat-
ically with the local directory at the creation time. Objects loaded from persistent
storage and objects arriving from a remote location as a result of a realize() op-
eration are registered at their instantiation time. Registration with the local directory
is a precondition for any object to receive messages.

Lightweight objects are the only exception to the automatic registration rule. There
are two classes of lightweight objects: bondShadow discussed in Section 9.1.1.5
and bondMessage. Messages and shadows have a unique bondID and can be
registered with the local directory, if needed.

Registered objects cannot be freed in the Java sense because the local directory
keeps a pointer to them. Thus, they are not garbage collected, until unregistered. Un-
registering an object removes its ability to receive messages and makes it eligible to be
garbage collected by Java. To un-register a Bond objectbo: dir.unregister(bo).

An object can be registered using either its unique bondID or an alias. An object
may have multiple aliases and multiple objects may have the same alias. Objects with
the same alias form an equivalence class and are indistinguishable from one another
at some level. The alias mechanism implements the so called anycast addressing
abstraction.

For example, within the same resident we may have several agent factories. A user
or an agent who needs to create or migrate an agent at/to that site, sends a message
with the alias “AgentFactory” as destination object. Upon receipt of the message,
the local directory selects one of the objects in the class at random, and delivers
the message to it. In its reply, the selected agent factory responds with its unique
bondID. The addressing ambiguity is resolved after the first message exchange and
subsequent communication carries the unique identifier of the object.

The alias system supports load balancing for servers. If multiple servers are
registered under the same alias, an incoming request is delivered to a randomly chosen
object, therefore dividing the load amongst servers. A server can even choose to
temporarily un-register itself from the alias if it is overloaded, without affecting its
current clients because they communicate with the server using its unique identifier.

BOND CORE 283

Table 9.1 Reserved aliases

Alias Function

Resident Container object for all Bond objects at a given site.
AgentFactory Create, destroy, checkpoint and migrate agents.
PSS Persistent storage service: save/retrieve objects from storage.
Directory Directory service: remote access interface for the local directory.
Monitor Monitoring service.

Table 9.1 lists reserved aliases for standard Bond services.

9.1.1.4 Serialization and Cloning. Serialization allows an object to be saved
in an input/output stream, it flattens the object. Cloning creates an exact copy of the
object.

Java objects can be serialized if they implement the Serializable interface.
This interface does not implement new methods. Threads are not serializable in Java.

All Bond objects are serializable and can be cloned, bondObject, the root of
the object hierarchy, implements the Serializable interface and re-implements
the clone()method. A clone of a Bond object is identical with the original object,
but has a different bondID.

public class bondObject implements Serializable, Cloneable {
public bondObject() {

maybeInformDirectory();
if (bondID != null) { setName(bondID); }
}

public bondObject(boolean val) {
if (val) {

bondID = dir.getBondID();
setName(bondID); }

}
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException {
in.defaultReadObject();
if (bondID !=null) dir.register(this);

}
protected void maybeInformDirectory() {
try {

bondID = dir.getBondID();
dir.register(this);

} catch (NullPointerException e)
}

9.1.1.5 Bond Shadows. A distributed system needs an abstraction for com-
munication with remote objects. In Voyager [21] this abstraction is called a proxy.

284 MIDDLEWARE FOR PROCESS COORDINATION

CORBA [42] and Java Remote Method Invocation, RMI [48] call it a stub. In Bond
this abstraction is a lightweight object called a shadow.

Resident R1 Resident R2

Shadow of B
(bondAddress, bondID)

Object A

Object B

Shadow of A
(bondAddress, bondID)

EngineEngine

�����
C
o
m
m
u
n
i
c
a
t
i
o
n

C
o
m
m
u
n
i
c
a
t
i
o
n

bondAddress

bondID

�
�

bondAddress

bondID

Local Directory
Local Directory

Fig. 9.1 Communication with remote objects. A Bond communication engine runs at a
known port at on a host identified by an IP address. A bondAddress consists of a pair
(bondIPaddress,commEnginePort). In turn, a Bond shadow consists of the pair
(bondAddress, bondID). To send a message to a remote object B, object A needs a
shadow of B. Once this shadow exists then A sends messages for B to its shadow.

To communicate with objects hosted by a bondResidentwe need to know the
IP address of the host were the Bond system is running. The communication engine
runs at a known port on that host. The pair �(bondIPaddress,commEnginePort)defines
a bondAddress.

In turn, a shadow of an object A consists of the pair(bondAddress, bondID),
wherebondAddress allows us to uniquely identify a resident andbondIDuniquely
identifies the object on that resident.

In Bond there is no distinction between communication with local and with remote
objects, a message delivered to the local shadow is guaranteed to reach the remote
object. Moreover, the realize() method allows us to create a local copy of a
remote object when we have a shadow of the object. The local copy created with the
realize() method has the same bondID as the original object.

The constructor for a bondShadow and the realize() method supporting
object migration are:

/** Default constructor. Don’t register.*/
public bondShadow() {

super(false);
}

/** Create shadow from bondID and address of object*/
public bondShadow(String remote_bondID,

String rem_address){

BOND CORE 285

super(false);
this.remote_bondID= remote_bondID;
remote_address = new bondIPAddress(rem_address);

}
/** Create shadow from an address */
public bondShadow(String remote_bondID,

bondIPAddress address){
super(false);
this.remote_bondID= remote_bondID;
remote_address = (bondIPAddress)address.clone();

}
/** Create shadow of a local object */

public bondShadow(bondObject bo) {
super(false);
local = bo;

}
/** Object migration */
public bondObject realize() {

bondID = dir.getBondID();
dir.register(this);
bondObject bo = null;
if (local != null) {

return local;
} else {

bondMessage m =new bondMessage(
"(tell :content realize)", "PropertyAccess");

m.setNeedsReply();
say(m, this);
m.waitReply(30000);
return m.bo; }

}

Figure 9.1 illustrates full-duplex communication between two objects A and B
registered with residents, R1 and R2 on two different systems. A sends messages for
B to the shadow of B on R1 and, in turn, B sends messages to A to the shadow of A
on R2.

9.1.1.6 Dynamic Object Properties. The ability to create on demand new
properties/fields of an object is a feature of programming languages like Lisp or
Scheme that allow programmers to handle data whose name or type is not known at
compile time. The compilers and linkers for programming languages like C or C++
usually discard the names of the variables, keeping only their address in the compiled
code. Java, keeps this information in the compiled class files and allows access to it
through a mechanism called reflection.

Dynamic properties are important for software agents, their functionality makes it
difficult to anticipate all the fields of an agent at the instance the agent is created. For
efficiency reasons regular Java fields should be used whenever possible,and we should
resort to dynamic fields only when the name and/or type of the field is not known at

286 MIDDLEWARE FOR PROCESS COORDINATION

compile time. Dynamic properties have a longer access time than regular Java fields,
but for remote objects this difference is masked by the network latency. Compile-time
type checking cannot be done for dynamic properties, thus the programmer looses
important type-safety information.

Bond objects implement a common interface with two methods, get and put, to
access static fields and dynamic properties:

Object get(String name); returns the value of the field or dynamic property
called “name”. Numerical values, which are not objects in Java, are first converted to
their object counterpart, e.g., an int is converted to an Integer object. The get
function returns null when their is no object or field with the given name.

Object set(String name, Object value) sets the value of the field or
dynamic property called name to the value specified by value. If there is no field
or dynamic property with the given name, a new dynamic property is created. If there
is a field with the given name but its type conflicts with the type of the object value,
a casting exception is thrown.

All dynamic properties are considered to be of type Object and any value can
be set for them. To delete a dynamic property, the value is set to null.

The set and get functions support multilevel access using the familiar dotted
notation. Assume that we have a Bond object foo with boo as a field with boo a
Bond object with a name field. The set and get functions applied to foo allows
us to set the name field of its member object to the value “hector” and to retrieve the
value:

foo.set(‘‘boo.name’’, ‘‘hector’’)}.
String val =foo.get(‘‘boo.name’’)}

The multilevel addressing can be done to arbitrary depths. This facility increases
the access time due to overhead for parsing the string. Multilevel addressing can be
turned off by setting theuseAccessors boolean variable in the Bond configuration
object.

The property access subprotocol discussed in Section 9.1.3.5 can be used to access
the fields and dynamic properties without making a local copy of a potentially large
remote object.

9.1.1.7 Multiple Inheritance. Multiple inheritance is a controversial feature
of object-oriented programming languages. Some, like C++ and Eiffel, support it,
while others like Java, Objective C, and Modula-3 do not. Name resolution, repeated
inheritance, and more obscure and difficult to read code are some of the problems
associated with multiple inheritance.

Sometimes multiple inheritance is necessary because an object may have multiple
roles. Even in the base Java classes InputOutputStream is a specialization of
both InputStream and OutputStream. There are several examples of multiple
inheritance in Bond, for example bondMessage may inherit KQML and XML
parser classes.

Java allows multiple interface inheritance, but does not implement multiple class
inheritance. There are ad-hoc methods to circumvent the limitations of Java, [52]:

BOND CORE 287

(i) Copy and modify: copy the code otherwise inherited and modify it.

(ii) Base class modification: modify the base class to eliminate the need for multiple
subclasses.

(iii) Delegation: create a member object and a number of wrapper functions which
forward the requests to the member object.

The first two techniques require access to the source code and lead to code dupli-
cation and poor quality code. Our approach to multiple inheritance is similar with
the one of the Jamie system at the University of Virginia, [52], it is based upon
preprocessing into regular Java code but uses a less elaborate merging approach.

The source code is created in Bond from specially constructed files, with the .bj
extension, instead of the regular .java extension. These files may contain variables
and methods, but only one of them has the regular class headers. The .bj files are
preprocessed by the cpp preprocessor of the GNU C/C++ distributions, to create the
Java source code.

This implementation does not solve the problem of multiple sub-typing, or provide
name resolution. The names of variables and methods should be disjoint. The method
supports conditional multiple inheritance, the inheritance changes depending upon
the configuration of the system.

file1.bj
(with class

header)

file2.bj
(without class

header)

cpp
preprocessor

file1.java file1.class
javac

Java compiler

file3.bj
(without class

header)

Fig. 9.2 Implementation of multiple inheritance in Bond

Only the original .bj files should be modified. The dependency from the .bj
files to the Java file is expressed in the makefile of the Bond system, and the Java
file are recreated whenever the .bj files are modified.

9.1.1.8 Visual Editing of Objects Bond objects can be visualized and edited.
Object editors consist of independent dialog boxes and allow us to edit the fields
and the dynamic properties of an object, as shown in Figure 9.3. They provide a
functionality similar to the property sheets and bean customizers of the JavaBeans.

Visual objects represent an object and show its state and relationships with other
objects as seen in Figure 9.4.

288 MIDDLEWARE FOR PROCESS COORDINATION

Fig. 9.3 Screenshot of the Bond object editor, displaying the content of the model of the
agent.

Bond editors objects inherit from the bondEditor and are created on demand
whenever the edit() function of the original object is called. The editor of an Bond
object is itself an object attached to the editor dynamic property of the original
object, and removed when the object is destroyed.

The mechanism described below ensures that every object can be edited and allows
the user to customize the editor. The Bond editor object is accessed by name lookup
with inheritance based fallback as follows: given an object of typea.b.c the system
attempts to create an editor object of type a.b.cEditor and if that fails, an object
of type bond.core.editor.cEditor. If this attempts fails, too, the system
determines the first ancestor of the object and repeats the process recursively. The
bond.core.editor.bondObjectEditor is invoked as the last resort as the
editor for the object because every object inherits from bondObject.

Visual objects inherit from the bondVisualObject object and are attached to
the visual dynamic property of the original object. Visual objects do not have a
window of their own, instead they are represented as a graphic widget in the context
of an editor presenting multiple objects and relations at the same time. An example is

BOND CORE 289

Fig. 9.4 Screenshot of the Bond agent editor. The bullets and lines represent the visual
objects attached to Bond objects components the state machine.

the visual representation of the multi-plane finite state machine of the agents shown
in Figure 9.4. The states and transitions have attached visual objects displayed on the
screen, bullets for the states, lines for transitions. The visual representation reflects
the internal state of the object.

9.1.1.9 Bond Loader. The bondLoader allows ordinary Bond objects to be
loaded dynamically from the local repository using a search path constructed stati-
cally. It also allows loading of a class given the URL of a remote repository. The
skeleton of the bondLoader code follows.

public class bondLoader extends bondObject {
public Vector defaultpath = null;
ClassLoader cloader = null;

public bondLoader() {
// default loading path
defaultpath = new Vector();
defaultpath.addElement("bond.core.");
defaultpath.addElement("bond.services.");
defaultpath.addElement("bond.agent.");
defaultpath.addElement("bond.application.");
defaultpath.addElement("bond.application.TupleSpace.");
}

290 MIDDLEWARE FOR PROCESS COORDINATION

/** Create object "name" with default constructor
given "searchpath" */

public Object load(String name, Vector searchpaths) {
Object o = null;
Class cl;
try {
if ((cl = loadClass(name, searchpaths)) != null) {

o = cl.newInstance(); }
} catch(IllegalAccessException cnfe) { }

catch(InstantiationException ie) { }
return o;

}
/** Load a local class given its "name" */
public Class loadClass(String name, Vector searchpaths) {

String completename;
for(int i=0; i!=searchpaths.size(); i++) {

try {
Class cl = Class.forName(makeName

(name, (String)searchpaths.elementAt(i)));
return cl;

} catch(ClassNotFoundException cnfe) {
} catch(Exception ex) { }

}
/** Load classes remotely */

if (cloader == null) {
String c_repository = System.getProperty

("bond.current.strategy.repository");
String repository = System.getProperty

("bond.strategy.repository");
if (c_repository != null && repository != null) {

try {
URL urlList[] = {new URL(c_repository),

new URL(repository)};
cloader = new URLClassLoader(urlList);

}
catch (MalformedURLException e) { }

}
else if (repository != null) {

try {
URL urlList[] = {new URL (repository)};
cloader = new URLClassLoader(urlList);

}
catch (MalformedURLException e) { }

}
}
for (int i = 0; i < searchpaths.size(); i++) {

try {
Class cl = Class.forName(makeName(name,

(String)searchpaths.elementAt(i)),

BOND CORE 291

Sender
Object

Receiver
Object

Shadow

Communicator

Distributed
awareness

Communicator

destination

content

subprotocol

source

piggyback

Distributed
awareness

content

subprotocol

source

piggyback

Local
directory

destination

Network

Communication
Engine

Shadow

destination

message in KQML
or XML format

message in KQML
or XML format

Communication
Engine

Fig. 9.5 Message delivery in Bond. On the sending side the Communicator constructs the
message, converts it to external format and passes it to the Communication Engine. On the
receiving side the Communicator gets the message from the Communication Engine, converts
it to the internal format and delivers it to the destination.

true, cloader);
return cl;

}
catch (ClassNotFoundException cnfe) { }
catch(Exception ex) { }
}
return null;

}
}

9.1.2 Communication Architecture

The communication architecture is presented in Figure 9.5 where we see the objects
involved, the sender, the receiver, a pair of communicators that compose the message
and a pair of communication engines that transport a message from one resident to
another.

292 MIDDLEWARE FOR PROCESS COORDINATION

In this section we address the mechanics of message delivery and defer the problem
of semantic understanding of messages for Section 9.1.3.1, when we introduce the
concept of subprotocols.

Bond communication was designed with several objectives in mind:

(i) Support multiple external message formats for interoperability with other systems.

(ii) Hide the intricacies of message formatting and parsing.

(iii) Support multiple transport mechanisms for different levels of reliability and
functionality. Delegate this function to a communication engine.

(iv) Support asynchronous communication and provide abstraction for delayed re-
sponse. In a wide-area distributed system expect the response to a query or to a
request for service to arrive only after a very long delay.
(v) Separate semantic understanding of messages from message delivery.The semantic
understanding of messages should be done at the object level, various objects should
have different levels of semantic sophistication. Stamp each message with an indicator
allowing the recipient to determine with ease if it understands the message or not.

(vi) Support dynamic collections of semantically related objects.

(vii) Allow every object to receive messages. Active objects have a thread of control
and can receive messages without any additional complications. Passive objects do
not have a thread of control yet there are instances when it would be beneficial to
receive messages. For example the model of an agent is an passive object containing
the knowledge an agent has about the external world. Other agents should be able
to send messages and update the model even when the agent is not running and the
model is stored by a persistent storage server.

9.1.2.1 Message Delivery. The basic philosophy of the message delivery sys-
tem is to transport a message for a remote object first to the resident hosting the object
and then using the local directory to deliver it to the object itself.

In addition to the sending and receiving object two pairs of internal objects are
involved: communicators and communication engines. The communicators are re-
sponsible to format the message and convert it from the internal to the desired external
format on the sending side and perform a reverse transformation on the receiving side.

The communication engines transport a message. The communication engine on
the sending side performs a multiplexing function, it may append additional infor-
mation before delivering the message to its peer on the receiving side. The commu-
nication engine on the receiving side performs a demultiplexing function, it removes
the additional information and then delivers the message to the communicator. The
Distributed Awareness mechanism discussed in Section 9.1.2.10 relays on piggiback-
ing control information on regular messages. The communicators are discussed in
Section 9.1.2.6 and the communication engines in Section 9.1.2.7.

To construct a message for a remote object the communicator at the sending side
needs:
(i) The contents and the dialect of the message (the subprotocol). They are provided
by the sender object.

BOND CORE 293

Table 9.2 Reserved names for the internal format of Bond messages.

Reserved name Description

sender bondAddress of message sender
destination bondAddress of message destination
reply-with Unique identifier, the destination object should use when re-

plying to this message
in-reply-to Unique identifier in the reply-with variable of a previous

message, this message replies to.
subprotocol The message is part of a subprotocol. If destination object

does not understand the subprotocol, it answers sorry.
performative The speech act of this message, question, answer, notification

etc. as required by KQML specification.
contents The contents of the message.
piggyback Data field attached to the message to carry information be-

tween two directories or two communication engines.

(ii) The bondAddres of the resident and the bondID of the object. They are
provided by the shadow of the remote object.

On the receiving side the message is delivered to the communication engine which
uses the local directory to locate the destination object and then sends it to the com-
municator. Here the message is converted to the internal format and delivered.

9.1.2.2 Internal and External Message Format. The internal format of the
messages is an unordered collection of name-value pairs implemented as dynamic
properties of the bondMessage object . The name is a string, while the value can be
any data type, including user-defined Java objects. There are four groups of reserved
names, see Table 9.2, derived from the parameters of KQML messages.

-Addressing variables: the source, destination and optionally the retransmission ob-
jects location and id.
-Message identifiers: identify the message, request an answer (reply-with) or
identify the question to which the current reply is a message (in-reply-to).
- Semantic identifiers: identify the context of the message. Bond favors the use of the
subprotocol variable, but language and ontologymight be used, especially
in the case of interoperation with other systems.
- Hidden variables: variables attached to the message object during its lifetime but
not delivered at the destination but removed either by the messaging thread or by
preemptive probes, e.g. the piggyback variable, used by the distributed awareness
mechanism [31].

Most of the parameters in Table 9.2 are added automatically to messages. The
process of message annotation is summarized in Figure 9.5.

294 MIDDLEWARE FOR PROCESS COORDINATION

The internal format of Bond messages relies on the dynamic properties of Bond
objects and cannot be used to communicate to other systems, thus we need an external
representation for messages.

There are two external representations for Bond messages: KQML [19] and XML
[47]. In both cases there is a one-to-one mapping between the internal and external
format. The XMLMessaging variable determines the format of the messages deliv-
ered to the network. The parser method of the bondMessage object recognizes the
format of a message and delivers it for parsing to either the internal KQML parser or
to the external XML, xerces parser.

The system can use KQML and XML format messages simultaneously and it is
possible to specify XML or KQML messages on a host-by-host basis thus objects
may interact with KQML and XML-based systems simultaneously.

The conversion from internal format to a text-based external format implies a con-
siderable performance penalty, somewhat higher for XML. For slow and medium
speed networks, this penalty is hidden by the network latency, but for high speed
networks the conversion overhead may have a significant negative performance im-
pact. Whenever interoperability with other systems or readability of messages are
not important, the system can be configured to send messages in a serialized version
of the internal format.

The KQML composer transforms the internal format of Bond messages to valid
KQML statements. The value of the performative variable is set as the perfor-
mative of the KQML message. If there is no such variable, the tell performative is
used. All other variables are set as parameters of the resulting message. If the type
of the variable is not String, the variable is Java serialized into a byte buffer and
encoded using the Base64 algorithm. Base64 encoded strings are prefixed with the
"@@@" escape sequence, to allow the KQML parser to recognize them.

The KQML parser, bondKQMLParser, at the receiving side, parses a KQML
message into bondMessage internal format, and decodes the embedded variables.
Mapping name/value pairs to/from KQML is highly efficient. The KQML imple-
mentation in Bond is limited to syntactic parsing, the semantic interpretation is done
by the object, using the internal format.

XML, the Extensible Markup Language [47] is a general-purpose information
exchange format. An XML text consists of a Document Type Definition (DTD)
followed by a series of potentially embedded elements. Each element is defined by
a starting and an ending tag. A number of parameters can be specified, in the name
= value format of a starting tag. This feature allows sets of name/value pairs to
be mapped into XML format. BondMessage.dtd gives the rules to map Bond
messages into XML:

<?xml encoding="US-ASCII"?>
<!ELEMENT message> <!ATTLIST message

performative CDATA #REQUIRED
content CDATA #REQUIRED
sender CDATA #REQUIRED
destination CDATA #REQUIRED
subprotocol CDATA #REQUIRED

BOND CORE 295

reply-with CDATA
in-reply-to CDATA

>

The conversion into XML is done by the composer function,of thebondMessage
object. XML messages are parsed by an external XML parser. Bond can use any
XML parser conforming to the SAX event-oriented API. The performance of parsers
varies, currently we use the Apache-xerces parser. A full featured XML parser is
more complex then a KQML parser, thus parsing XML messages is less efficient then
parsing KQML messages.

9.1.2.3 Synchronous Communication. Message-oriented distributed object
systems support both asynchronous and synchronous communication. Systems based
upon remote method invocation favor synchronous communication when the caller
blocks until the call returns. Some systems based upon remote method invocation
circumvent this limitation and allow remote method invocation without return values.
They implement asynchronous method calls as a pair of synchronous method calls
without return values.

Synchronous communication is supported in Bond by theask andwaitReply()
methods. ask() is a synchronous version of say(), it automatically tags the mes-
sage as one which needs a reply, and waits until the reply arrives, or a timeout occurs.
ask() returns the reply, or null in case of a timeout as shown in the following
example:

bondMessage question = new bondMessage(‘‘(ask-one :
content get :value i :)’’, ‘‘PropertyAccess’’);

bondMessage rep = bs.ask(question, this, 10000);
if (rep == null)

{
System.err.println(‘‘Timeout of 10s was exceeded’’);
} else {
System.out.println(‘‘Field i of remote object is’’+

(String)rep.getParameter(‘‘value’’));
}

The ask() function blocks only the current thread of the Bond application, all
other threads continue to run.

The waitReply() method is an alternative for synchronous communication
allowing the execution of some code between message sending and the reply. The
message should marked as needing a reply and sent using the say() method as in
the following example:

bondMessage question = new bondMessage(‘‘(ask-one
:content get :value i :)’’, ‘‘PropertyAccess’’);
question.needsReply();
bs.say(question, this);
...

296 MIDDLEWARE FOR PROCESS COORDINATION

code executed before the reply
...
rep = question.waitReply(10000);

9.1.2.4 Asynchronous Communication. Asynchronous communication is
more difficult to implement then synchronous one, the system must be prepared to
accept an incoming message at any time, regardless of its current state. Such an active
message system is difficult to program, it must treat each message as an interrupt. In
case of multiple messages it is difficult to pair the incoming message with the original
request.

Bond provides a mechanism to pair incoming messages with the original requests.
Messages which require an answer call the needsReply() function that creates a
reply-with field in the message and attaches a unique identifier to it.

Network

ResidentResident

Sender
Object

Receiver
Object

Reply
waiting

slot

say

on_reply

ask

tell

sayfallback

create
waiting slot

Fig. 9.6 Asynchronous communication. The sender object uses the ask performative with
reply-with field to send an asynchronous message. The communicator creates a message
waiting slot for the sender object and deposits there a copy of the original message and the
unique id of the reply. Eventually the receiver object replays using the tell performative.
When processing incoming messages, the communicator checks the waiting slot table for the
unique id of the message and if a waiting slot exists, the communicator delivers the message
to it. If the incoming messages has the on reply field set then it is delivered directly, else it
is delivered by the say() method.

Before sending a message with a reply-with field, the communicator creates
a message waiting slot for the sender object. The message waiting slot contains the
original message and the unique id of the reply. When processing incoming messages,
the communicator checks the waiting slot table for the unique id of the message. If the
message has a waiting slot, the communicator pairs the reply and question together
and delivers them to the on reply function:

BOND CORE 297

public int on_reply(bondMessage message, bondMessage reply)

An object can isolate replies to earlier messages, from unexpected messages by
catching the message in the on reply() instead of the say() method. The
say() method acts as a fallback for messages even if the object does not imple-
ment on reply as shown in Figure 9.6.

9.1.2.5 The Subscribe-Notify Model for Event Handling. Java objects use
the listeners abstraction to capture events. An object can register itself as a listener
for a certain type of events. The object is notified every time the corresponding event
occurs, until it decides to un-register. The object should implement a Java interface
for the type of events it registered. The events are passed as procedure calls to the
given interface.

Distributed object systems like CORBA extend this concept for objects that are
not co-located. An event service allows an object to register itself as a listener for
events generated by a remote object.

The subscribe-notify model used in Bond is an extension of the Java model for
handling remote events in a distributed-object system. In this model an object ex-
presses its interest in events associated with remote objects by subscribing to them
and it is notified when the events occur. Throughout this presentation the object sub-
scribing to an event is called a monitor while the object generating the event is called
it monitored object.

In Bond events are generated when a property of a Bond object changes. Thus even
passive objects may generate events. A property of an object stored by a Persistent
Storage Server may be changed and the instance the change occurs, an event is
generated.

Consider for example an application where an agent monitors the stock market
and maintains several accounts. The portfolio managed by each account consists
of many stocks. The owner of the account may request to be notified when the
market value of the account goes below a threshold. In this example the agent queries
periodically one of the servers providing market updates and modifies accordingly
objects named account one for each customer. This object has a property called
Warning, a boolean variable, with a default value false. This value is set to
truewhen the condition requesting the user to be notified is met. If the owner of the
account has subscribed to this property she will be notified immediately when this
property changes. The account object may have multiple properties and the user
could subscribe to any or to all of them.

When a Bond object decides to monitor a remote object it sends a message with
the subscribe performative to that object. Internally, an event waiting slots is created
automatically by the communicator of the resident hosting the monitor, as shown in
Figure 9.7.

The object being monitored sends a message with the tell performative every
time the corresponding property of the object changes. The monitor matches these
messages against the set of event waiting slots. If a match is found, the message
is delivered to the object by the on event function. The event waiting slot is

298 MIDDLEWARE FOR PROCESS COORDINATION

Network

ResidentResident

Monitor
Object

Monitored
Object Y

say

on_event

Subscribe to property x of object Y

tell

say

fallback

create event
waiting slot Unsubscribe

property x of object Y

event waiting slot for x

set (x, val)
Event waiting slots

Properties of object Y

Fig. 9.7 The subscribe-notify event model. An object called a monitor may request to be
notified when property x of object Y is modified. When the subscribe message is sent, the
communicator of the monitor creates an event waiting slot.

automatically removed by the communicator object whenever the monitor sends an
unsubscribe message.

A monitor can separate an event notification message from other types of messages.
If the object does not implement the on event function, the say() function is used
as a fallback to deliver the message to the monitor.

The code for the bondListener follows:

public class bondListener extends bondObject
{publicbondListener() { }

public void subscribeAsListener(String property,
bondObject listener) {

Vector v;
if (values == null)

values = new Hashtable();
try { v = (Vector)listeners.get(property); }
catch (NullPointerException e) {v = new Vector();}
v.addElement(listener);
values.put(property, v); }

public void unsubscribeListener(String property,
bondObject listener) {

Vector v = (Vector)values.get(property);
if (v == null) return;

BOND CORE 299

else v.removeElement(listener); }
public void notifyListener(String property,

Object value) {
Vector v;
if (values == null) return;
if ((v = (Vector)values.get(property)) == null)

return;
if (v.size() == 0) return;
for (Enumeration e = v.elements();

e.hasMoreElements();) {
bondListenerInterface bl =
(bondListenerInterface)e.nextElement();
bl.propertyChanged(property); } }

}

The set function executed by the object being monitored notifies the monitor
when a property subject to monitoring changes:

public synchronized Object set(String name, Object value) {
Object ret = null;
try {
if (conf.useAccessors) {

try {invokeSet(name, value);return value;}
catch (InvocationTargetException ite2)
catch (NoSuchMethodException nsme2) }

try {
Field f= getClass().getField(name);
f.set(this, value);
ret = value; }

catch (NoSuchFieldException nf) {
if (values==null) values=new Hashtable();
if (value==null) {
values.remove(name);
return null; }
values.put(name,value);
ret = value; }

}
catch (IllegalAccessException iae1)
catch (IllegalArgumentException iae2)
catch (NullPointerException npe)
if (listeners != null) listeners.notifyListener(name, value);
return ret;

}

9.1.2.6 The Communicator. The function of the communicator on the sending
site is to compose a message out of its components and to pass the message to
the communication engine, see Figure 9.5. It fills in: the sender field with the
bondIPaddress and the bondID of the sender; the destination field field
with the bondIPaddress and the bondID of the destination; the reply-with

300 MIDDLEWARE FOR PROCESS COORDINATION

field with a newly created identifier, if the message requires a reply; the waiting slots
with the message or event identifier if waiting slots are needed. The pseudocode for
the sending process of the communicator follows:

for(every sent message)
if (external format)

transform message in internal format
endif
annotate with the sender address
if (reply needed)

annotate with a unique reply-with field
create a reply waiting slot

endif
if (performative is subscribe)

create an event waiting slot
endif
if (performative is unsubscribe)

delete the event waiting slot
endif
if (need to send info to destination)

annotate with the piggyback field
endif
pass the message to communicator engine

On the receiving side the communicator extracts the components of a message
delivered by the communication engine as shown in Figure 9.5. First the communi-
cator converts the message to internal format, then checks if the message is expected:
(i) searches the message waiting slots table to check if the message is a reply to an
earlier message and if so the waiting slot is deleted and the message is delivered to
the object paired with the original question; (ii) searches the event waiting slots table
to determine an event notification.

Finally the communicator delivers the message. If the destination has a unique
bondID the communicator searches the local directory and delivers the message to
the object. If the destination is an alias, the communicator picks up at random one
of the objects with the given alias and delivers the message to it. If the destination
object can not be found, the communicator sends an error message.

The communicator uses a thread pool to deliver a message to an object. A thread
pool is a collection of threads waiting to be activated. Whenever a message needs to
be delivered, the communicator wakes up a thread, passes to the thread the message
and a reference to the destination object as parameters, and calls the say function
of the destination object in the newly activated thread. After the return of the say
function, the thread goes back to the wait state.

This message delivery mechanism de-couples the communicator object from the
processing of messages at the object level and allows multiple messages to be pro-
cessed simultaneously. The default size of the thread pool is nthreads = 10. If more
than nthreads messages need to be processed at the same time, additional threads

BOND CORE 301

are created, they deliver the messages and then the thread pool return to its original
size. The pseudocode for message delivery is:

for(every incoming message)
parse message
remove the piggyback field if any
if (has in-reply-to field) and

(in-reply-to field maches a reply waiting slot)
then

deliver to object waiting on the reply waiting slot
delete the reply waiting slot

else if (performative is tell) and
(sender maches an event waiting slot)

then
deliver to object waiting on the event waiting slot

else
lookup the destination object
if (destination is alias)

select an object with the alias at random
else

look up the object in local dir
endif
if (no object)

send error message to sender
wake up a thread in the threadpool
deliver the message using the thread

endif
end for

9.1.2.7 Communication Engines. A communication engine transports mes-
sages from one resident to another. The engine runs at a known port at a host with
a given bondIPaddress. Currently the system comes with four interchangeable
communication engines:

UDP communication engine based upon the UDP protocol. Datagrams do not require
connection establishment or acknowledgements thus the UDP engine is faster then
the TCP engine supporting a reliable connection-oriented protocol. Message size is
limited to 64KB and there is no guaranteed delivery.

TCP communication engine based upon the TCP protocol. Its advantage is the un-
limited message size and the guaranteed delivery.

Infospheres communication engine based on the info.net package from the Info-
spheres system [14]. Message size is limited to 32KB.

Multicast communication engine based upon the IP multicast protocol. It is used when
the same message must be sent to a number of objects in a virtual object network.

Currently the system does not support the concurrent use of multiple communica-
tion engines.

Each engine has two methods to send, one for messages and another for objects
and one method to receive messages. Before sending an object with the realize()

302 MIDDLEWARE FOR PROCESS COORDINATION

function the object is converted to a string and then it is encoded. The skeleton of the
code to send messages and objects follows:

public void send(bondShadow bs,bondMessage m) {
String mes = m.compose();
try{
InetAddress targetIP = InetAddress.getByName

(bs.remote_address.ipaddress);
myUDPDaemon.send(targetIP, bs.remote_address.port, mes);}
catch(UnknownHostException e){e.printStackTrace();}

}
public void sendObject(bondShadow bs, bondObject bo,

String in_reply_to) {
bondExternalMessage bm = new bondExternalMessage();
bm.in_reply_to = in_reply_to;
bm.bo = bo;
String m = Base64.Object2String(bm);
try{
InetAddress targetIP = InetAddress.getByName

(bs.remote_address.ipaddress);
bondUDPDaemon.send(targetIP, bs.remote_address.port, m);}
catch(UnknownHostException e){e.printStackTrace();}

}

Each communication engine has one daemon responsible to send a receive a mes-
sage using the transport protocol for that engine. The skeleton of thebondUDPDaemon
follows:

public class bondUDPDaemon extends bondObject {
public bondUDPDaemon(int port) throws SocketException {
super(false);
udpSocket = new DatagramSocket(port);
localport = port; }

public int getLocalPort(){return localport;}
public void send(InetAddress targetIP,

int targetPort, String m) {
bufOut = m.getBytes();
udpOutPacket = new DatagramPacket(bufOut,

bufOut.length, targetIP, targetPort);
try{udpSocket.send(udpOutPacket);}
catch(IOException e){}

}
public String receive() {
try{

udpInPacket = new DatagramPacket(bufIn, 65535);
udpSocket.receive(udpInPacket);
InetAddress fromAddress = udpInPacket.getAddress();
fromHostname = fromAddress.getHostName();
fromPort = udpInPacket.getPort();

BOND CORE 303

String mes = new String(udpInPacket.getData(),
0, udpInPacket.getLength());

return mes;}
catch(IOException e){ return null; }

}
public String getFromHostname(){
return fromHostname; }

public int getFromPort(){
return fromPort;}

}

9.1.2.8 Virtual Networks of Objects. Distributed systems frequently contain
groups of objects semantically related to one another such as: local directories of
various residents; the groups of objects monitored by a single monitor; the group of
sensors connected to a single data collector. These groups may overlap, an object
may be a member of multiple groups. The members of a groups may receive multi-
cast messages, and may be created and destroyed together even though they may be
distributed across several residents.

Resident A

Resident B

Resident C

X

Y

Z

W

x
y

w

z

V

Virtual network of objects

multicast

Sender

N
e
t
w
o
r
k

Fig. 9.8 An objectVmulticasts to a virtual network of objects. The virtual network of objects
consists of the shadows x,y,z,w of objects X,Y,Z,W. Each shadow has the bondAddress
and the bondID of the object. Thick lines connecting the residents indicate transport paths
through the network.

In Bond we have an abstraction called a virtual network of objects for a group of
semantically related objects. A virtual network of objects consists of the shadows of
the objects as shown in Figure 9.8. The bondVirtualNetwork object supports
primitives for:

304 MIDDLEWARE FOR PROCESS COORDINATION

(i) Objects to join and leave a virtual network.

(ii) Testing if the objects in a virtual network are alive, it automatically partitions the
objects into two groups, live and dead.

(iii) Multicasting to the objects of the virtual network. If the application has the mul-
ticast communication engine installed, the message is transmitted using IP multicast.
If the multicast engine is not available, or the location of the objects does not allow
IP multicast, the multicast results into a sequence of unicasts.

The system could use virtual networks to connect local directories of residents to
a global directory.

9.1.2.9 Object Mobility. The system provides a simple way of moving objects
across the network, using the realize function applied on shadows. The sequence
of operations needed to bring a remote object to the current resident is: (i) create a
shadow of the remote object (either by knowing its name and location or by using the
directory service) and (ii) call realize() method on the shadow.

The object mobility using the realize() function is triggered on the receiving
side (pull mode), and does not require a cooperating entity on the sending side, see
Figure 9.9.

Resident A Resident B

MasterCopy=true MasterCopy=false

realize()

Object X

Shadow of Object X

Copy of Object X

bondIDbondID

Fig. 9.9 Object mobility. The realize() function supports the creation of a local copy
of a remote object. The original object and the copy have the same bondID, but the original
has the MasterCopy boolean property set to true while the copy has it set to false .

A problems raised by the mobility is the consistency of the copies. Therealize()
function creates a remote copy of the object, with the same bondID as the original,
and tags the moved object by setting its MasterCopy boolean variable to false.
If the new object is modified, then two different copies of the same object exist. There
are several ways of handling this problem:

(i) Physically move the object, discard the original object immediately after the move,
and make the new object the master copy.

BOND CORE 305

(ii) Clone the object, assign a new bondID to the copy immediately after the move.

(iii) Synchronize copies of the object to the master copy.

9.1.2.10 Distributed Awareness Distributed awareness is a passive mecha-
nism for the nodes of a message–passing distributed system to learn about the exis-
tence of other nodes without the need to communicate explicitly with them through
gossiping.

In Bond each resident maintains an awareness table and exchanges the information
in this table with other residents at the time of regular message exchanges between
objects. This mechanism can be turned off at the start up time.

An entry in the awareness table contains:

(i) bondAddress of a resident,

(ii) lastHeardFrom, the time when we last heard from the resident, and

(iii)lastSync the time when the awareness information was last sent to the resident.

The awareness information is piggybacked onto regular messages exchanged be-
tween two residents as shown in Figure 9.5.

9.1.3 Understanding Messages

How do humans understand each other? Try to ask a total stranger the question "how
many 5-fold axes does an icosahedron have" in Swahili. After a few trials you will
realize that in order to communicate with one another, two individuals have to find
some common ground, first they have to speak the same language, then they have to
have some common domain knowledge.

How do objects in a distributed system understand each other? A solution is to
have some public service where each object deposits a note describing the methods
it can perform. CORBA uses such a service called "interface repository".

Table 9.3 Subprotocols.

Subprotocol Function

Property access Read/write access to properties of a Bond object.
Security Establish trust relationship amongst Bond objects.
Monitoring Monitor an object.
Agent control Start, stop, and control a remote agent.
Scheduling Schedules a contract
Persistent Storage Save/load objects to/from Persistent Storage
Data Staging Move files
Registration Register a resident with the SystemMonitor and the

Directory Server

306 MIDDLEWARE FOR PROCESS COORDINATION

An open system consists of a continuum of objects ranging from simple objects
like an icon to complex ones such as a server or an agent. Moreover some objects
are created dynamically or may acquire new properties dynamically. The sender of
a message expects the receiver to understand and then to react to the message. This
expectation places a rather heavy burden upon the objects of an open system. In
closed systems the semantic gap can be closed, objects may agree to communicate
only after some prior agreement as in the case of CORBA.

In Bond we partition the set of messages into "dialects" called subprotocols; two
objects may communicate with one another if and only if they implement a common
subset of subprotocols. Before delivering a message the say() method examines
the subprotocol field of the message and it only delivers the message if the desti-
nation object, one of its ancestors, or a probe attached to the object implements the
subprotocol.

Agent X
Agent X

Monitoring

Property Access

Security

Agent Control

Agent Y

Agent Z

SubprotocolsImplemented = Agent Control, Security

SubprotocolsImplemented = AgentControl,Monitoring

SubprotocolsImplemented
= AgentControl

Fig. 9.10 Each Bond object has a property called SubprotocolsImplementes that
lists the subprotocols implemented by the object. All Bond objects implement the �Property
Access subprotocol. All agents including X,Y,Z implement the Agent Control subprotocol. In
addition agent Y implements the Security subprotocol, and agent Z the Monitoring subprotocol.

In this section we first introduce the concept of a subprotocol, then introduce static
subprotocols and subprotocol inheritance in Section 9.1.3.2 followed by a discussion
of dynamic subprotocols and probes in Section 9.1.3.3. We examine message delivery
and the property access subprotocol implemented by all Bond objects in Sections

BOND CORE 307

9.1.3.4 and 9.1.3.5. We conclude with a presentation of the configuration mechanism
in Section 9.1.3.6.

9.1.3.1 Subprotocols. The set of Bond messages is partitioned into small,
closed subsets of commands necessary to perform a specific task, called subpro-
tocols. Each message identifies the subprotocol the message belong to, thus an object
can decide if it understands the message or not.

Closed means that commands within a subprotocol do not reference commands
outside it. The reply is always a member of the same subprotocol with the question.
The only exception to these rules are the (sorry) and (error) performatives,
valid replies to messages of any subprotocol.

Every Bond object implements at least the property access subprotocol which
allows to interrogate and set the properties of another object. A typical object imple-
ments a number of subprotocols. Table 9.3 lists a subset of Bond generic subprotocols.

If two objects do not have any knowledge about each other, they interrogate the
SubprotocolsImplementedproperty of each other and learn what subprotocols
each of them implements. Then they can communicate using the intersection of the
two sets.

Some subprotocols are static, they are available at the time an object is created,
others are dynamic, added to an object as needed during the lifetime of the object.
Subprotocols can also be created automatically as discussed later in Section 9.1.3.3.

9.1.3.2 Static Subprotocols and Inheritance. A Bond object inherits the
subprotocols implemented by the objects above it in the object hierarchy. The message
thread of a resident delivers an incoming message to the say() function of the
object. If the message is not understood by the say() function of the object, it is
then passed to the say() function of the immediate ancestor in the object hierarchy
and this process continues recursively until either an ancestor that implements the
subprotocol of the message is found, or the say() function of the bondObject,
the root of the hierarchy answers sorry.

Figure 9.11 shows two examples of messages delivered to abondScheduler ob-
ject. This object extends abondAgent, which in turn extends abondExecutable,
which in turn extends a bondObject.

The scheduler agent understands an agent control message because it inherits the
agent control subprotocol from thebondAgent. The agent control message is deliv-
ered by the bondAgent.say() function. On the other hand, the scheduler agent
is unable to understand a monitoring message, neither bondScheduler.say,
bondAgent.say, bondExecutable.say, nor bondObject.say can de-
liver this message thus the reply is sorry. To understand a monitoring message an
object must inherit the monitoring subprotocol from a bondScheduler object.

9.1.3.3 Dynamic Subprotocols and Probes. Some members of a class of
objects may have functions and requirements different than those of the majority of
objects in that class. For example, an agent may need to monitor other objects, or
may have very strict security requirements. Yet, requiring all agents to understand

308 MIDDLEWARE FOR PROCESS COORDINATION

Agent control
 message

Monitoring
message

Sorry

Reply

bondObject
(PropertyAccess)

bondExecutable

bondAgent
(AgentControl)

bondScheduler
(Scheduling)

bondSchedulerAgent

bondScheduler.say()

bondAgent.say()

bondExecutable.say()

bondObject.say()

Fig. 9.11 The bondSchedulerAgent inherits the subprotocols of his ancestors,
bondScheduler, bondAgent, bondExecutable, bondObject. The subproto-
cols implemented by each ancestor are in parenthesis. An agent control message is delivered
by the bondAgent.say() function. On the other hand, the scheduler agent is unable
to understand a monitoring message, neither bondScheduler.say, bondAgent.say,
bondExecutable.say, nor bondObject.say can deliver this message thus the reply
is sorry.

the monitoring and the security subprotocols imposes an unnecessary overhead for
those who do not need to monitor or do not need additional security.

In Bond we have specialized objects called probes that are attached to a regular
Bond object as a dynamic property. The only function of a probe is to understand
a subprotocol. A Bond object implements all static protocols on its sub-tree of the
Bond object hierarchy and all sub-protocols supported by the probes attached to it
after the object was created.

This construction is similar in scope to the Decorator design pattern [18], it ex-
tends dynamically the functionality of an object without sub-classing. However the
implementation is different, instead of a wrapper which captures the function call, we
append dynamically an object.

Another object-oriented structure which allows objects to acquire new function-
ality after "programming time" is the notion of a mixin [11]. Mixins are generally
implemented as abtract classes, with reserved functions for future functionality. As
such, the programmer needs at least a rough idea about the nature of the functionality

BOND CORE 309

Monitoring
message

bondObject
(PropertyAccess)

bondExecutable

bondAgent
(AgentControl)

bondScheduler
(Scheduling)

bondSchedulerAgent

bondScheduler.say()

bondAgent.say()

bondExecutable.say()

bondObject.say()

Monitoring Probe

Reply to
monitoring
message

Fig. 9.12 A bondScheduler object extended with a monitoring probe. Now the object
understands the monitoring sub-protocol and gives a meaningful reply to a monitoring message.

with which the object may be extended. In our case, the probes offer greater flexibility
and adds the cost of the time to interpret syntactically and semantically the message.

The implementation of the bondObject guarantees that when an object does
not understand a message, its dynamic properties list is searched for a probe which
can handle the subprotocol and then deliver the message to the object. If no probe is
found, the object replies sorry.

Two commonly used probes are the bondMonitoringProbe which under-
stands the monitoring subprotocol and the bondSecurityProbewhich allows an
object to understand encrypted messages.

Figure 9.12 shows the same scheduler agent, this time extended with a monitoring
probe. The probe implements the monitoring subprotocol. An incoming message in
the monitoring subprotocol is passed down the inheritance hierarchy without being
delivered to the object. At the bondObject level, we first check that the message
does not belong to the property access subprotocol. Then we check the list of dynamic
properties and find a probe that understands the monitoring subprotocol. The message
is delivered to the probe that produces a meaningful reply.

In our system there are three types of probes:

(i) regular - activated after searching the list of the static subprotocols understood by
an object, e.g., the monitoring probe,

310 MIDDLEWARE FOR PROCESS COORDINATION

(ii) preemptive - activated before searching the list, e.g. the security probe, and

(iii) autoprobes - used to load dynamically a probe at runtime.
The skeleton of the code for the bondAutoProbe is listed below. The say

function parses the message and identifies the subprotocol, then examines a hashtable
of probes and if one is found, the probe is loaded and the message is delivered to it.

public class bondAutoProbe extends bondProbe {
Hashtable lookup;
public bondAutoProbe(bondObject parent) {
super(parent);
lookup = new Hashtable();
initDefaults();

}
public void initDefaults() {

addAutoLoad("Monitoring","bondMonitoringProbe");
addAutoLoad("AgentControl","bondAgentFactory");

}
public void addAutoLoad(String name, String probename){

lookup.put(name, probename);
}

public boolean implementsSubprotocol(String name) {
if (lookup.get(name) != null) { return true; }

return false;
}

public void say(bondMessage m, bondObject sender){
String name = (String)m.getParameter(":subprotocol");
String val = (String)lookup.get(name);
bondProbe p = loader.loadProbe(val);
p.parent = parent;
parent.set("AutoProbe_"+name, p);
p.say(m,sender);

}
}

9.1.3.4 Message Sending and Delivery. Any Bond object can send and re-
ceive messages using the say() method. The say function, defined at root of the
bondObject hierarchy, has the following signature:

public void say(bondMessage m, bondObject sender) {
if (sender == null) {

sender = m.getSender();
}
String sp = m.getSubprotocol();
if(sp != null){

if (sp.equals("PropertyAccess")) {
sphPropertyAccess(m,sender);
return; }

}

BOND CORE 311

else {
switch (m.performative) {
case bondMessage.PF_SORRY:
case bondMessage.PF_ERROR:
case bondMessage.PF_DENY:

return;
default:
}

}
if (values != null) {

bondAutoProbe ap = null;
for (Enumeration e = values.elements();

e.hasMoreElements();) {
bondObject o = (bondObject)e.nextElement();
if (bondProbe.class.isAssignableFrom(o.getClass())

&& o.implementsSubprotocol(sp)) {
if (o instanceof bondAutoProbe) {

ap = (bondAutoProbe)o;
} else {

o.say(m,sender);
return; }

}
if (ap != null) { ap.say(m,sender);}
}

}

The say method is overwritten to support specific features for individual classes
of objects. The message processing ability of an object is inherited in the object-
oriented sense. At the end of the overwritten say method of an object there is a
fallback to the say function of its immediate ancestor.

9.1.3.5 The Property Access Subprotocol. The property access is the
subprotocol implemented by every Bond object. This subprotocol is used to read and
write properties of another object. Table 9.4 lists the messages in this subprotocol.

The performative gives the broad meaning of the message. For exampleask-one
is a question requesting an answer, achive is an imperative request, tell is the
response to a question. The content specifies the actual function requested, for ex-
ample set,get are used to store and respectively read a property. The parameters
provide command specific information.

When we set the value of a property, then the new value is either a string, or a
BASE64 encoded value. In a reply to get the value is either a string or a BASE64
encoded value; if there is no such property, value is a BASE64 encoded null. A
reply to set confirms setting the property and it is sent only if needsReply()was
invoked on the set message.

If object X wants to obtain the value of the property x of object Y, it sends the
following message:

(ask-one :sender X :receiver Y :subprotocol PropertyAccess

312 MIDDLEWARE FOR PROCESS COORDINATION

Table 9.4 The messages of the property access subprotocol. A subprotocol is a closed set of
messages. A message consists of a performative indicating the broad meaning of the message,
a content, and parameters.

Performative :content Parameters Description

ask-one get :property name Get value of property name of re-
mote object.

achieve set :property name
:value new value

Set value of property name of re-
mote object to value new value.

tell value :value value Reply to get. value is the value
of the requested property.

tell ok Reply to set. Confirms setting
the property.

sorry :error error-name
:description
description

An error occurred.

:content get :property x :reply-with zzzz)

Assuming that property x of object Y has value 7, then object Y replies with the
following message:

(ask-one :sender Y :receiver X :subprotocol PropertyAccess
:content value :value 7 :in-reply-to zzzz)

The property access subprotocol supports the set, get and realize functions.

void sphPropertyAccess(bondMessage m, bondObject sender){
switch(m.performative) {
case bondMessage.PF_ASK_ONE:

if (m.content.equals("get")) {
Object val = get((String)m.getParameter(":property"));
bondMessage rep = m.createReply("(tell

:subprotocol PropertyAccess :content value)");
rep.setParameter(":value", val);
sender.say(rep,this);
return;}

if (m.content.equals("set")) {
set((String)m.getParameter(":property"),

m.getParameter(":value"));
if (m.expectsReply()) {

m.sendReply("(tell :content ok)", this);}
return;}

case bondMessage.PF_TELL:

BOND CORE 313

The system expects to find this information in:
Bond/bond/core/properties
bond.debug=false
bond.agentLazyLoading=true
bond.strategy.repository=http://olt.cs.purdue.edu:8001/Bond/
bond.distributedAwareness=false
bond.communicationengine=UDP
bond.UDP.port=2000
bond.TCP.port=2000
bond.scheduler=RR
bond.microserver.enable=false
bond.microserver.port=2099
bond.filelogger = yes
default.monitoring.agent=Agent1+danube.cs.purdue.edu:2000
bond.faultDetection=true

Fig. 9.13 A sample properties file.

if (m.content.equals("realize")) {
com.sendObject((bondShadow)m.getSender(),
this, (String)m.getParameter(":reply-with"));
return;}

if (m.content.equals("ok")) { return;}
return;
return;

}
}

9.1.3.6 Bond Configuration. At start-up time the system reads a file describing
the desired system properties and creates a configuration object,bondConfiguration.
A sample properties file is shown in Figure 9.13.

Most of the system properties in this file are self-explanatory. Here we only
note that agent strategies can be loaded when an agent is activated, or can be de-
ferred until the strategy is actually needed, an option controlled by the setting of the
bond.agentLazyLoading variable. A bondStategy is a procedure activated
when an agent enters a state as described in Section 9.2. A strategy repository is
a database of common strategies. Distributed awareness, see Section 9.1.2.10 is a
feature allowing residents to learn about each other. Bond agents support several
schedulers for their actions, one of them being Round Robin, RR.

A microserver is an object that understands the HTTP protocol and is capable to
access the properties of an object via a Web browser. All events can be logged on a
file if so desired and a resident may request to be monitored by a running agent. The
fault detection features may be activated at the start-up time.

314 MIDDLEWARE FOR PROCESS COORDINATION

The bondConfiguration object creates a running environment tailored to the
options in the properties file.

9.1.4 Security

9.1.4.1 Introduction Security is an important concern for any network envi-
ronment, as information in transit is vulnerable, and the use of resources in different
administrative domain introduces issues of trust and consistency between them. A
distributed object system poses new challenges to security mechanisms. For exam-
ple security auditing should be able to identify correctly the principal, the original
sender of a request, even after a chain of calls involving multiple objects. There is
also the need of delegation, the propagation of attributes of the principals between
components. Delegation allows one component to act on behalf of a principal.

Applications of network computing have vastly different security requirements and
the trade-off between security and performance is application specific. It is infeasible
to consider one security model suitable for all applications and all environments.
Additional security challenges posed by network computing are discussed below.
The user population and the resource pool are large and dynamic. A user may only
be aware of a small fraction of the components involved in a computation.

The relations among components may be rather complex, a component may act
both as a server and a client at the same time. Traditional distributed systems use
RPC or TCP/IP as their primary communication mechanism. In contrast, a distributed
computing environment may use two-sided communication mechanism like message
passing, streaming protocols, multicast, and/or single-sided get/put operations, as
well as RPC. Components may communicate through a variety of mechanisms.

The boundaries of trust are more intricate because of dynamic characteristic of
components. The trust users have in components is threatened when components can
be mobile between hosts and new components can be created on the fly. Boundaries
of trust are more complex because an activity typically involves multiple domains
with different security policies and security models. Computation may be distributed
to many more machines than any given user has control over.

Granularity, consistency, scalability, flexibility, heterogeneity and performanceare
important aspects of distributed object security. A security design implies trade-off
among these requirements. For example strong security and good performance are
competing requirements. Coarse-grain security is easier to manage than fine-grain.

In Bond we opted for an extensible core object that can support multiple security
models and can be added dynamically to existing object. This philosophy leads to
several design principles:

(i) Provide a framework for security, not force an implementation. Bond leaves
the decision of choosing the format of credentials, the authentication policy, the
access control policy, and so on, to the system developer or the system admin-
istrator. Bond security is implemented as an extensible core Bond object called
BondSecurityContext and a set of well-defined security interfaces.

BOND CORE 315

(ii) Separation of concerns, various aspects of a complex object design, including
security, should be separated from one another. In the initial design and implemen-
tation phase the creator of an object should only be concerned with functionality.
Once the object is fully functional the creator needs to investigate the security re-
quirements and augment the object with the proper security context by including a
probe called BondSecurityContext. This dynamic property of a Bond object sets up a
secure perimeter for the object, it intercepts all incoming and outgoing messages and
enforces the security and access control models selected by the creator of the object.

(iii) Support multiple authentication and access control models. This goal is achieved
by defining a common interface for different security functions, like credential, au-
thentication and access control.

The Bond security framework is based upon the concept of preemptive probe
discussed in Section 9.1.3.3. The preemptive probe is activated before any attempts
are made to deliver the message to the object, it intercepts all messages sent to the
object.

9.1.4.2 Security Models. Security in a network environment includes authen-
tication and access control. Authentication refers to the process of identifying an
individual. Access Control is the process of granting or denying access to a network
based on a two-step process, authentication to ensures that a user is who he/she claims
to be, and access control policy which allows the user access to various resources based
on the user’s identity.

Some of the authentication models are:

PAP - Password Authentication Protocol. The most basic form of authentication, the
user’s name and password are transmitted over the network and compared to a table
of name-password pairs. Typically, the stored passwords are encrypted.

CHAP - Challenge Handshake Authentication Protocol. The authentication agent,
typically a network server, sends the client program a key to encrypt the username
and the password.

Kerberos - ticket-based authentication. The authentication server assigns a unique
key, called a ticket, to each user that logs on to the network. The ticket is then
embedded in every message to identify the sender of the message.

Certificate-based authentication. This model is based on public key cryptography.
Each user holds two different keys: public and private. The user can get a certificate
that proves the binding between the user and its public key from a third party. The
private key is used to generate evidence that can be sent with the certificate to server
side. The server uses the certificate and evidence to verify the identity of the user.

Credential is a secret code that proves the identity of an individual. Authentication
models use different credentials, e.g. username/password in PAP and CHAP, user
identifier/ticket in ticket-based authentication, and user certificate/private key in the
certificate-based authentication.

Access control models include firewall and access control list,ACL. Firewall grants
or denies access based upon the IP address of the requester. An access control list
specifies what operations a user may perform on each resource.

316 MIDDLEWARE FOR PROCESS COORDINATION

Table 9.5 Authentication models

Type Interface Authenticator Interface

Name
& Pass

bondPAPCredentail bondPasswordAuthenticator

CHAP bondCHAPCredential bondChallengeAuthenticator

9.1.4.3 Implementation. BondSecurityContext is a preemptive probe
that establishes a defense perimeter for the object it is attached to, by intercepting in-
coming and outgoing messages with two methods: incomingMessageProcess()
and outgoingMessageProcess(). In addition there are several security inter-
faces:

BondCredentialInterface - defines the method to access the credential pos-
sessed by the currentBondSecurityContext. This interface provides two groups
of methods: (i) Methods to respond to authentication request from a remote object.
Usually a challenge is contained in the authentication request, and the response is
derived from both the challenge and the information provided by the credential. The
response is generated differently depending on security models. (ii) Methods to gen-
erate a user identifier and a proof to be embedded in each outgoing message and prove
to the receiver the identity of sender. The proof has different meaning in different
security models. In a username/password model, the proof can be a password, or an
encrypted password, in a ticket based security model, the ticket itself can be a proof,
in a certificate–based model, the evidence generated by encrypting a random string
with the private key can be an eligible proof.

BondAuthenticatorInterface - defines the authentication method for each
message received by an object. The developer or the administrator may deploy one
of the authentication models mentioned earlier. The only restriction is to adhere to
this interface. The authenticateClient() is the only method provided by this
security interface. This method returns an authenticated user identifier. This identifier
can be used for access control or auditing.

BondAccessControlInterface - defines the access control method for each
message received by an object. The methods provided by this security interface are
initACL() and checkRight() based upon the authentication models discussed
earlier.

The code below illustrates the implementation ofbondSecurityContext that
supports authentication and access control in theincomingMessageProcess().

bondSecurityContext extends bondProbe {
private bondCredentials bcs;
private bondAuthenticatorInterface bau;
private bondAccessControlInterface bac;

/* incomingMessageProcess is called by the message

BOND CORE 317

Table 9.6 Access control models

Type Access Control Interface Required Authenticator

IP bondIPAddressAccessControl -

ACL bondNameBasedAccessControl
bondRightBasedAccessControl

bondChallengeAuth
bondPasswordAuth

thread on each received message */
public void incomingMessageProcess(m, sender){

/*1.authenticate message */
authenticated_user_id
= bau.authenticateClient(m);
if(authenticated_user_id == null){
sender.say(sorry message);
return;}

/* 2.enforce access control */
result = bac.checkRight(authenticated_user_id,m);
if(result == false){
sender.say(sorry message); return;}

/* 3.pass the message to the object */
parent.say(m, null); }

The code also shows several objects that implemented the security interfaces de-
fined above.

Table 9.5 lists the authentication models and Table 9.6 lists the access control
models implemented in Bond.

All authenticators in Table 9.5 need an Authentication Server maintaining the user-
names and the passwords. If the service provider uses one type of authenticator, the
client should use the corresponding credential to make the authentication successful.

9.1.4.4 Examples. The following examples illustrates how to construct secure
objects. Assume that we have one client, two generic servers and an authentication
server that provides account management and authentication services.

The client uses an existing account (uid=hector and passwd= ham) to ac-
cess services provided by the two servers. One of them, serverA enforces plain
password-based authentication and firewall-based access control, while serverB en-
forces CHAP-based authentication and name–based access control.

The code below shows how to setup serverA as a secure object enforcing plain
password-based authentication and firewall-based access control.

/* create a new servr object, serverA server */
serverA = new server();

/* create a plain-password based authenticator */
bondPasswordAuthenticator bau = new

318 MIDDLEWARE FOR PROCESS COORDINATION

bondPasswordAuthenticator(baserver);

/* create a firewall-based access controller AC */
bondIPAddressAccessControl bac = new

bondIPAddressAccessControl();
bac.initACL("firewall.acl");

/* create a security context */
bondSecurityContext gatekeeper = new

bondSecurityContext(serverA);
/* set the AC and authenticator of context */

gatekeeper.setAccessControl(bac);
gatekeeper.setAuthenticator(bau);

/* set the security context into serverA */
serverA.setSecurityContext(gatekeeper);

The format of the access control list firewall.acl is:

* Firewall configuration file consisting
* of pairs <hostname><mask>
dragomirna.cs.purdue.edu 255.255.255.0

Hosts in the same sub-net with the machine dragomirna.cs.purdue.edu
can access serverA.

The code below shows how to create a secure object enforcing CHAP-based au-
thentication and name-based access control, AC.

/* create a new server object, serverB */
server serverB= new server();

/* create a CHAP-based authenticator */
bondChallengeAuthenticator bpau = new

bondChallengeAuthenticator(baserver);
/* create name-based AC and initialize it */
bondNameBasedAccessControl bac = new

bondNameBasedAccessControl();
bac.initACL("names.acl");

/* create a security context for serverB */
bondSecurityContext gatekeeper = new

bondSecurityContext(serverB);
/* set the access controller and authenticator */
gatekeeper.setAccessControl(bac);
gatekeeper.setAuthenticator(bpau);

/* set security context as dynamic property of serverB*/
serverB.setSecurityContext(gatekeeper);

The format of the access control list file names.acl is:

*
* Name based ACL, the format of
* this file is as following

BOND CORE 319

Client
Object

Client
Security
Context

PAP
Credential

Server
A

Object

bond
Password

Authenticator

bond
IPAddress

Access
Control

Server A
Security
Context

(1) (2)

(3)

N
E
T
W
O
R
K

Fig. 9.14 Processing of a service request using a PAP model. (1) is the original service
request from the client. (2) is the service request with a username and password added by the
client’s security context. (3) is the response to the service request from the client if the security
context of the server validates the credentials.

* <name> <right1,right2,rightN>
hector persistent-object-read,persistent-object-write

This means that user hector is allowed to save objects to and reload them from
this server.

The parameter,baserver, is used to create the authenticators in both cases. This
means serverA and serverB share the account information stored by the baserver,
the authentication server of the domain.

To set up a client as a secure object:

/* create a client object */
client clio = new client();

/* create a security context for client */
bondSecurityContext bsc = new bondSecurityContext(clio);

/* setup a PAP credential */
bondPAPCredential bc1 = new bondPAPCredential

("hector","ham"); bsc.setCredential(bc1,"serverA");
/* setup a CHAP credential */
bondCHAPCredential bc2 = new bondPAPCredential

("hector","ham"); bsc.setCredential(bc2,"serverB");
/* setup this security context for client */
clio.setSecurityContext(bsc);

320 MIDDLEWARE FOR PROCESS COORDINATION

Client
Object

Client
Security
Context

bondCHAP
Credential

Server
B

Object

bond
Challenge

Authenticator

bond
BameBased

Access
Control

Server B
Security
Context(1)

(2)

(4)

N
E
T
W
O
R
K

(3)

Fig. 9.15 Processing of a service request using the CHAP credential. (1) is the original
service request from the client. (2) is a challenge generated by the security context of the
server. (3) is the response to the challenge. (4) is the response to the service request from the
client if the security context of the server validates the credentials.

Once properly set up, bsc adds appropriate credentials to outgoing requests by
checking destinations. In the above example, requests to serverA are associated with
bondPAPCredential, while those to serverB are with bondCHAPCredential.

A scenario involving the interaction between the client and serverA is shown in
Figure 9.14. The client sends request for service. The message is intercepted by the
security context of the client and the username, and the password are inserted into the
message before forwarding it to serverA. When the message reaches its destination
it is intercepted by the security context of the server which enforces authentication
and access control. After validating the username and the password, the message is
passed to serverA.

The scenario illustrated in Figure 9.14 is appropriate when the server trusts the
identifier and the proof contained in a message. But the identifier and proof may
be captured by a malicious third party and used to obtain unauthorized access to the
server. To prevent such attacks, the security context of the server should use a stronger
authentication scheme as shown in Figure 9.15. The client sends a service request to
serverB. The security context of the client detects that a bondCHAPCredential is
used and only forwards the message. The message is captured by the security context
of the server. The authenticator of the security context of the server sends a challenge
to the credential component of the security context of the client and expects a response
derived from both the challenge and information contained in client’s credential. The
authenticator uses the challenge and corresponding response to authenticate the client.
If the service request is validated, the server object grants the service.

THE AGENTS 321

9.2 THE AGENTS

The bond.agents package implements the agent framework. Our agent model
was designed with several objectives in mind:

(i) Assemble dynamically an agent from reusable components. Use a description
language to specify the structure of an agent.

(ii) Create a supporting environment for an agent. The environment should be open-
ended and support societal services.

(iii) Map the agent description into a data structure and feed this data structure to the
control unit responsible for coordinating the execution of an agent.

(iv) Support concurrent activities as a defining feature of an agent rather than an
afterthought. Agents should be able to respond promptly to external events and, at
the same time, carry out multiple tasks previously initiated.

(v) Support changes in the behavior of an agent. Since behavior is determined by
structure, support structural mutations of an agent.

(vi) Support a weaker form of agent mobility, allow agents to migrate at discrete
instances of time and to specific locations only. Conceive an architecture where the
complexity of the agent state periodically reaches a minimum, and exploit this feature
to facilitate mobility. Allow agents to migrate only to sites part of the environment.

Our agent model consists of four components, state machines or planes, strategies,
a model of the world, and an agenda. The terms state machine and plane are used
interchangeably throughout this chapter, the first when discussing the agent structure
and the second in the context of the functionality of an agent.

Structurally, an agent is a collection of state machine. In turn, each state ma-
chine is described by states and transitions amongst states. Strategies, the functional
components of an agent are specified for each state.

To describe an agent we introduced an agent description language called Blueprint.
A Blueprint program is interpreted by an agent factory object which creates an internal
data structure. In turn, this data structure is used by the agent factory to control the
run-time behavior of the agent.

The multi-plane agent model. The agents are described by functional components
(the strategies) and the structural components - the multi-plane state machine. The
multi-plane structure provides the means to express concurrent agent activities. Each
state machine is said to be operating in its own plane, thus the term multi-plane state
machine for our model. Each plane may performed a different task, one may support
reasoning or planning functions, another the execution, while a third one is used for
bookkeeping.

A state machine is defined by a graph with nodes corresponding to states and edges
to transitions among states. Each state machine has one active node at any given time.
The state of the agent is defined by a vector of states, one state per plane. A state
machine changes its state by performing transitions. The transitions are triggered
by internal or external events. External events are messages. The set of external
messages that trigger the transitions of one or more state machine defines the control

322 MIDDLEWARE FOR PROCESS COORDINATION

subprotocol of the agent. Multiple strategies may be used to handle different events
e.g. a strategy in one plane for external messages, while another plane handles user
interface events.

The behavior of an agent is often multifaceted, it consists of several loosely coupled
aspects. A full-featured agent may exhibit several facets:

Reasoning. Agents use inference to generate new facts from existing ones using a set
of rules.

Visual interface. Most agents present a visual interface and interact with humans: (a)
presenting its knowledge i.e. a part of the model in a visual format, and (b) collect
user interface events.

Reactive behavior. Agents react to external events.

Active behavior. Agents perform actions in pursuit of their agenda even without
external events.

In most cases, a separation of these facets is possible,and the relative independence
of the facets justifies their separate treatment. For example the various steps taken by
an agent to pursue its goal are changes in its active behavior, but these changes may
not necessarily lead to a change in its reactive behavior, the look of the user interface,
or the reasoning process of the agent.

The multi-plane state machine structure provides an elegant way to express the
multifaceted behavior of an agent, every plane expresses a facet of the behavior of
the agent. There are no restrictions on the nature and behavior of planes, so the agent
designer can create the structure most suitable to the problem at hand. However,
the independence of facets is relative, significant interdependence existing between
them. In the multi-plane state machine structure, the interdependence amongst planes
is captured by the fact that all planes share a common model and transitions triggered
by one plane are applied to the whole structure, providing a signaling mechanism
amongst planes.

The strategies are the functional components of an agent. Once a state machine
enters a state it triggers the excution of the strategy associated with that state. In
turn, a strategy consists of a sequence of actions executed under the control of a
scheduler.

Strategies are written in programming languages like Java, C, C++, or in interpre-
tative languages like JPython. They can be specified as executables, Java class files,
or be embedded in the blueprint as source programs, to be processed by an existing
interpreter. The strategies are discussed in depth in Section 9.2.1.3.

The model of the world is an unordered collection of free-formatted items accessed by
name, representing all the information an agent has about the environment and itself.
The model, can be a knowledge base, an ontology, a pre-trained neural network, a
collection of meta-objects, handles of external objects e.g. file handles, sockets, etc.,
or a heterogeneous collection of all the above. It also contains agent state information.

The model of the world is a Bond object itself,with a set of dynamic properties,one
for each component. The model is used by strategies as a shared memory, strategies
communicate with each other by storing and retrieving data to/from the model. The

THE AGENTS 323

naming scheme supports namespaces and allows multiple strategies to reuse variable
names without conflicts. Programming languages like C++ use namespaces to resolve
name conflicts.

The model of the world is a passive object, inherits the serializability and mobility
properties of Bond objects and allows migration and checkpointing of Bond agents.
The information in the model might be time and location dependent and be meaning-
less after migration. For example, the string/usr/bin/netscapegiving the path
information for the executable of a browser is meaningless when an agent migrates
from a Linux to a Windows NT system.

The agenda is an object that defines the goal of the agent. The agenda implements
a boolean distance function on the model. The boolean function shows if the agent
has accomplished its goal. The agenda acts as a termination condition for the agents,
except for agents with a continuous agenda where their goal is to maintain the agenda
as being satisfied. The distance function may be used by the strategies to choose their
actions.

9.2.1 Communication and Control. Agent Internals.

An agent can only exist in a supporting environment provided by a resident. Sev-
eral objects in this environment control the lifecycle of an agent, see Figure 9.16.
The bondAgentFactory, assembles the agent based upon its blueprint and gen-
erates its Agent Control Subprotocol, ACS and an agent control structure. The
ACS allows the agent to communicate with other objects. The agent control struc-
ture is an internal data structure used by the bondSemanticEngine and the
bondActionScheduler to control the runtime behavior of the agent.

The structural and functional components of the agent, the blueprint and the strate-
gies come from local or from remote repositories. The agent factory assembles an
agent based upon its blueprint and may also create a modified blueprint if the control
agent structure is modified at runtime as discussed in Section 9.2.1.9.

Each state of each plane has a strategy associated with it. Strategies may be loaded
statically when an agent is created, or dynamically, at the time of a transition to the
corresponding state. Strategies may come from the local strategy database, may be
downloaded from an Web server, or from the tuple space, or may be provided by the
entity requesting the creation of the agent. At the time of this writing, strategies in
the JPython scripting language may be included in an agent control message.

All objects, including agents react to messages by invoking methods implemented
by the object. To understand the behavior and functions of an object we examine the
two facets of an object: (i) message decoding and (ii) the actions taken by the object
in response to messages described by the methods supported by the object.

In this section we describe the major events in the life of an agent as follows:
creation in Section 9.2.1.5; activation in 9.2.1.6; checkpointing and restarting in
9.2.1.7; migration in 9.2.1.8; modification or surgery in 9.2.1.9. These events occur
in response to messages sent either to the agent factory controlling the agent, or to

324 MIDDLEWARE FOR PROCESS COORDINATION

Agent Factory

Action SchedulerSemantic Engine

S2
S1

S3

Model

Strategy
Data Base

Resident

Tuple
Space

Blueprint
RepositoryBlueprint

Repository

Web
Server

Local Host

Multi-plane Agent

Agent

Agent Control Structure

N
E
T
W
O
R
K

A
C
S

A
C
S

Fig. 9.16 The agent runtime environment. The agent and its Agent Control Subprotocol,
ACS are created by the bondAgentFactory. The structural component of an agent, the
blueprint, and the functional components, strategies, come from local or from remote repos-
itories. The agent has multiple planes, each plane is a state machine. Each state of a state
machine has a strategy associated with it. Once created, the bondActionScheduler and
the bondSemanticEngine control the execution of the agent using an internal data struc-
ture. Strategies can be loaded dynamically from: local repositories (S2), from Web servers
(S1) or may be written in a scripting language and transmitted in a message from another agent
(S3). Strategies communicate with one another through the model.

the agent itself. The messages controlling the life cycle of an agent form the agent
control subprotocol discussed in Section 9.2.1.1.

9.2.1.1 The Agent Control Subprotocol. An agent uses a dynamically cre-
ated agent control subprotocol to communicate with: the agent factory; the entity

THE AGENTS 325

controlling the agent; other objects including agents. The messages of the agent
control subprotocol are described in Table 9.7. These messages are used to: control
checkpoint and restart, modify, and migrate an agent.

The agent control subprotocol follows the major events in the lifetime of the agent;
it is created dynamically when the agent is assembled; disappears when the agent is
killed; it is modified when the agent undergoes surgery. The agent control subprotocol
is itself an object and may be distributed to other objects.

The agent control subprotocol requires actions to be taken by the agent factory
or by the agent. The following messages are sent to the agent factory control-
ling the agent and invoke methods of bondAgentFactory: assemble-agent,
checkpoint, modify-agent, migrate-from-here, kill-agent. The
agent itself supports methods to communicate with the modelgetModel,setModel,
to report the state,getState, or to provide its subprotocol,learn-subprotocol.
The methods supported by bondAgent are discussed in Section 9.2.1.2, the ones
supported by bondAgentFactory in 9.2.1.4.

9.2.1.2 Agent Communication. The bondAgent has a constructor for an
empty agent and methods to start, stop, soft-stop, and kill an agent. The constructor
sets up one of the action schedulers and the semantic engine. The round-robin sched-
uler is the default. Starting and stopping an agent implies starting and respectively
stopping the scheduler. Now all agents support the fault detection mechanism (see
Section 9.2.4.2), initialized at the time an agent is started.

The saymethod of an agent supports by default delivery of messages in the agent
control control and fault detection subprotocols. In addition, it delivers external
messages that may cause transitions of the state machines. An external message is
delivered to all state machines. Finally, the say()method falls back on the the say
method of the ancestor.

public bondAgent() {
model = new bondModel();
initStrategyPath();
String schedulerName = System.getProperty

("bond.scheduler");
if (schedulerName.equals("MT")) {

basched = new bondMTActionScheduler(this);}
else {

if (!schedulerName.equals("RR")) {
Log.Debug("Action scheduler invalid, using RR"); }
basched = new bondRRActionScheduler(this);}

semantic = new bondStateMachineSemantic(planes, model);
}

public void say(bondMessage m, bondObject sender)
try {

if (m.getSubprotocol().equals("AgentControl")) {
sphAgentControl(m, sender); return;}

if (m.getSubprotocol().equals("FaultDetection")){
sphFaultDetection(m, sender); return;}

326 MIDDLEWARE FOR PROCESS COORDINATION

Table 9.7 The messages of the agent control subprotocol. The entities involved are: the
beneficiary, the agent, the agent factory controlling the agent, AgF , the agent factory at a new
location, AgFnew .

Message Parameters Message function

assemble-
agent

:blueprint
:blueprint-
address
:visual

Sent to AgF and request to assemble an
agent using the blueprint downloaded from
blueprint-address. Specify :visual
if editor window is desired.

agent-
created

:bondID
:bondAddress

Sent to beneficiary by AgF to confirm creation
of agent. Gives bondID and bondAddress.

start-
agent

:model
:alias

Sent to agent by beneficiary. Request agent to
start or resume execution.

soft-stop Request agent to soft stop.

checkpoint :bondID
:checkpoint
file

Sent to AgF . Agent factory soft stops agent
:bondID, saves its current state to local file
:checkpointfile, and restarts agent.

checkback :bondID
:checkpoint
file

Sent to AgF . Agent factory soft stops
the agent, restores its state from local file
:checkpointfile and restarts agent.

modify-
agent

:blueprint
:blueprint-
address

Sent toAgF . Request to modify the agent. Sur-
gical blueprint embedded in theblueprintor
downloaded from blueprint-address.

migrate-
agent

:blueprint
:visual
:bondID
:modelID

Sent to AFnew by AgF . AFnew re-creates
the agent with :bondID using the embed-
ded blueprint and realizes the model of agent,
:modelID from the source site.

migrate-
from-
here

:bondID
:remote-
address

Sent to AgF . Initializes migration of agent
:bondID from source to destination site
:remote-address.

migrated :bondID Sent toAgF byAgFnew. Successful migration.
Request AgF delete old copy of agent.

kill-agent :bondID Sent to AgF . If running, agent is soft-stopped
and disposed of.

getModel :property Sent to agent. Agent replies with the value of
the property property from the model.

setModel :property
:value

Sent to agent. Sets value of the model property
:property to :value

getState Sent to agent. Agent responds with its current
state vector.

learn-
subprotocol

Request agent to generate and send subprotocol
object.

THE AGENTS 327

if (genericSPH(m, sender)) {return;}
if (m.getSubprotocol().equals(sp.getName())) {

for(Enumeration e=planes.elements();
e.hasMoreElements();) {

bondAgentPlane bap = (bondAgentPlane)
e.nextElement();

bap.fsm.say(m,sender);}
} else {

super.say(m, sender);}
}
catch (NullPointerException e) { }

}

The code for the agent control subprotocol listed below handles the following mes-
sages: get-state,start-agent,stop-agent,kill-agent,getModel,
setModel

public void sphAgentControl(bondMessage m, bondObject sender) {
if (sender == null) sender = m.getSender();
if (restricted_control && !sender.equals(beneficiary)){

sender.say(m.createReply("(deny)"),this); }
if (m.content.equals("get-state")) {

String state = "";
for(Enumeration e=planes.elements();e.hasMoreElements();){
bondAgentPlane bap = (bondAgentPlane) e.nextElement();
state += "."+bap.fsm.getState().getName();}
sender.say(m.createReply("(tell :content state:

state "+state+")"),this);}
if (m.content.equals("start-agent")) {

initDropBox();
populateModel(m.getParameter(":model"));
String als = (String)m.getParameter(":alias");
if (als != null) dir.addAlias(als, this);
initFaultDetection();
start();
sender.say(m.createReply("(tell :content ok)"),this);
return;}

if (m.content.equals("stop-agent")) {
softstop = true;
sender.say(m.createReply("(tell :content ok)"),this);
return;}

if (m.content.equals("kill-agent")) {
kill();
sender.say(m.createReply("(tell :content ok)"),this);
return;}

if (m.content.equals("getModel")) {
Object val = model.get((String)m.getParameter

(":property"));
bondMessage rep = m.createReply("(tell :content value)");

328 MIDDLEWARE FOR PROCESS COORDINATION

rep.setParameter(":value", val);
sender.say(rep,this);
return;}

if (m.content.equals("setModel")) {
model.set((String)m.getParameter(":property"),

m.getParameter(":value"));
if (m.getParameter(":createReply") != null)

{m.sendReply("(tell :content ok)", this); }
return;}

}

9.2.1.3 Strategies. Strategies are the functional components of an agent. For-
mally, a strategy is a function which takes as parameters the model of the world and
the agenda of the agent and returns actions. A strategy implements three interfaces,
install(), action(), and unistall(), see Figure 9.17. When the state
machine generates a transition to a state the thread of control of invokes the three
methods in this order.

Strategy
Start strategy

uninstall() {

}End strategy

install() {

}

action() {

}

action() {

}

action() {

}

Fig. 9.17 The structure of a strategy.

The actions determine the behavior of the agent. Actions are atomic and strategies
to not reveal their entire state to the agent or the environment. While a strategy
executes, it cannot be interrupted and its state may be rather complex.

A strategy consists of a sequence of actions, in an infinite sequence interrupted only
when a transition takes place. An alternative approach is to have one-shot strategies,

THE AGENTS 329

generating only one action, followed by a transition. A strategies is activated as the
flow of control requires, or in response to external events.

Messages from remote applications, and user interface events like pressed keys,
mouse-clicks are examples of external events. The strategies are activated by the
event handling mechanism - the Java event system for GUI events, or the mes-
saging thread for messages in case of external events, or by an action scheduler.
Activation using the external messages is characteristic for strategies derived from
bondProbeStrategy, while activation as a result of user interface events are
handled by strategies derived from bondGuiStrategy.

The model is used by strategies as a shared memory, strategies communicate with
each other by storing and retrieving data to/from the model. The naming scheme
supports namespaces and allows multiple strategies to reuse variable names without
conflicts. Programming languages like C++ use namespaces to resolve name conflicts.

There are two methods getModel and setModel to read and write data into
the model. By default, a strategy accesses only its own namespace but may address
variables outside its namespace by specifying the full name of the variable. The
default namespace of a strategy is specified in the Blueprint of the agent.

Example. The blueprint statement:
add state ExecBrowser with strategy Exec.Start::Browser;

means that the ExecBrowser strategy uses the namespace Browser.

String toexec = getModel("commandline");

returns the model variable named Browser.commandline and
setModel("output", commandOutput);

writes commandOutput into the model variable named Browser.output if
the methods are invoked by strategies with Browser as default namespace.

Only a small fraction of the internal state of a strategy is exposed to the outside
world through the model. When the agent enters a new state the strategy associated
with that state is activated and may read from the model the current value of model
variables. A strategy may deposit results in the model just before completion.

At any given time t the internal state of an agent is given by the internal state of
all its strategies and the model, the external state or the agent state is a vector stored
in the model describing the state of each state machine.

From the implementation point of view,a strategy is a Java interface with a function
called action() that performs the actions required when an agent enters a state.
The system provides three primitive strategies:

bondGuiStrategy handles a GUI window. Initializes the user interface when the
strategy is entered, and closes the window upon termination.

bondProbeStrategy automatically installs and un-installs itself as a probe for a
specific subprotocol.

bondDefaultStrategy is a place holder for a real strategy in case of lazy-
loading.

The system supports strategies written in: Java, other programming languages
wrapped in the Java Native Interface, and scripting languages such as JPython. The
following objects may be used as strategies:

330 MIDDLEWARE FOR PROCESS COORDINATION

Table 9.8 Strategy groups in the strategy database

Name Function of the strategy group

Util Utility e.g. delay.
Agent Checkpoint, migration, surgery, termination.
Dialog Dialog boxes for: warnings, messages, and yes/no questions.
Exec Start, supervise, and control local applications.
RemoteExec Start, supervise, and manage remote applications.
AgentExec Start and control agents and groups of agents
FTP Data migration.
Model Save, load and merge models.
Scheduler Metaprogram scheduling algorithms.
Synch Strategies for agent synchronization.

(i) Objects derived frombondDefaultStrategy,bondGUIStrategyor from
bondProbeStrategy. This is the method of choice to create Java strategies.

(ii) Objects implementing the bondStrategy interface. This method allows us to
create strategies that inherit from classes outside the Bond hierarchy.

(iii) External objects with Java Native Interface, JNI, wrappers. Any external object
written in a programming language other than Java can be transformed into a Bond
strategy using a JNI wrapper. The wrapper must implement the bondStrategy
interface.

(iii) Embedded languages. The source code of a strategy can be embedded into the
blueprint specification of an agent. The code can be in an interpreted languages
with an existing Java interpreter. We currently support Python, through the JPython
interpreter [27] and Clips, in its Jess Java-based incarnation [20].

Most of the strategies in the Bond strategy database grouped together into strategy
groups. Table 9.8 lists the most important strategies groups.

9.2.1.4 Agent Factory. The agent factory translates a blueprint agent descrip-
tion into an internal data structure, called agent control structure and then uses this
data structure to control the agent as seen in Figure 9.18. An agent may be altered dy-
namically as discussed in Section 9.2.1.9 and then the agent factory is able to generate
a modified blueprint.

The sequence of steps taken by the agent factory to create an agent is:

(i) Get the blueprint and the components.

(ii) Generate the finite state machines and link each state with its corresponding
strategy.

(iii) Generate the control subprotocol of the agent.

THE AGENTS 331

Agent Factory

Action SchedulerSemantic Engine

S2
S1

Model

Resident

Modified Multi-plane Agent

Modified Agent
Control Structure

A
C
S

A
C
S

Agent Factory

Action SchedulerSemantic Engine

S2
S1

S3

Model

Resident

Original Multi-plane Agent

Original Agent
Control Structure

A
C
S

A
C
S

Original
Blueprint

Surgical
Blueprint

Modified
Blueprint

Fig. 9.18 The Agent Factory translates a Blueprint into an internal control structure and an
agent. When a Surgical Blueprint is provided, the agent factory modifies the internal data
structure controlling the agent and is able to automatically generate the modified blueprint.

(iv) Send a copy of the control subprotocol object to the beneficiary and to other objects
the agent need to communicate with .controlling authority, be it a user interface or
another agent.

The agent factory controls the runtime behavior of an agent and uses the action
scheduler to transfer control to a new action whenever the current one completes its
execution. Once a transition from the current state to the next state takes place, the
agent factory is responsible to load the strategy corresponding to the new state.

The strategy loader, looks up a strategy, Foo, in the following order:

(i) Searches the strategy data bases for the Java class bondFooStrategy.class.

(ii) Searches the directories specified in the import statements in the blueprint
description of the agent. The order of the import statements is important.

332 MIDDLEWARE FOR PROCESS COORDINATION

(iii) As a last resort considers the strategy name a full name of the Java class, i.e.
Foo.class and repeats the search in the same order.

After loading the blueprint file, the agent factory parses the script and assembles
the agent according to the specification. The initialization of strategies can be done
in two modes:

Full-load mode. The strategies are loaded and instantiated at the time the agent is
created by the bondStrategyLoader object.

Lazy-load mode. None of the strategies are loaded, but they are replaced with a
lightweight object called bondLazyLoadingStrategy. Whenever a state is
entered, the lazy loading strategy attached to the state, triggers the loading of the real
strategy, and replaces itself with the real one.

Lazy-loading leads to faster startup time. Moreover, agents with a complex struc-
ture, may never reach some of their states, thus the corresponding strategies will never
be entered. On the other hand, the loading process triggered by entering a state will
cause delays during the execution, thus this method is not suitable for agents operating
in a real-time environment.

Mobile agents may travel to sites where some of the strategies are not available. In
this case, the lazy loading may prevent some load-time errors. When an agent migrates
to a new site, each strategy is loaded again when the agent enters the corresponding
state. In this case a different strategy, the one available locally will be loaded instead
of the strategy used at the original site. This feature can be used to customize an agent
depending upon the current host. For example, when an agent migrates to a palmtop
computer a different user interface than the one for a desktop may be used.

The lazy strategy loading differs in scope and implementation from the run-time
linking provided by the Java class loader. Java loads classes at their first instantiation
and the linker assumes that the class was known at compile time, although it can
be cheated into loading classes it had never seen before. This just-in-time loading is
especially useful for applets, because it helps hiding the network latency and provides
for a faster startup.

The bondAgentFactory is an object with the alias "AgentFactory" that im-
plements some of the methods for the agent control subprotocol. The methods are
describe in the following sections when we discuss the milestones in the life cycle of
an agent,assemble-agent in Section 9.2.1.5,checkpoint andcheckback in
Section 9.2.1.7 and migrate-agent, migrate-from-here, and migrated
in Section 9.2.1.8. Here we only present the code for the agent control subprotocol.
Once the contents of a message is identified the corresponding method of the agent
factory is invoked.

public class bondAgentFactory
extends bondProbe {
public bondAgentFactory() {
dir.addAlias("AgentFactory", this);

}
public void say(bondMessage m, bondObject sender) {

if (genericSPH(m, sender)) { return;}

THE AGENTS 333

super.say(m, sender);}
public void sphAgentControl(bondMessage m, bondObject sender) {

if (m.content.equals("assemble-agent")) {
assembleAgent(m, sender);}

if (m.content.equals("modify-agent")) {
modifyAgent(m, sender);}

if (m.content.equals("migrate-agent")) {
migrateAgent(m, sender);}

if (m.content.equals("migrate-from-here")) {
migrateFromHere(m, sender);}

if (m.content.equals("migrated")) {
migrated(m, sender);}

if (m.content.equals("checkpoint")) {
checkpoint(m, sender); }

if (m.content.equals("checkback")) {
checkback(m, sender);}

if (m.content.equals("kill")) {
kill(m, sender);}

}

9.2.1.5 Agent Creation. The agent creation process is triggered when the agent
factory receives an agent-create message. This message can be: (i) sent by
another object, (ii) generated locally by the RunAgent object from command line
parameters, or, (iii) generated by the user from a local or remote agent control panel.
Then the agent factory method assembleAgent is invoked.

void assembleAgent(bondMessage m, bondObject sender) {
String visual = (String)m.getParameter(":visual");
bondAgent ba = interpretFromMessage(m, null);
if (ba == null) {

m.sendReply("(error :content BadBlueprint)", this);
return; };

String res = (String)m.getParameter(":repository");
if (res != null)

System.setProperty
("bond.current.strategy.repository", res);

if (sender instanceof bondShadow) { ba.beneficiary =
(bondShadow)sender;}

else { }
if (visual == null) {

String visualFlag = System.getProperty
("bond.agent.visual");

if (visualFlag != null && visualFlag.equals("true"))
visual = "yes";

else visual = "no";
}
if (visual.equals("yes")) {ba.edit();}
bondMessage rep = m.createReply

("(tell :content agent-created)");

334 MIDDLEWARE FOR PROCESS COORDINATION

rep.setParameter(":bondID", ba.bondID);
rep.setParameter(":address",

com.localaddress+":"+com.localport);
if (!(sender instanceof bondShadow)) {

bondShadow t = new bondShadow(sender);
t.say(rep, this);}

else { sender.say(rep,this);}
}

The blueprint for the new agent may be provided within the message or may be
specified using therepository parameter of the message. An agent may be created
with or without a visual editor.

The object sending the agent-create request to an agent factory is called the
beneficiary of the agent. There is a special relationship between an agent and its bene-
ficiary. The agent keeps a shadow of its beneficiary and sends notifications regarding
important events in its lifetime such as: termination, migration, error conditions.

After the agent is successfully created, the agent factory sends theagent-created
message to the beneficiary. However, the agent is not started immediately after its
creation. The beneficiary may initialize the model between creation and the agent
start.

The beneficiary may request the agent to reject messages from other objects and
communicate exclusively with itself. This is done by setting thebeneficiary-only
parameter in the agent-createmessage. This security mechanism is similar with
the sandbox security model of Java [39], [22].

TheinterpretBlueprint method of the bondAgentFactory invokes a
blueprint parser and examines one of the switches of the configuration file to determine
if lazy loading is in effect.

public bondAgent interpretBlueprint(Reader is,
bondAgent ba) {

bond.agent.blueprint.syntaxtree.Node root = null;
blueprintParser parser = new blueprintParser(is);
if (parser == null) return null;
try {

root = parser.BluePrintProgram();}
catch (ParseException pex) { }
if (root == null) return null;
BlueprintInterpreter bp = new BlueprintInterpreter();
bp.lazyLoad = Boolean.getBoolean("bond.agentLazyLoading");
bp.ag = ba;
root.accept(bp);
return bp.ag;

}

TheinterpreFromMessagemethod of thebondAgentFactorydetermines
if the blueprint is supplied with the message by examining theblueprint-program
parameter and if so invokes the blueprint parser.

THE AGENTS 335

bondAgent interpretFromMessage(bondMessage m,
bondAgent ba){

bondEmbeddedBlueprint blueprint_prog =
(bondEmbeddedBlueprint)m.getParameter

(":blueprint-program");
if (blueprint_prog != null) {

return interpretBlueprint(
blueprint_prog.getReader(),ba);}

String blueprint = (String)m.getParameter (":blueprint");
if (blueprint != null) {

return interpretBlueprint(
openBlueprint(blueprint), ba);}

bondEmbeddedBlueprint xml_blueprint_prog =
(bondEmbeddedBlueprint)m.getParameter

(":xml-blueprint-program");
if (blueprint_prog != null) {

return interpretXMLBlueprint
(xml_blueprint_prog.getReader(),ba);}

String xml_blueprint =
(String)m.getParameter(":xml-blueprint");

if (xml_blueprint != null) {
Reader is = openBlueprint(xml_blueprint);
return interpretXMLBlueprint(is, ba);}

return null;
}
public Reader openBlueprint(String bpfile) {

if (bpfile.startsWith("http://")) {
try{

URL con = new URL(bpfile);
return new InputStreamReader(con.openStream());}

catch (MalformedURLException muex) { }
catch (IOException ioex) { }

} else {
try { return new FileReader(bpfile);}
catch (FileNotFoundException fnfex) { }
}

}

9.2.1.6 Agent Activation. Thestart-agentmessage triggers the activation
of the agent. The processing of this message is illustrated by the code presented in
Section 9.2.1.2. Upon receipt of this message:

(i) if the message includes the :model parameter then then model is initialized by
the populateModel function listed below.

(ii) the state vector of the multi-plane state machine becomes the initial state specified
in the blueprint,

(iii) the current strategies are installed,

(iv) the execution thread is created, and

336 MIDDLEWARE FOR PROCESS COORDINATION

(v) the action scheduler starts to execute actions according to the current strategies.

public boolean populateModel(Object mXML) {
if (mXML == null) return false;
bondXMLmodel temp = new bondXMLmodel();
temp.setModel(model);
if (mXML instanceof bondEmbeddedBlueprint) {

bondEmbeddedBlueprint model_XML =
(bondEmbeddedBlueprint)mXML;

temp.fromXML(model_XML.getReader());}
else {

String model_XML = (String)mXML;
if (model_XML.startsWith("http://") ||

model_XML.startsWith("HTTP://") ||
model_XML.startsWith("file:/") ||
model_XML.startsWith("FILE:/")) {
temp.fromXML(model_XML);}

else { temp.fromXML(new ByteArrayInputStream
(model_XML.getBytes()));}

}
return true;

}

In the default running mode the active strategies of the agent perform actions.
These actions are performed in response to:

- action scheduler polling,

- user interactions handled by GUI strategies, and

- external messages handled by probe strategies.

The vector of currently active strategies can be changed as a result of transitions.
Transitions are triggered as a result of messages. These messages can be sent either
from the current strategies of the agent (internal transitions) or from external objects
(external transitions). The internal transitions for a special group in the blueprint
specification, and they represent events which are intrinsically linked to the currently
active strategy like success or failure. The agent framework does not allow external
objects to trigger internal transitions. External transitions correspond to commands,
and they can be triggered both externally or internally.

The execution of Bond agents can be stopped with the stop-agent message.
This message instructs the action scheduler to stop the execution of the agents on
the next action boundary. Thus a soft stop is not instantanenous, and the time until
it occurs depends upon the action scheduler (single threaded or multi-threaded) and
on the granularity of the actions. At a soft stop of an agent the message handling is
blocked, so the strategies triggered by messages or user input are blocked too.

9.2.1.7 Agent Checkpoint and Restart. In a soft stopped state, the current
status of the agent can be checkpointed. This is done by sending the checkpoint
message to the agent factory. The agent factory will serialize the model of the agent

THE AGENTS 337

to a file indicated in the :file parameter of the message. The agent editor window
of the agent allows interactive checkpointing.

The reverse operation of checkpointing is the checkback operation, triggered by
a checkback message sent to the agent factory. The agent factory performs soft
stops the agent if it is running, restores the model, and reinstalls the state vector to
the strategies which were active at the moment when the agent was checkpointed.

ThebondAgentFactoryhas two methods to support checkpointing and restart-
ing an agent. The first method extracts the unique agentid and the name of the
checkpoint file. Then it locates the agent and then calls the writeObjectmethod.
As a result, a copy of the agent model is written into the checkpoint file.

void checkpoint(bondMessage m, bondObject sender) {
String agentid = (String)m.getParameter(":agentid");
bondAgent ag = (bondAgent)dir.findLocal(agentid);
if (ag == null) { return;}
try {

String checkpointfile = (String)m.getParameter
(":checkpointfile");

FileOutputStream fs = new FileOutputStream
(checkpointfile);

ObjectOutputStream outs = new ObjectOutputStream(fs);
outs.writeObject(ag.model);
outs.close();

} catch(IOException ioex) {}
}
void checkback(bondMessage m, bondObject sender) {

String agentid = (String)m.getParameter(":agentid");
bondAgent ag = (bondAgent)dir.findLocal(agentid);
if (ag == null) { return;}
try {

String checkpointfile = (String)m.getParameter
(":checkpointfile");

FileInputStream fs = new FileInputStream
(checkpointfile);

ObjectInputStream outs = new ObjectInputStream(fs);
if (ag.running) {

ag.softStop();
ag.model = (bondModel)outs.readObject();
setStatus(ag);
ag.start();}

outs.close();}
catch(IOException ioex) { }
catch(ClassNotFoundException cnfex) { }

}

9.2.1.8 Agent Migration. The system implements weak migration of agents,
they are allowed to migrate only when all strategies active at the time of the request
have completed their execution. At that moment no threads are running, all strategies

338 MIDDLEWARE FOR PROCESS COORDINATION

Agent Factory

S2
S1

Model

Resident

Multi-plane Agent

A
C
S

A
C
S

Agent Factory

S2
S1

S3

Model

Resident

Multi-plane Agent

Agent Control Structure

A
C
S

A
C
S

Beneficiary

S3

shadow
of model

(i) migrate-agent (xi) success (xii) control-agent

Blueprint

(iv) migrate-agent

(x) start-agent

Agent Control Structure

Fig. 9.19 Messages exchanged during agent migration.

have completed their execution and the state of the agent is minimal, it coincides with
the state vector of the agent.

This approach reflects the view that migration is a relatively rare event in the life
of agents. It also reflects the difficulties of migrating running Java programs. Java
does not support thread migration, thus to migrate a running Java program all running
threads must be stopped, their status saved, and then recreated at the destination site.

To migrate an agent we have to send to the new site its blueprint and model. The
blueprint and the model are passive objects, one is an ASCII file and the other a data
structure and their serialization is fully supported by Java.

The migration process involves the agent factory controlling the agent, AgF , and
the one at the new resident, AgFnew , and consists of the following sequence of the
events:

(i) The migration process is initiated by a migrate-agent message sent to AgF .
The message contains the address of AgFnew and the bondID of the agent.

(ii) AgF soft stops the agent.

THE AGENTS 339

(iii) AgF generates the blueprint of the agent using the internal data structure reflect-
ing the current agent state. This structure may be different than the original agent
structure. The mapping is done by the bondAgentToBlueprint class.

(iv) AgF sends to AgFnew the blueprint generated in step (iii), embedded into a
migrate-agent message.

(v) AgFnew re-assembles the agent from the blueprint. The new agent is a copy of
the old one, but it does not have the model yet.

(vi) AgFnew creates a shadow of the model of the original agent, and realizes it. The
model is thus transferred to the new host.

(vii) AgFnew calls the relocate() function on the model.

(viii) AgFnew sends to AgF a migratedmessage to report the successful creation
of the agent.

(ix) AgF un-registers the old agent and makes it eligible for garbage collection. It
also installs a forwarder object if the :forwarder yes parameter was specified.
This object forwards any messages sent to the agent at the old site to its new location.

(x) AgF sends sends a start-agentmessage to the agent at its the new location.

(xi) AgF sends a success message to the originator.

(xii) The beneficiary sends agent control messages to AgFnew.

A successful migration requires that the information in the model be moved to
another site. Information like handles to open files are meaningful only locally. A
set of rules must be observed to make the model mobile - for example, keeping all
immovable information inside atomic actions. This implies that we should open and
close a file inside a single action.

The bondMigrationStrategy allows an agent to trigger its own migration
to a new location. The target of the migration process may be specified by a model
variable and the decision to initiate the migration can be based on a pre-defined
conditions, or due to situations detected by other strategies of the agent, possibly
from a different plane. An external agent may decide the target location and the time
of migration. For example a controller agent can relocate a set of agents to sites where
they are needed. Agent migration can also be done using the user interface, locally
from the agent editor, or remotely using the remote agent control panel.

The bondAgentFactory methods for agent migration are presented now.

void migrateAgent(bondMessage m, bondObject sender) {
String agentid = (String)m.getParameter(":agentid");
if (sender == null) sender = m.getSender();
String visual = (String)m.getParameter(":visual");
bondIPAddress address = ((bondShadow)sender).remote_address;
bondAgent ba = interpretFromMessage(m, null);
if (ba == null) {

m.sendReply("(error :content BadBlueprint)", this);
return; };

String modelid = (String)m.getParameter(":modelid");
bondShadow shModel = new bondShadow(modelid, address);

340 MIDDLEWARE FOR PROCESS COORDINATION

ba.model = (bondModel)shModel.realize();
if (visual==null || visual.equals("yes")) {

ba.edit(); }
setStatus(ba);
ba.start();
bondMessage rep = new bondMessage("(tell :content

migrated)","AgentControl");
rep.setParameter(":agentid", agentid);
sender.say(rep,this);

}
void migrateFromHere(bondMessage m, bondObject sender) {

// find the local agents
String agentid = (String)m.getParameter(":agentid");
bondAgent ag = (bondAgent)dir.findLocal(agentid);
if (ag == null) {return;}
String remoteAddress = (String)m.getParameter

(":remote-address");
ag.softStop();
bondShadow shFactorynew = new bondShadow("Resident",

remoteAddress);
bondMessage mes = new bondMessage(

"(tell :content migrate-agent)","AgentControl");
bondEmbeddedBlueprint ebp = new bondEmbeddedBlueprint();
bondAgentToBlueprint a2b = new bondAgentToBlueprint(ag);
a2b.generate();
ebp.value = a2b.toString();
mes.setParameter(":blueprint-program", ebp);
mes.setParameter(":modelid",ag.model.bondID);
mes.setParameter(":agentid",ag.bondID);
shFactorynew.say(mes,this);

}
void migrated(bondMessage m, bondObject sender) {

String agentid = (String)m.getParameter(":agentid");
bondAgent ag = (bondAgent)dir.findLocal(agentid);
if (ag == null) { return;}
bondEditor ed = (bondEditor)ag.get("Editor");
if (ed != null) {ed.close();}
dir.unregister(ag);

}

9.2.1.9 Agent Surgery. The dynamic modification of the structural compo-
nents of an agent is called agent surgery. The changes are described by a surgical
blueprint script. Surgical scripts act on existing agents, and may contain delete
and replace operators. The format of surgical blueprint scripts are described in
detail by the BNF syntax specification.

The agent surgery is triggered by the modify-agentmessage sent by an object
to the agent factory controlling the agent. The sequence of actions in this process is:

THE AGENTS 341

(i) A transition freeze is installed. The agent continues to execute normally, but if a
transition occurs the corresponding plane is frozen. The transition will be enqueued,
and executed when the transition freeze is lifted.

(ii) The agent factory interprets the blueprint script and modifies the multi-plane state
machine accordingly. Two special cases are considered:

(ii.a) If an entire plane is deleted, the plane is brought first to a soft stop - i.e. the
last action completes.

(ii.b) If the current node in a plane is deleted, a failure message is sent to the current
plane. If there is no failure transition from the current state, the new state will be a
null state. This means that the plane is disabled and will no longer participate in the
generation of actions. and executed when the transition freeze is lifted.

(iii) The transition freeze is lifted, the pending transitions performed, and the modified
agent continues its existence.

An agent may initiate the surgical operation itself using thebondAgentSurgery
strategy. This strategy takes the address of the surgical blueprint script from the model.
The surgery may be initiated by a remote agent or may be triggered by a user from
an agent control panel.

The surgery is useful to build up a sophisticated agent capable to perform complex
actions from a simple generic agent. For example in a network discovery application,
a simple discovery agent is sent to a remote site by a controller agent. As the discovery
agent learns more about the remote environment it is upgraded using a sequence of
surgical blueprints sent by the controller agent.

The modifyAgent method of the bondAgent is listed below.

void modifyAgent(bondMessage m, bondObject sender) {
bondAgent ba = null;
String agentid = (String)m.getParameter(":agentid");
ba = (bondAgent)dir.findLocal(agentid);
if (ba.running) {

ba.softStop();
ba = interpretFromMessage(m, ba);
ba.start();}

else { ba = interpretFromMessage(m, ba);}
if (ba == null) {m.sendReply("(tell

:content error agent not modified)",this);}
else {

m.sendReply("(tell :content agent-modified)",this);}
}

9.2.1.10 Action Scheduler. The action scheduler transfer control to an action
at the time of a transition or at the completion of the current action. Actions are are
the primitives used by a strategy to accomplish its functions. An action notifies the
scheduler upon completion.

At this time we have two scheduler objects. Both schedulers guarantee that actions
from the same strategy do not overlap.

342 MIDDLEWARE FOR PROCESS COORDINATION

(i) The bondRRScheduler supports a single-threaded, round-robin scheduling of
actions across state machines.

(ii) The multi-threaded action scheduler bondMTScheduler allows multiple ac-
tions from different planes to be executed concurrently.

The bondRRScheduler identifies the state of a state machine in one plane and
schedules for execution the action associated with the strategy of the current state.
When the action finishes it notifies the scheduler, the state of the plane is updated and
the scheduler moves to the next plane. The process continues, one action at a time.
The scheduler may activate a strategy in response to an event as soon as the current
action finishes. For example, a strategy may inform the scheduler that it may not
take any action for a specific time and provide the expected next action time. This
allows the action scheduler to skip the activation of the strategy during the normal
round robin activation but it will activate the strategy once the timeout expires. This
scheduling strategy assumes that a strategy is decomposed into a set of short actions.

ThebondMTScheduler iterates over the set of planes, in each plane it identifies
the current state, starts up a new thread, and then waits to be interrupted by a notifi-
cation from any of the threads currently running actions. When a thread is started it
identifies the state and the strategy and runs the code of the action. When the action
terminates it notifies the scheduler.

/* Run a strategy in the context of this thread */
public void run() {

setRunning(true);
boolean firstTime = true;
while ((ba.agenda == null) ||

!ba.agenda.satisfiedBy(ba.model)) {
bondStrategy strat =

ap.fsm.getState().getStrategy();
if (softstop) { sched.decr(); return;}
if (strat != null) {

strat.action(ba.model, ba.agenda);}
if (!firstTime) {

try { sleep(500);}
catch (InterruptedException e) {}

}
firstTime = false;

}
setRunning(false);

}
/** Start thread */
public void start() {

softstop = false;
AgentThread = new Thread(this);
AgentThread.start();

}
/** Main agent loop */
public synchronized void run () {

THE AGENTS 343

if (ToKill) { ba.kill(); return;}
for (Iterator i = ba.planes.iterator(); i.hasNext();) {

bondAgentPlane ap = (bondAgentPlane)i.next();
bondFiniteStateMachine fsm = ap.fsm;
fsm.setState(fsm.getState());
PlaneThread thr = new PlaneThread(this, ap);
synchronized (threads) { threads.put(fsm, thr);}
thr.start();

}
count = threads.size();
while (count > 0) {

try { wait(); }
catch (InterruptedException e) { }

}
for (Enumeration e=ba.planes.elements();

e.hasMoreElements();) {
bondAgentPlane ap = ((bondAgentPlane)e.nextElement());
bondStrategy strat = ap.fsm.getState().getStrategy();
if (strat != null) { strat.uninstall();}

}
}

}

9.2.1.11 Semantic Engine. A semantic engine controls the transition from
one state to another. Semantic engines objects can be changed without the need to
recompile the agents. At the time of this writing we have only a default semantic
engine but more sophisticated ones are under discussion.

The default semantic engine: (a) supports only unconditional transitions, (b) the
actions are associated with the nodes of the state machines,once a state machine enters
a certain state the strategy associated with that state is activated, and (c) executes the
transitions immediately upon receiving events. It discards the events if they do not
correspond to a valid transition at the instance they arrive. The operation of the default
semantics engine is summarized by the following pseudocode:

forall (incoming message m)
if message is transitionAll t
forall (planes p)

if transition t exist from current state on plane p
call uninstall on current strategy
change state to the endpoint of transition t
call install on current strategy

else
ignore

endif
discard message

else if message is transition t on plane p1
if plane p1 exists

if transition t exist from current state on plane p1

344 MIDDLEWARE FOR PROCESS COORDINATION

call uninstall on current strategy
change state to the endpoint of transition t
call install on current strategy

endif
endif
discard message

endif
endfor

More sophisticated semantic engines could support:

Conditional transitions. The conditions should be specified as metadata attached to
the multiplane state machine structure.

Buffering of events. A semantic engine could buffer events, and apply them at a later
time.

Actions associated with transitions. The default semantic can be extended allowing
actions executed whenever the transition is triggered.

Synchronization rules amongst planes.

The statecharts model as described in Harel et. al [25] uses conditional transitions
and actions associated with transitions.

9.2.2 Agent Description

9.2.2.1 The Blueprint. We use an agent description language called Blueprint
to specify the structural components and to initialize the model of an agent. The
BNF syntax of Blueprint is presented elsewhere [2]. A blueprint is designed by a
programmer and can also be generated by the AgentFactory object, see Section
9.2.1.4. A blueprint agent description is a text file, it can be easily transported over
the network, embedded in a message or downloaded from web servers.

The agent description starts with import statements. The create agent and
end create declarations mark the beginning and the end of the agent description.
An agent description consists of several planes. Whenever a statement like plane
foo is encountered, the agent factory searches the component databases for a plane
named foo and creates a new plane if the search fails. If the search is successful the
plane is opened and subsequent declarations may add new components to the existing
structure.

Plane descriptions consists of description of states, as well as internal, and external
transitions. The statement:

add state StateName with strategy StrategyName;
declares a state called StateName with a strategy named StrategyName.

State declarations may contain variable initializations. For example to initialize
variable commandline with value netscape we use the following statement:

add state StateName with strategy StrategyName::NS
model {

THE AGENTS 345

commandline = ‘‘netscape’’;
};

In this example the strategy has a name space, NS, see Section 9.2.1.3 for a dis-
cussion of namespaces.

Internal and external transitions are declared separately. We can declare tran-
sition one at a time, indicating the source and the destination state as well as the
label of the event triggering the transition, from Source to Destination
on Event;.

The chain declaration of transitions is used to specify a sequence of transitions on
the same event. For example instead of:

{
from S1 to S2 on success;
from S2 to S3 on success;
from S3 to Sfinal on success;}

}

we can write

from S1 to S2 to S3 to Sfinal on success;

When transitions converge from multiple states to the same state, on the same
event, instead of:

{
from S1 to ErrorHandler on failure;
from S2 to ErrorHandler on failure;
from S3 to ErrorHandler on failure;
}

we can write

on failure from S1,S2,S3 to ErrorHandler;

9.2.2.2 Initializing Model Variables. The blueprint can be used to initialize
model variables. The model variable initialization is usually done after the agent
description. This code is executed only once, when the agent is created. Blueprint
recognizes three primitive variable types: strings, integers, and doubles. The initial-
ization has a syntax similar with Java. For example we can write:

model {
stringValue = ‘‘Hello world!’’;
intValue = 1;
doubleValue = 5.6;

}

We can also initialize the standard Java Vector and Hashtable types. The
restriction is that the elements in both cases must be types accepted by blueprint (i.e.

346 MIDDLEWARE FOR PROCESS COORDINATION

strings, integers, floats, vectors or hash-tables). The keys of the hash-table must be
strings.

The syntax is:

model {
vectorValue = [1, 2.5, ‘‘String’’];
hashtableValue = {First =‘‘One’’,Second=2,Third=3.0};

}

Complex structures can be created using multiply embedded vectors and hashta-
bles:

model {
complexStructure = { Name = ‘‘Bond’’,

Type = ‘‘AgentSystem’’,
Version = 2,
Developers = [‘‘boloni’’, ‘‘junkk’’]

}
}

We cannot initialize user-defined variables because their type may not be known
to the agent factory.

9.2.2.3 Example. Now we present a simple agent which displays the "Hello
Word" message, waits for user confirmation, then exits. The blueprint of this agent
can be found in the blueprint directory in the Bond distribution:

import bond.agent.strategydb;
create agent HelloWorld
plane Main
add state Message with strategy Dialog.OkDialog
model {
Message="Hello, world!";

};
add state Exit with strategy Agent.Kill;

internal transitions {
from Message to Exit on success;

}
end plane;
end create.

The first line import bond.agent.strategydb; specifies the path used
by the agent to load its strategies. Then we describe the structure of a new agent
called Hello, Worldwith only one plane, Main. The state machine in that plane
consists of:

(i) Two states one called Message with a strategy called Dialog.OkDialog,
the other Exit with strategy Agent.Kill. The dot notation indicates that we are

THE AGENTS 347

looking for a strategy called OkDialog from a strategy group called Dialog. This
strategy displays a message box with a label and single button labeled Ok. The text
of the label is read from the model, from a variable called Message. The strategy
succeeds if the “Ok” button is pressed.

(ii) One internal transition between the two states.

The following commands start the agent editor and load the agent:
RunAgent blueprint/HelloWorld.bpt – on Linux
java RunAgent blueprint/HelloWorld.bpt – on Windows.

To start the agent directly:

RunAgent -novisual blueprint/HelloWorld.bpt.

In these examples we assumed that we are in the Bond directory, otherwise we
have to specify the full paths.

9.2.3 Agent Transformations

A significant part of the inter-agent communication can be described as control: the
behavior of the controlled agent is changed as a result of an action of a controller
agent. The behavior of the agent is described by the state vector, and it can be changed
by transitions, which alter one or more states of the state vector. One way to trigger
transitions is by sending a message as shown in Figure 9.20.

Agent A

F

Model
of
the

world

Agenda

Agent B

F

Model
of
the

world

Agenda

Tran-
sition!!! The new

state of
Agent B

The
previous
state of
agent B

Fig. 9.20 Agent A desires to change the behavior of agent B, by changing a strategy on the
first plane. It sends a message labeled with a transition name. The transition is performed on
all planes of agent B where a match between an existing transition and the one in the message
can be found. In this example we see only a match in the first plane.

Agents often cooperate for achieving certain goals. Cooperation requires knowl-
edge sharing. In our structure this means that a segment of the model of one agent is
copied to the model of another one. Information sharing is a very complex topic, we
have to determine what part of the model will be shared, the identities of the agents,
the confidence level in the shared knowledge and so on. Our system contains sup-
port for information sharing at the communication layer level, and contains various
mechanisms to enforce security for inter-agent cooperation [24], [23]. Figure 9.21

348 MIDDLEWARE FOR PROCESS COORDINATION

presents an example of cooperation through knowledge sharing using the push mode.
Agent A pushes part of its model to the model of agent B.

Agent A

F

Model
of
the

world

Agenda

Agent B

F

Model
of
the

world

Agenda

��
��

��
��

Fig. 9.21 Inter-agent cooperation using knowledge sharing. Agent A pushes part of its
model into the model of agent B.

Joining and splitting are two useful operations facilitated by the multi-plane agent
model. When joining two agents the new agent contains the planes of the two agents
and the model of the resulting agent is created by merging the models of the two
agents. We may separate the two models through the use of namespaces.

When splitting an agent we obtain two agents, the union of their planes gives us
the planes of the original agent. The two agents need not be disjoint, some planes
may be replicated. Both agents inherit the full model of the original agent.

There are several cases when joining or splitting agents are useful:

(i) Joining control agents from several sources, to provide a unified control,

(ii) Joining agents to reduce the memory footprint by eliminating replicated planes,

(iii) Joining agents to speed up communication,

(iv) Migrating only part of an agent,

(v) Splitting to apply different priorities to parts of the agent.
Another useful operation is trimming.The state machines describing the planes

of an agent may contain states and transitions unreachable from the current state.
These states may represent execution branches not chosen for the current run, or
states already traversed and not to be entered again. The semantics of the agent does
not allow some states to be entered again, e.g. the initialization code of an agent is
entered only once.

Trimming is recommended to reduce the footprint of an agent before migration or
checkpointing to limit the amount of data transferred in case of migration or stored
in case of checkpointing or at runtime to reduce the memory footprint. Trimming is
built into current agent migration code.

Determining the components to be trimmed is a problem in itself and requires
reachability analysis. The Sethi-Ullman algorithm for reusing temporary variables
from the theory of compiler construction [45] may be used to identify components
that are no longer reachable.

THE AGENTS 349

9.2.4 Agent Extensions

Technologies for wide-area applications are continually evolving and an important
design objective for any type of middleware is to be open-ended. Thus, a major
concern in the design of the system described in this chapter is to integrate with ease
new functions and to inter-operate with systems developed independently.

In this section we discuss three important extensions of the system. The objec-
tives of these extensions are to: (i) improve the mobility of agents and their ability to
communicate with one another and coordinate their actions; (ii) support fault detec-
tion and fault information dissemination in a federation of agents, and (iii) support
inference.

So far we discussed only one aspect of agent mobility: the blueprint and the model
are text files that can be transported with ease to a new location. Knowing the structure
and the state of the agent, the agent factory at the new site may re-assemble and restart
the agent. Yet, to be functional, the agent at the new site needs access to the strategies
associated with the states of each plane of the agent. An agent may also need access
to a blueprint to perform surgery, to adapt to changes in the new environment. Thus
we need a societal service, a persistent storage server with a built-in access control
mechanism where strategies and blueprints can be available for agents in need to
share them.

Another problem is communication between strategies in the same plane, or in
different planes of an agent, and, by extension communication between strategies of
two different agents. The only mechanism available so far for strategies to communi-
cate with one another was through the model of the agent, yet no methods supporting
access control and concurrency control have been discussed yet. We had the choice
of implementing a tuple space, a mailbox where items can be deposited and then
retrieved from, or to integrate someone else’s implementation.

The solution to both problems came in the form of a software developed at IBM
Research called T Spaces [49]. The integration of tuplespace with the agent system
is discussed in Section 9.2.4.1 and an application for synchronization of a group of
Web monitoring and benchmarking agents is presented in Section 9.3.2.

Oftentimes agents have to work together to achieve a common goal. For example
a federation of agents with different functions may be involved in monitoring and
control of a Web server. The failure of any agent in the federation may either affect the
functionality or the quality of the system. In Section 9.2.4.2 we discuss an extension
to the system that allows agents in a federation to monitor each other and once a fault
is detected to take corrective actions.

An orthogonal problem to mobility and fault tolerance is the intelligent agent be-
havior. As mentioned in Chapter 7, intelligence is necessary to guarantee autonomous
behavior and has several dimensions: inference, learning, and planning. Inference
provides agents with the ability to derive new facts, from a set of existing facts and a
set of inference rules.

For example an agent may be dispatched to a new site and be required to install
new software on that site. We do have the choice of a complex agent capable to
work with any operating system, any hardware and software configuration or we may

350 MIDDLEWARE FOR PROCESS COORDINATION

send a simple agent capable to discover basic facts about the site and then report
them to a more sophisticated beneficiary that can use the facts to build a surgery
blueprint to transform the original agent into a functional one. Again we had the
choice to implement our own inference engine or to integrate an existing one. In
Section 9.2.4.3 we discuss the integration of the Jess expert system shell [20] into our
agent system and present an application to an adaptive MPEG server.

9.2.4.1 Extending the Model and Repositories for Blueprints and Strat-
gies: Tuplespaces. Tuplespaces extends message-passing systems with a simple
persistent data repository that features associative addressing. They provide a pow-
erful mechanism for interprocess communication and synchronization: a producer
process generates a tuple and places it into the Tuplespace; a consumer process re-
quests the tuple from the space. Tuplespaces have several distinctive features:

(i) Tuplespace communication is fully anonymous, the creator of a tuple does not
need to have any knowledge about the future use of that tuple.

(ii) Tuplespaces allow time-disjoint processes to communicate seamlessly.

(iii) Tuplespaces use an associative addressing scheme and allow processes to com-
municate regardless of machine or platform boundaries.

The Tuplespace concept was originally proposed by Carriero and Gelernter as part
of the Linda coordination language, [12], [13]. A Tuplespace is a globally shared,
associatively addressed memory space that is organized as a bag of tuples.

A tuple is a vector of typed values, or fields. Templates/anti-tuples, are used to
associatively address tuples via matching. A template is similar to a tuple, but some
fields in the vector may be replaced by typed place holders called formal fields.

A formal field in a template is said to match a tuple field if they have the same
type. If the template field is not formal, both fields must also have the same value.
A template matches a tuple if they have an equal number of fields and each template
field matches the corresponding tuple field.

The combination of Java and Tuplespace is pursued by projects such as Jada [16],
JavaSpaces [54], and T Spaces, [28], [49] . Jada is a Linda implementation used to
provide basic coordination for PageSpace [15] a high-level coordination system.

JavaSpaces, currently under development at Sun Microsystems, is designed to pro-
vide "distributed persistence" and aid in the implementation of distributed algorithms.
The system allows arbitrary Java classes to be communicated as tuples and made per-
sistent through Tuplespace. Transactions are provided for Tuplespace integrity, and
a facility for notifying a process when a tuple is written to a Tuplespace is provided
instead of the standard blocking read and take operations. JavaSpaces provides a
simple transactional data repository and communication mechanism.

T Spaces is a software system developed in Java and available as freeware; it provides
group communication services, database services, URL-based file transfer services,
and event notification services.

The basic T Spaces tuple operations are write, take, and read. The write
method stores its tuple argument in a Tuplespace. The take and read methods
are non-blocking operations, each uses a tuple template argument that is matched

THE AGENTS 351

read()
take()
write()

Access contol
Checkpointing

Tspace server

tuples

read()
waittoread()

scan()

take()

match()

consumingscan()

write()

count()

or()

index()

and()

waittotake()

Fig. 9.22 A T Space server and the methods it supports.

against the tuples in a Tuplespace. Blocking versions of these, waittotake and
waittoread, are supported; if no match is found these methods block until a
matching tuple is written by another process.

The takemethod removes and returns the first matching tuple in the Tuplespace,
whereas the read returns a copy of the matched tuple, leaving the Tuplespace un-
changed. If no match is found, take and read each return the Java type null and leave
the space unchanged. T Spaces also extends the standard Tuplespace API with the op-
erations scan, consumingscan, and count. The scan and consumingscan
methods are multiset versions of read and take, respectively, and return a "tuple of
tuples" that matches the template argument. The count method returns an integer
count of the matching tuples. Figure 9.22 shos a T Space server and the methods it
supports.

In T Spaces a tuple matches the template when all of the following conditions
hold:

(i) The tuple and template have the same number of fields.

(ii) Each of the fields of the tuple is an instance of the type of the corresponding field
of the template.

(iii) For each non-formal field of the template, the value of the field matches the value
of the corresponding tuple field.

T Spaces also provide several types of queries: Match, Index, And, and Or
queries. A Match query performs structural or object compatibility matching,

352 MIDDLEWARE FOR PROCESS COORDINATION

whereas an Index query performs a named-field query. And and Or queries can be
used to combine these other queries and build complex query trees.

A T Spaces server is controlled by a configuration file, tspaces.cfg that spec-
ifies a wide range of parameters for the server such as:

- the port number the server listens to,

- a checkpoint file and the time interval between checkpointing the T Spaces server,

- time intervals to check for deadlocked threads and for expired tuples,

- access control parameters; if access checking is enabled, add/delete users or groups,
access control lists.

Agent access to T Spaces. The bondTupleSpaceEnabledStrategy allows
agents to communicate with one another via the T Space server. Moreover, strategies
of different state machines of an agent can communicate with one another using tu-
plespaces provided that they extend the bondTupleSpaceEnabledStrategy.

This strategy extends the bondDefaultStrategy. Its install() action
reads from the model the location of the T Space server and a string giving the tuple
space name and sets up the tuple space.

import com.ibm.tspaces.*;
import bond.agent.*;
import bond.agent.interfaces.*;
import java.io.*;
public class bondTupleSpaceEnabledStrategy extends

bondDefaultStrategy {
protected TupleSpace space, save;
boolean inited = false;

public void install(bondFiniteStateMachine fsm) {
super.install(fsm);
if (!inited) {

String host = (String)getModel("TupleServer");
String sname = (String)getModel("SpaceName");
if (host == null || sname == null) {

inited = true; return;}
inited = setTupleSpace(host, sname);

}
}
public boolean setTupleSpace(String host, String sname) {
try {

space = new TupleSpace(sname, host);
return true;

}
catch (TupleSpaceException e) {return false;}
catch (Exception e) { return false;}

}
}

THE AGENTS 353

The code for the actual blocking methods to take an item from the tuple space
without leaving a copy, to read an item and leave the copy in the tuple space, and
to write an item into the tuple spaces is shown below. These methods are wrappers
for the methods supplied by the com.ibm.tspaces package: waitToTake,
waitToRead, and write.

public Object getFromTupleSpace(String host,
String sname, String s)throws Exception {

if (!setTupleSpace(host, sname)) return null;
return getFromTupleSpace(s);

}
public Object getFromTupleSpace(String s)

throws Exception {
Tuple msg = space.waitToTake(s, new

Field(Serializable.class));
return (Object)msg.getField(1).getValue();

}
public Object copyFromTupleSpace(String host,

String sname, String s)throws Exception {
if (!setTupleSpace(host, sname)) return null;
return copyFromTupleSpace(s);

}
public Object copyFromTupleSpace(String s)
throws Exception {
Tuple msg = space.waitToRead(s, new

Field(Serializable.class));
return (Object)msg.getField(1).getValue();

}
public boolean putIntoTupleSpace(String host, String
sname, String s, Serializable o) throws Exception {
if (!setTupleSpace(host, sname)) return false;
return putIntoTupleSpace(s, o);

}
public boolean putIntoTupleSpace(String s,

Serializable o)throws Exception{
space.write(s, o);
return true;

}

9.2.4.2 Fault Detection and Fault Information Dissemination. We now
provide details of the algorithm and the data structures.

Status table: it is a data structure containing fault–status information maintained
by each agent. Let N be the total number of agents in a federation; some of them are
faulty, others are fault–free. Consider an agent a, with aida, monitoring an agent b,
with aidb, and being monitored by c with aidc. The status table maintained by agent
a contains the following data:

A list of event–status counters for every other agent in the federation. status[aid i]

is a non–negative integer value for the most recent “fail” or “join” event regarding

354 MIDDLEWARE FOR PROCESS COORDINATION

agent i with aidi. If status[aidi] is odd then agent i is faulty, if status[aidi] is even,
agent i is fault-free.

The event–status counter provides information about the ordering of the events
because it is incremented by one after each “fail” or “join” event regarding b, detected
by a. When b joins the federation, and requests to be monitored by a, the counter
is set to status[aidb] = 0. When a detects a “fail” event of b, it increments the
counter thus status[aidb] = 1. When it detects a “join” event then it increments
again, status[aidb] = 2, and so on.

Recall that a monitors only one agent b and learns about failures detected by
other agents through dissemination. In addition to “fail” events generated during
monitoring, an agent may generate a “fail” event during the dissemination process
when the contact agent fails to acknowledge a dissemination message.

A counter is only modified by an agent that has detected the occurrence of an event.

Monitoring: it keeps the AID of the agent that it is monitoring.

Monitored By: it keeps the AID of the agent that is monitoring this agent.
The messages exchanged during the fault–detection and dissemination are:

test-msg andfine are a monitoring message sent by agenta to agent b it monitors,
and a reply of b to a. Agent a expects the reply within a certain time interval. If the
replay fails to materialize within that interval, a time-out occurs and a detects a “fail”
event.

info-msg and received are a propagation message and an acknowledgment to
the propagation. A propagation message contains: (i) the AID of the agent that
generated the event, (ii) the value of the event status counter, (iii) the list of agent
AID’s the information should be forwarded to, and (iv) the list of the rest agents. The
propagation continues until the forwarding list becomes empty. Unless the acknowl-
edgment is received by the agent sending the message within a well–defined interval,
a time-out occurs and it is considered as the “fail” event.

request-monitoring, I-will-monitor-you and I-am-busy. A new
agent b sends a request-monitoringmessage to an agent a of the federation it
knows about. Agent a may respond I-am-busy or I-will-monitor-you.

request-join, I-will-monitor-you and I-am-busy are a monitoring
request message from a new or repaired agent and two possible replies: accept or
deny. The reply messages also contain the list of fault-free agents to give the joining
agent a hint about the current members of the federation.

you-are-orphan is a message to force a reconfiguration of the ring-monitoring
topology when a new agent joins the federation. If agent a currently monitoring agent
b receives a monitoring request from a new agent c and realizes that the ring topology
forces it to accept to monitor c instead of b then it sends a you-are-orphan
message to b. For example a has aida = 10, b has aidb = 20. A new agent c with
aidc = 15 joins the federation and then the ring topology requires the new agent
should be inserted between a and b and the monitoring relations be changed from
a) b to a) c) b.

THE AGENTS 355

The pseudo-code of the algorithm consists of a set of processes: message handler,
info handler, info disseminator, monitor searcher. These processes run in parallel
on separate execution threads and sometimes create instances of another processes.

Message Handler: it receives all the algorithm messages. Upon receiving a message,
this process handles it or dispatches it to other processes.

process MESSAGE_HANDLER() {
1 while (TRUE) {
2 receive message from agent i;
3 switch (type of message)
4 case TEST-MSG:
5 send FINE to agent i
6 case INFO-MSG:
7 process__INFO_HANDLER(message, agent i)
8 case REQUEST-MONITORING:
9 if (procedure__Can_Monitor(agent i)) {
10 process__FAULT_MONITOR(agent i)
11 send I-WILL-MONITOR-YOU to agent i }
12 else
13 send I-AM-BUSY to agent i
14 case REQUEST-JOIN:
15 if (procedure__Can_Monitor(agent i)) {
16 process__FAULT_MOINITOR(agent i)
17 send I-WILL-MONITOR-YOU to agent i
18 if (status[agent i] exists)
19 status[agent i]++; /* set as fault free */
20 else
21 add status[agent i] = 0; /* add initialized one */
22 process__INFO_DISSEMINATOR(agent i) }
23 else
24 send I-AM-BUSY to agent i
25 case YOU-ARE-ORPHAN:
26 set Monitored_By to null
27 process__MONITOR_SEARCHER() }}

procedure boolean Can_Monitor(agent requester) {
1 if (Monitoring== null)
2 return true;
3 cur_ID = the ID of the agent that it monitors
4 req_ID = the ID of agent requester
5 my_ID = the ID of this agent
6 if (my_ID < cur_ID)
7 if (my_id < req_id && req_id < curr_id)
8 return true /* accept request */
9 else if (my_DI > cur_ID) {
10 if ((my_id > req_id && req_id < cur_id) || (req_id > my_id)) {

356 MIDDLEWARE FOR PROCESS COORDINATION

11 return true /* accept request */
12 return false /* deny request */

normalsize
When the message handler receives a request to monitor or join, it decides whether to accept

or deny the request after checking its current monitoring state; if it does not monitor any agent,
it accepts the request after verifying that the ring topology is satisfied. Otherwise it compares
the AID of the requesting agent with its own and with that of the agent it currently monitors
and then makes a decision subject to the condition that the ring topology is satisfied, see the
procedure Can Monitor().

Fault Monitor: it monitors one agent by periodic polling. Once detecting a failure event, it
starts a info disseminator process to propagate the event to other fault–free agents.

process FAULT_MONITOR(agent i) {
1 if (Monitoring != null) /*monitoring other agent */
2 stop monitoring;
3 Monitoring = agent i; /* set new monitoring target */
4 while (NOT STOPPED) {
5 send TEST-MSG to agent i
6 timed-wait FINE from agent i
7 if (time-out)
8 status[agent i]++; /* set as faulty */
9 process__INFO_DISSEMINATOR(agent i)
10 Monitoring = null;
11 exit /* stop monitoring */
12 wait for monitoring INTERVAL 13 }
14 if (STOPPED) { /*forced to reconfigure */
15 send YOU-ARE-ORPHAN to agent agent i
16 timed-wait FINE from agent i
17 if (time-out)
18 process__INFO_DISSEMINATOR(agent i)
19 status[agent i]++; }}/*set as faulty */

The time–out period for a reply message (fine) takes into account both message
processing and network latency times. Once an agent detects a “fail” event, it incre-
ments its local status counter of the faulty agent by one to indicate a faulty agent.

Info Disseminator: it initiates the event dissemination. It constructs binary dissem-
ination tree based on the snapshot of the current fault–free agents.

process INFO_DISSEMINATOR(agent i) {
1 for all status[agent k] { /* collects all fault-free agents */
2 if (status[agent k] ==even)
3 Array fault-free[] += agent k }
4 procedure__SPLIT_AND_SEND(agent i, fault-free)

procedure SPLIT_AND_SEND(agent event, list) {
1 N = size of list[]
2 Array list_1[] = list[0..N/2-1] /* group 1*/

THE AGENTS 357

3 agent x = random one of list_1[] /* contact agent of group 1 */
4 Array list_2[] = list[N/2+1..N-1] /* group 2*/
5 agent y = random one of list_2[] /* contact agent of group 2 */
6 process__SPREAD_INFO(agent event, agent x, list_1)
7 process__SPREAD_INFO(agent event, agent y, list_2)}

process SPREAD_INFO(agent event, agent receiver, list) {
1 INFO-MSG = (event, list)
2 send INFO-MSG to agent receiver
3 timed-wait RECEIVED from agen receiver
4 if (time-out) {
5 status[agent receiver]++; /* set as faulty */
6 process__INFO_DISSEMINATOR(agent receiver)
7 if (list != null) {
8 agent another_receiver = list[0];
9 list = list[] another_receiver;
10 process__SPREAD_INFO(agent event, agent another_receiver, list)}}}

The procedure SPLIT AND SEND() splits the current list of fault–free agents
into two groups and selects randomly two contact agents from each group. The time–
out for the acknowledgment message (received) includes the time to tolerate the faults
of the receiver agents during dissemination.

Info Handler: it handles the event messages propagated from other agents. After
updating its local status table, it forwards the message to next level agents.

process INFO_HANDLER(message, agent sender) {
1 if (more recent status[agent k] than local) {
2 update local status[agent k]
3 if (I am orphan)
4 process__MONITOR_SEARCHER();
5 }
6 else if (older status[agent k]) {
7 send RECEIVED to agent sender;
8 return;}
9 list[] = message.getList();
10 if (list != null)
11 procedure__SPLIT_AND_SEND(agent k, list)};
12 if (the monitored agent is not in the dissemination list)
13 forward the message to the monitored agent
14 if (propagation ends)
15 send acknowledgment

After updating the local status table of an agent, the info handler checks whether
the value of status[Monitored By] is odd, if so, it attempts to find another monitor.
The acknowledgment is sent after the propagation to next–level contact agents is
completed, to avoid the case thatleads to inconsistent status tables. In line 11 and 12,
the agent checks whether the agent that it is monitoring receives the message, if not,
it forwards the message to the monitored agent.

358 MIDDLEWARE FOR PROCESS COORDINATION

Monitor Searcher: it searches a fault–free agent which is able to monitor this agent.
This process is initiated either when this agent joins a federation for first time, or
when it finds itself an orphan.

process MONITOR_SEARCHER() {
1 while (Monitored-By == null) {
2 for all status[agent k] {
3 if status[agent k] == even
4 Array fault-free[] += agent k }
5 agent target = procedure__CALCULATE_MONITOR(fault-free[]);
6 if (a new joining or repaired agent) {
7 send REQUEST-JOIN to agent target
8 timed-wait reply from agent target
9 if (time-out)
10 continue /* try another agent */
11 else {
12 update local status table
13 if (reply == I-WILL-MONITOR-YOU) {
14 Monitored-By = agent target
15 exit }
16 else { /* I-AM-BUSY */
17 continue }}}
18 else { /* fault-free orphan agent */
19 send REQUEST-MONITORING to agent target
20 timed-wait reply from agent target
21 if (time-out) {
22 status[agent target]++; /* set as faulty */
23 process__INFO_DISSEMINATOR(agent target)
24 continue; }
25 else {
26 Monitored-By = agent target
27 exit }}}}

procedure int CALCULATE_MONITOR(array agents[]) {
1 N = size of agents[]
2 sort(agents[]) /* sort agents[] in ascending order */

/* get index of current agent */
3 index i = binarySearch(my_agent_ID, agents[])
4 if (i == 0)
5 return the ID of agents[N-1]

/* the largest ID agent should monitor */
6 else
7 return the ID of agents[i-1]}

The CALCULATE MONITOR() procedure consists of the steps to obtain the AID
of the agent to which a request message is sent to: sort the current list of fault–free
agents in increasing order, find its position in the sorted list, select the AID of the
agent preceding it.

THE AGENTS 359

Knowledge
Acquisition
Sub-system

Knowledge
Base

Inference
Engine

Explanation
Sub-system

User
Interface

Fig. 9.23 The architecture of an expert system.

9.2.4.3 Integrating an Inference Engine. In this section we discuss the in-
tegration of an inference engine, Jess [20] in our agent system and in Section 9.3.1
we analyze in depth the application of inference for an adaptive video service.

The generic architecture of an expert system is presented in Figure 9.23. Its
components are:

(i) Knowledge acquisition subsystem responsible to collect new facts.

(ii) Knowledge base, the store for factual and heuristic knowledge.

(iii) Inference engine, provides the inference mechanisms to manipulate symbolic
information and knowledge.

(iv) An explanation system.

(v) A user interface.

An expert system shell consists only of an inference engine and a user interface.

Jess is a rule-based expert system shell written in Java. It applies continuously a set
of if-then statements, the rules to a set of data, the facts in the knowledge base).
An example of a rule, from Jess programming manual is:

(defrule library-rule-1
(book (name ?X) (status late) (borrower ?Y))
(borrower (name ?Y) (address ?Z))

=>
(send-late-notice ?X ?Y ?Z))

This rule says that if a book at a library is overdue a notification should be sent
to the borrower. The facts here the name and status of the book and the name and
address of the borrower.

A typical expert system has a fixed set of rules while the knowledge base changes
continuously. The obvious implementation of an inference engine would be to keep
a list of rules and continuously cycle through the list, checking each one’s left-hand-
side, LHS against the knowledge base and executing the right-hand-side, RHS of any
rules that apply.

In the Rete algorithm, [20] the past test results are remembered across iterations
of the rule loop. Only new facts are tested against any rule LHS. The computational
complexity per iteration is linear in the size of the fact base.

Inference in Bond. All strategies using inference extend thebondInferenceEngine
strategy. The code listed below shows the definition of the inference engine object
and the execution of Jess commands.

360 MIDDLEWARE FOR PROCESS COORDINATION

import jess.*;
import bond.core.*;
import java.io.*;
public class bondInferenceEngine extends bondObject {
public Rete infegn;
private StringBuffer kbase;
public bondInferenceEngine() {

infegn = new Rete();
infegn.addUserpackage(new jess.ReflectFunctions());
infegn.addUserpackage(new jess.StringFunctions());

}
public boolean executeCmd(String cmd) {

try { infegn.executeCommand(cmd); return true;}
catch (JessException e) {return false;}

}
public void run(int n) {

try { infegn.run(n); }
catch (JessException rexp) { }

}
}

The Jess package provides a set of methods to add and retract facts to/from
the knowledge base, assertString(fact) and retractString(fact),
to clear and reset the inference engine, clear() and reset(), to load facts
into the knowledge base, parse(), to load rules, append(), to show the facts
ppFacts(). Below we see the wrappers for these methods.

public boolean insert_fact(String fact) {
try {infegn.assertString(fact);}
catch (JessException rexp) { return false;}
return true;

}
public boolean remove_fact(String fact) {

try {infegn.retractString(fact);}
catch (JessException rexp) { return false;}
return true;

}
public boolean clear_infegn() {

try { infegn.clear();return true;}
catch (JessException rexp) { return false;}

}
public boolean reset_infegn() {

try { infegn.reset(); return true;}
catch (JessException rexp) { return false;}

}
public boolean load_kbase(StringBuffer kbase) {

if (kbase == null) return false;
this.kbase = kbase;
StringReader sr = new StringReader(kbase.toString());

APPLICATIONS OF THE FRAMEWORK 361

Jesp jesp = new Jesp(sr, infegn);
try {jesp.parse(false);}

catch (JessException rexp) { return false;}
return true;

}
public void loadRulefromFile(String fname) {

try {
RandomAccessFile f = new RandomAccessFile(fname, "r");
StringBuffer s = new StringBuffer("");
String str;
while ((str = f.readLine()) != null)

s = s.append(str+"\n");
if (!load_kbase(s)) {}

}
catch (FileNotFoundException e) {}
catch (IOException e) {}

}
public boolean insertObject(String tmpltname, Object o) {

try {
Funcall f = new Funcall("definstance", this.infegn);
f.add(new Value(tmpltname, RU.ATOM));
f.add(new Value(o));
f.execute(this.infegn.getGlobalContext());

}
catch (Exception e) { return false;}
return true;

}
public String show_facts() {return infegn.ppFacts();}

9.3 APPLICATIONS OF THE FRAMEWORK

Now we discuss in depth two applications of the system presented in this Chapter and
survey two others. The first example illustrates the design and implementation of an
adaptive video service where a server agent uses an inference engine to select the data
streaming mode based upon feedback from a client agent. Network congestion as well
as limitations of the CPU cycles available at client and/or server sites are detected and
stored as facts in a knowledge based. The server agent uses a set of rules to transmit a
compressed video stream in the normal mode, to reserve communication bandwidth
and/or CPU cycles at the client and server sites, or if reservations fail to drop frames
or to transmit decoded frames if there is enough communication bandwidth but the
client is unable to decode the frames at the desired rate.

The second application presents a Web monitoring and benchmarking service. A
federation of monitoring agents install the benchmarking software on a set of client
systems and then generate the requested workload. The monitoring agents work in
lock step, the synchronization is provided by a tuplespace server.

362 MIDDLEWARE FOR PROCESS COORDINATION

1. Request video

3. Video Stream

4. Feedback

3. Video Stream

4. Feedback

1. Request video

2. Spawn Server Agent

DisplayMPEG
Video
Server

N
E
T
W
O
R
K

Video
Data
Base

Server
Agent

Server
Agent

Client
Agent

Client
Agent

2. Spawn Server Agent Display

Fig. 9.24 The adaptive system consists of an MPEG server and server-client agent pairs sup-
porting video streaming and display functions respectively. A server agent adapts to changing
traffic and load conditions using a set of rules.

9.3.1 Adaptive Video Service

We now discuss an application of inference to support server reconfiguration and
resource reservations for a video service, [32], [56].

The architecture of the adaptive MPEG system is shown in Figure 9.24. In response
to a request from a client the MPEG video server spawns an MPEG server agent which
delivers and controls the video streaming. The MPEG client agent displays the video
stream, monitors its reception and provides feedback regarding desired and attained
quality of service at the client side. The server agents responds by reconfiguring video
streaming and reserving communication bandwidth and/or CPU cycles according to
a set of rules. An inference engine, a component of the server agent, controls the
adaptation mechanism. A native bandwidth scheduler and a CPU scheduler in Solaris
2.5.1 support QoS reservation as described in [56].

Two communication channels exist between a client and its peer on the server
side: a channel for data streaming and a control channel for streaming commands
and feedback from client to server as shown in Figure 9.24. We use UDP for video
streaming with one frame per UDP packet. The packets arriving out of order are
rearranged.

The profile of a video file is the data rate corresponding to a frame rate. Table 9.9
shows the profile of one of the video files we used for testing.

9.3.1.1 The Server Agent. A partial description of the blueprint for the server
agent follows. The agent had two planes, one to for delivering the video stream and
one to control the data streaming mode, see Figure 9.25. We only show the plane
responsible for data streaming. As in other examples the error handling states are
omitted. The two planes communicates with each other through the model.

APPLICATIONS OF THE FRAMEWORK 363

Table 9.9 Profile of a sample application

Frame Rate (frames/sec). Transmission Rate (bps))

5 4000
10 7000
15 10000
20 13000
25 16000
30 20000

import bond.application.MPEG;
create agent MPEGserver
plane MPEGtransmit
add state Init with strategy
bondMPEGServerStrategyGroup.InitDataChannel;

add state NormalMode with strategy
bondMPEGServerStrategyGroup.TransVideoStream;

add state DecodeMode with strategy
bondMPEGServerStrategyGroup.TransPixelData;

add state Drop&DecodeMode with strategy
bondMPEGServerStrategyGroup.TransPixelDataWithDropping;

external transitions {
from NormalMode to DecodeMode on gotoTransPixelData;
from NormalNode to DropMode on gotoTransDroppedPixelData;
from DecodeMode to NormalMode on

goFromTransPixelDataToTransVideoStream;
from DropMode to NormalMode on

goFromTransDroppedPixelDataToTransVideoStream;
}

internal transitions {
from Init to NormalMode on gotoTransVideoStream;

}
model {
FILENAME = "bond/application/MPEG/Blazer.mpg";
ALTFILENAME = "bond/application/MPEG/red.mpg";

}
end plane;
plane MPEGcontrol
.....

end plane
end create.

The server agent shown in in Figure 9.25 supports four streaming modes:

364 MIDDLEWARE FOR PROCESS COORDINATION

 MPEG plane

 Control Plane

Init

Init

Normal Mode

Drop Mode

Decode Mode

Drop&Decode
Mode

Adapt

Inference

Communicate

Fig. 9.25 The MPEG server agent has two planes.

Normal Mode The MPEG server reads the video stream from the Video Data Base or
from a local file and transmits it to a client. The MPEG client decodes the video stream
and displays the frames. Decoding the video stream is a CPU intensive operation.

Drop Mode. The MPEG server partially decodes the video stream to identify the
frame types and drops certain type of frames. The sever selects the frames of which
type affects the video quality less than other types, for example, B-type and P-type.
This mode is suitable for low bandwidth.

Decode Mode. The MPEG server transmits decoded frames. Thus this mode is
suitable for clients running on systems with CPU intensive programs, but connected
via high-bandwidth networks.

Decode and Drop Mode. This mode is the combination of the previous two modes.
It is suitable for overloaded clients connected with moderate bandwidth.

At the start of each transmission the server agent is in normal mode and as the
network traffic and CPU load on the server and client change, the server agent reacts
by selecting one of the other modes.

9.3.1.2 The facts and the rules. The following facts are stored in the knowl-
edge base:

Transmission rate in bps as measured by the server.

APPLICATIONS OF THE FRAMEWORK 365

Packet loss rate. We detect lost packets by comparing the frame numbers on the client
side. The packet loss rate is not the same as the frame loss rate, because P-frames
and B-frames are dependent on I-frames. If an I-frame is lost, the depending frames
are considered to be lost.

Inter-frame time. The inter-frame time shows the time elapsed at the client side
between two displayed frames. I and P frames are larger than B frames, thus the
number of operations and the time to decode them is larger.

Receiving rate. The client determines this rate using the information about packet
sizes. This rate is affected by network congestion.

The rules for the resource reservation and reconfiguration are:
Bandwidth Reservation Rule. The objective of this rule is to reduce the packet loss
rate by reserving bandwidth when the network is congested. The profile also has the
maximum packet loss rate allowed to maintain a certain frame rate. We determine
of the network is congested by comparing the (packet-loss-rate) with the
(maximum-loss-rate) and, if so we reserve the bandwidth necessary to achieve
the (desired-frame-rate). The rule is:

(packet-loss-rate ?lr)
(desired-frame-rate ?fr)
(maximum-loss-rate ?mr)
(test (> ?lr ?mr))
=>
(reserve-bandwidth ?fr)

After this rule fires, the strategy of the adapt state in the control plane looks up the
profile of the video transmission to determine the necessary bandwidth and passes
the information to the bandwidth reservation interface.

CPU Reservation Rule. This rule fires when a CPU-intensive program running either
at the server or the client affects the server transmission rate, or the inter-frame time
at the client. The transmission rate of the server is compared with the profile and the
inter-frame time is compared to the desired inter-frame time. This rule is repeatedly
fired, and raises the reservation level gradually, until the desired rate is achieved. The
rules are:

(transmit-rate ?tr)
(required-transmmit-rate ?rtr)
(test (< ?tr ?rtr))
=>
(increase-cpu-reservation)

(inter-frame-time ?ft)
(required-inter-frame-time ?rifr)
(test (< ?rifr ?ft))
=>
(increase-cpu-reservation)

366 MIDDLEWARE FOR PROCESS COORDINATION

Drop Rule. This rule fires when either the bandwidth or CPU reservation fails. In this
rule new facts,(bandwidth-reservation-failed) ,(cpu-reservation-failed)
and are added to the knowledge base.

(bandwidth-reservation-failed)
=>
(trigger-drop-mode)

(cpu-reservation-failed)
=>
(trigger-drop-mode)

We now present the actual facts and rules used by the server agent. At first, we
see the definition of different rates measured by the server or reported by its peer
client. Then there are several rules to maintain the facts in the knowledge base. Each
measurement carries a time stamp and the fact corresponding to an older measurement
is retracted. We only show one of these maintenannce rules.

;; Target frame rate the server wants to reach
(deftemplate current-server-frame-rate
(slot timestamp)(slot rate))

;; Actual frame rate measured
(deftemplate actual-server-frame-rate
(slot timestamp)(slot rate))

;; Server transmission rate
(deftemplate transmit-rate-bytes-per-sec
(slot timestamp)(slot interval) (slot rate))

;; Current mode of operation
(deftemplate tcurrentmode
(slot stime) (slot mode))

;; Client receiving rate
(deftemplate receiving-rate-bytes-per-sec
(slot timestamp)(slot interval)(slot rate))

;; Frame loss rate reported by client
(deftemplate frame-loss-rate-frames-per-sec
(slot timestamp) (slot interval) (slot rate))

;; Display rate reported by client
(deftemplate display-rate-frames-per-sec
(slot timestamp)(slot interval)(slot rate))

(assert (minimum-frame-rate 20.0))

;; Server actual frame rate maintenance rule
(defrule actual-rate-maintenance
(declare (salience 100))
?ar1 <- (actual-server-frame-rate (timestamp ?ts1))
?ar2 <- (actual-server-frame-rate (timestamp ?ts2))
(test (< ?ts1 ?ts2))
=>

APPLICATIONS OF THE FRAMEWORK 367

(retract ?ar1))
;; Server transmission rate maintenance rule
.........

;; Current mode maintenance rule
.........

;; Receiving rate maintenance rule
.........

;; Frame loss rate maintenance rule
.........

;; Display rate maintenance rule
.........

;; Server rate maintenance rule
.........

;; Decrease server frame rate rule
(defrule decrease-server-frame-rate
(tcurrentmode (mode normal))
(current-server-frame-rate (rate ?r))
(actual-server-frame-rate (rate ?r1))
(display-rate-frames-per-sec (rate ?r2))
(test (< (/ ?r2 ?r1)(/ 90 100)))
=>
(printout t "Decrease server frame rate to

" (- ?r 1) ": current display rate--> " ?r 2 crlf)
(if (< 2 ?r) then
(call (fetch MODEL) setModelFloat "frameRate"(- ?r 1))

else
(call (fetch MODEL) setModelFloat "frameRate" 1.0)))

;; Increase server frame rate rule
(defrule increase-server-frame-rate
(tcurrentmode (mode normal))
(current-server-frame-rate (rate ?r))
(actual-server-frame-rate (rate ?r1))
(display-rate-frames-per-sec (rate ?r2))
(minimum-frame-rate ?mr)
(test (< ?r2 ?mr))
(test (>= (/ ?r2 ?r1) (/ 90 100)))
=>
(printout t "Increase frame rate to " (+ ?r 2) "

: current display rate--> " ?r2 crlf)
(call (fetch MODEL) setModelFloat "frameRate" (+ ?r 2)))

;; Measurement rule
(defrule measurement(tcurrentmode (mode normal))
(actual-server-frame-rate (timestamp ?ar))
(display-rate-frames-per-sec (rate ?r) (timestamp ?t))
(minimum-frame-rate ?mr)
(test (<= ?r ?mr))
(not (under-minimum-frame-rate))
=>

368 MIDDLEWARE FOR PROCESS COORDINATION

(assert (under-minimum-frame-rate)) ; flag
(assert (under-minimum-frame-rate-since ?ar)))

;; Reset mode rule
(defrule reset
(tcurrentmode (mode normal))
(display-rate-frames-per-sec (rate ?r) (timestamp ?t))
(minimum-frame-rate ?mr)
(test (> ?r ?mr))
?x<-(under-minimum-frame-rate)
?y<-(under-minimum-frame-rate-since ?k)
=>
(retract ?x)
(retract ?y))

;; Test if under minimum frame rate rule
(defrule under-minimum-rate
(tcurrentmode (mode normal))
(display-rate-frames-per-sec (rate ?r) (timestamp ?t))
(minimum-frame-rate ?mr)
(test (<= ?r ?mr))
?x<-(under-minimum-frame-rate)
?y<-(under-minimum-frame-rate-since ?ts)
(test (> (- (* (time) 1000) ?ts) 30000)) ;

under-minimum-rate continues over 30 sec.
=>
(printout t "**To Drop>>" crlf)
(retract ?x)
(retract ?y)
(call (new bond.application.MPEG.MPEGAdaptation)

adapt Normal Drop (fetch MODEL)))
;; Go back to normal rule
(defrule go-back-to-normal
(tcurrentmode (mode drop) (stime ?st))
(actual-server-frame-rate (timestamp ?ts))
(test (> (- ?ts ?st) 30000)) ; retry after 30 sec.
=>
(printout t "**To Normal>>" crlf)
(call (new bond.application.MPEG.MPEGAdaptation)

adapt Drop Normal (fetch MODEL)))

(deffunction
fetch-from-model (?a) ;; (call (fetch MODEL) getModel ?a))

9.3.1.3 The strategies. The bondMPEGStrategyGroup object provides
the strategies associated with the states of the server agent. Here we only show
the strategies for the init and normal mode states in the MPEG plane. The intializata-
tion strategy identifies the thread handling a new connection to the video server and
writes this information in the model. Then it causes a transition to the normal mode

APPLICATIONS OF THE FRAMEWORK 369

state. The strategy associated with the normal transmission mode in its install()
function first reads from the model the name of the video file to be transmitted and
the name of the coordinator, then initiates the transmission of the UDP stream, and
finally writes into the model the name of the current state.

public bondMPEGServerStrategyGroup(String name) {
super(name);
// 1. The strategy for the INIT state of the server
strat = new bondDefaultStrategy() {
OutputStream os = null;
boolean errorFlag = false;
public void install(bondFiniteStateMachine fsm) {

super.install(fsm); }
public long action(bondModel m, bondAgenda a) {

setModel("MPEGServerThreadGroup",
new ThreadGroup("MPEGServerThreadGroup"));

if (!errorFlag)
transition("gotoTransVideoStream");

else
transition("gotoError"); return 1000L;}

};
addStrategy("InitDataChannel", strat);

// 2. The strategy for the Normal Mode
strat = new bondDefaultStrategy() {
UDPTransmitter ut;
public void install(bondFiniteStateMachine fsm) {

super.install(fsm);
ut = new UDPTransmitter(this, (String)getModel("FILENAME"));
setModel("UDPTransmitter", ut);
bondCoordinator bc = (bondCoordinator)getModel("COORDINATOR");
bc.insert_fact("(tcurrentmode (mode normal)

(stime "+System.currentTimeMillis()+"))");
}
public long action(bondModel m, bondAgenda a) {

return 10000L; }
public void uninstall() {

ut.stop();
dir.unregister(ut);
ut = null;

}
public String getDescription() {

return "Transmit video stream";}
};
addStrategy("TransVideoStream", strat);

9.3.1.4 The client agent. The runmethod of the MpegDisplay object used
to display data on the client side is listed below. It reads from the input the data stream
and uses the display function of a Java MPEG player to display a frame with a

370 MIDDLEWARE FOR PROCESS COORDINATION

given sequence number and a given type. Periodically, it sends to the server agent a
report with a time stamp, the interval between two consecutive measurements, and
the display rate.

public void run() {
String mpegserver =(String)bds.getModel("mpegserver");
int port = ((Integer)bds.getModel("portnumber")).intValue();
try {
Socket s = createSocket(mpegserver, port, port);
ois = new ObjectInputStream(new BufferedInputStream

(s.getInputStream()));
}
catch (StreamCorruptedException sce) { }
catch (IOException ioe) { }
mpd = new MPEG_Play_Decoding((JFrame)bds.

getModel("DisplayFrame"));
while (!finish) {
try {
ap = (AnotherPacket)ois.readObject();
if (first) {

Runnable r = new Runnable() {
public void run() {
mpd.set_dim(ap.width, ap.height, ap.ori_w, ap.ori_h);}

};
SwingUtilities.invokeAndWait(r);
first = false;
mpd.display(ap.picture, ap.num, ap.type);
long t1 = System.currentTimeMillis();
if ((t1-lastDisplayMeasureTime) >

DisplayRateMeasureInterval) {
double rate = ((num_of_frames+1)*1000)

/(t1-lastDisplayMeasureTime);
fm.sendFeedback("(display-rate-frames-per-sec "+

"(timestamp "+t1+")"+"(interval+"
DisplayRateMeasureInterval+")"+"(rate "+rate+"))");

num_of_frames = 0;
lastDisplayMeasureTime = t1;
}
else {num_of_frames++;}
catch (EOFException eofe) {}
catch (IOException ioe) { }
catch (ClassNotFoundException cnfe) { }
catch (Exception e) {}

}
}

}

The client agent measures the display rate, the frame loss rate, and the actual data
rate and provides feedback to its peer server agent that changes its streaming mode

APPLICATIONS OF THE FRAMEWORK 371

accordingly. Our adaptation strategy is based upon the observation that the bottleneck
can be any of the three resources along the end-to-end streaming path, the server CPU,
the network, and/or the client CPU. The system identifies the bottleneck as follows: if
the server transmission rate is below a minimum rate, then the CPU on the server side
is a bottleneck; if the packet loss rate measured as the difference between the sender
frame rate and the receiver frame rate, is high, then the network is the bottleneck; if
the inter-frame display time at the client exceeds a threshold and the network is not
congested, then the CPU on the client side is the bottleneck.

9.3.1.5 Experiments. In this section we present measurements for the MPEG
application with and without resource reservation. In this experiment the server
runs on an Ultra Sparc-1 machine with 128 MBytes memory, under Solaris 2.5.1.
The client runs on a Pentium II 300 MHz, with 128 MBytes memory system under
Solaris 2.5.1. To simulate increased traffic load a communication-intensive program
generates a burst of UDP packets. To simulate the CPU load, CPU intensive program
is used.

The first experiment shows the effect of bandwidth reservation, see Figure 9.26.
On the server side in addition to the MPEG application we start a communication-
intensive program. The traffic generated by this application affects the video traffic
and we study the effect of this interference. Without reservation a large percentage
of video packets are lost. Once sufficient bandwidth to support the desired frame rate
is reserved, the number of lost packets is noticeably reduced, even under the heavy
network traffic.

The second experiment shows the effect of CPU reservations, see Figure 9.27.
We run three CPU-intensive processes to compete for with the MPEG process. The
experiment is performed first without CPU reservation, and then with reservation.
shows the effect of the CPU reservation on the inter-frame time. We start the CPU-
intensive processes while the client displays frame 120 and then stop it around frame
230.

9.3.2 Web Server Monitoring and Benchmarking

9.3.2.1 Introduction. In this section we present a monitoring and benchmarking
system as an example of coordination of Web-based activities. The system is described
in detail in [30] and [34].

The widespread use of web servers for business-oriented activities requires some
form of quality of service guarantees; short-term unavailability of services and large
variations of the response time may have a severe negative economic impact. Yet,
providing quality of service guarantees is a complex problem with multiple facets.
One of the them is the ability to continually monitor a Web server and subject it
periodically to realistic benchmarks.

Web monitoring and benchmarking require several entities distributed over a wide-
area network to work together. Given that the number of clients of a Web server is very
large, multiple client machines are often required to generate a realistic workload.

372 MIDDLEWARE FOR PROCESS COORDINATION

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600

Fig. 9.26 The effect of the bandwidth reservation. The graph shows the inter-frame times
measured at the client site, with the frame number on the horizontal axis and time in milliseconds
on the vertical axis. The inter-frame time for lost frames is set to the maximum value, 60000
milliseconds, thus lost frames appear as vertical lines in the graph. Without reservation a large
percentage of video packets are lost, as shown in the upper graph. Once sufficient bandwidth
to support the desired frame rate is reserved, the number of lost packets is noticeably reduced,
even under the heavy network traffic, see lower graph.

APPLICATIONS OF THE FRAMEWORK 373

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

Fig. 9.27 The effect of CPU reservation. The graphs show the inter-frame time for individual
frames at the client side when the MPEG display process competes with another CPU intensive
process. In the upper graph, the CPU-intensive process is started while the client is running
and then stopped. In the lower graph, the CPU-intensive program does not affect the client’s
ability to process the MPEG frames due to CPU reservation. The frame numbers appear on
the horizontal axis.

374 MIDDLEWARE FOR PROCESS COORDINATION

Multiple monitoring points scattered throughout the network are necessary to simulate
user actions.

Several commercial web monitoring service companies exist today, [38], [26].
Generally they provide a static service, the locations of the clients and the workload
they generate are fixed and rarely emulate the behavior of real-life clients. The next
generation web monitoring services are expected to address the problem of client
mobility and of accuracy of benchmarking.

The functionality of existing benchmark suites and monitoring tools can be ex-
tended using mobile agent technology. Mobile agents have several advantages over
the existing techniques:

Software installation: once a mobile agent is deployed at a site it can download
the software tools for benchmarking and measurements, compile, and install them
without human intervention.

Complex tasks: the mobile agents supervising data collection and analysis can per-
form their task autonomously and assist in performing complex measurements and
data analysis tasks that require inference and/or planning.

Coordination: the agents can coordinate the measurements performed by multiple
tools. They can provide coordination primitives for data collection and analysis, such
as barrier–synchronization [30] and event notification.

Efficient data analysis: large volume of data can be processed by dispatching mobile
agents to the data site rather than moving the data. In addition, the mobile agents can
migrate among network nodes to process the measurement data, which are distributed
over a set of client machines.

This section is organized as follows: first we survey a tool capable to generate
synthetic workloads, then we describe the architecture of our system and discuss its
advantages.

9.3.2.2 Surge - a Workload Generator for Web Servers. Several tools to
generate synthetic workloads are available:

HTTPerf [41] uses multiple processes to generate HTTP requests at a fixed rate, a
situation rarely encountered in real–world.

SpecWeb [46] is a Web benchmark software developed by a of industry and university
researchers. It measures the maximum simultaneous number of connections that a
Web server can sustain.

WebStone [40] and WebBench [55] provide similar benchmark softwares and direc-
tions.

TPC Benchmark W (TPC-W) [50] is a benchmark specification to test the transac-
tional functionality of Web servers for electronic commerce.

Surge [1] is a software system which generates realistic Web workloads based
upon six empirical statistics: server file size distribution, request size distribution,
relative file popularity, embedded file references, temporal locality of reference, and
user think times.

APPLICATIONS OF THE FRAMEWORK 375

The architecture of this tool separates the problem of creating the workload from
the methodology for benchmarking. Surge consists of three components: workload
data generator, client request generator, and server file generator.

The workload data generator creates workload datasets which specify the file size
distribution, the request sequence, the number of embedded files in each requested
file, and the sequence of user think times. Both the server file generator and the client
request generator rely on the generated datasets to perform their tasks. The server file
generator creates a set of files matching the file size distribution of the dataset. The
files are placed into a document subtree of a tested Web server. The client request
generator, a multi–threaded process, each thread simulating one user, makes HTTP
requests as specified in the dataset. Multiple client request generators on different
machines can be used in one benchmark.

9.3.2.3 Web Benchmarking Agents. The Web benchmarking procedure con-
sists of four steps: software installation, workload dataset generation, request genera-
tion, and analysis of measurements. At each step multiplemonitoring agents perform
the tasks required by that step. The control agent on the server site installs the software
system to generate the files used in the benchmarking process and then activates the
client. The monitoring and the control agent are supervised by a coordinator agent.

The flow of control in the benchmarking process is described in Figure 9.28.
The benchmarking process is initiated when the beneficiary, in this case the individ-
ual conducting the benchmarking experiment, uses the visual interface to send an
assemble-agentmessage to the agent factory running on the system hosting the
coordinator. This message contains the address of the blueprint repository and the
path of the blueprint for the coordinator agent. This blueprint is presented later in
this section.

When the agent factory uses the blueprint to assemble the coordinatoragent. When
the agent assembly is completed, the agent factory sends an agent-createdmes-
sage to the beneficiary and provides the bondID of the agent. Next, the beneficiary
sends a start-agent message for the agent identified by the bondID to the res-
ident at coordinatorIPaddress:2000. This message includes the model of
the agent.

The model is an XML description of the information needed by the coordinator
to create and control monitoring agents for each Web client as well as the control
agent for the Web server. The model description consists of six vectors, four for the
monitoring agents on the client side and two for the control agent on the server side.
Each client vector is named after the corresponding benchmarking step and consists
of three hashtables, one for each client. Each hashtable provides a pair name and
value for three strings identifying the host, the path on that host to the blueprint for
the monitoring agent, and the path to the model. There are two vectors for the control
agent on the server side. The agent has to install the file generation software and then
to activate it.

<?xml version="1.0"?> <Model>
<! Install SURGE on Web clients >
<Vector name="SoftwareInst.Agents">

376 MIDDLEWARE FOR PROCESS COORDINATION

Server resident

Server

Server Host

Agent Factory

Monitoring Agent

S2

S4

Model

Coordinator Agent

Agent Control Structure

A
C
S

Beneficiary

(i) assemble-agent

(ii) agent-created

Blueprint of
coordinator

(iii) start-agent

S1 S3

Agent Factory

ACS

Model of
coordinator

assemble-agent

agent-created

 start-agent

Resident of Coordinator Agent

Monitor 1 Resident

Agent Factory

Monitoring Agent

Client 1

Client 1 Host

Monitor 2 Resident

Agent Factory

Monitoring Agent

Client 2

Client 2 Host

Monitor 3 Resident

Agent Factory

Monitoring Agent

Client 3

Client 3 Host

Control Agent

Agent Factory

ServerResident

Fig. 9.28 Agent–based Web benchmarking system. The beneficiary triggers the assembly
and the startup of the coordinator agent. The blueprint and the model of the coordinator agent
are supplied by the beneficiary in the assemble-agent and startup-agent messages.
Once started, the coordinator uses information in its model to start-up the three monitoring
agents on sites where the clients are located as well as the control agent on the Web server site.

APPLICATIONS OF THE FRAMEWORK 377

<Hashtable>
<String name="RemoteAddress">c1Host:2000</String>
<String name="Blueprint">c1Bpt/SoftInst.bpt</String>
<String name="Model">c1Mod/workloadclient.xml</String>
</Hashtable>
...........

</Vector>

<! Generate workload data; client-side command execution>
<Vector name="WorkloadGenCmdExec.Agents">
<Hashtable>
<String name="RemoteAddress">c1Host:2000</String>
<String name="Blueprint">c1Bpt/WorkloadGenCmdExec.bpt</String>
<String name="Model">c1Model/WorkloadGenCmdExec.xml</String>
</Hashtable>

.........
</Vector>

<! SURGE workload generation>
<Vector name="StartGeneration.Agents">
<Hashtable>
<String name="RemoteAddress">c1Host:2000</String>

<String name="Blueprint">c1Bpt/WorkloadGen.bpt</String>
<String name="Model">c1Mod/WorkloadGen.xml</String>
......

</Hashtable>
</Vector>

<! SURGE data analysis>
<Vector name="Analysis.Agents">
<Hashtable>
<String name="RemoteAddress">c1Host:2000</String>

<String name="Blueprint">c1Bpt/loganal.bpt</String>
<String name="Model">c1Mod/loganal.xml</String>
......

</Hashtable>
</Vector>

<! Install file generator software on Web server>
<Vector name="WebFileSoftInst.Agents">
<Hashtable>
<String name="RemoteAddress">sHost:2000</String>
<String name="Blueprint">sBlpt/SoftInst.bpt</String>
<String name="Model">sModel/workloadfile.xml</String>
</Hashtable>
</Vector>
<Integer name="WebFileSoftInst.Interval">1000</Integer>

<! Server-side Command execution>

378 MIDDLEWARE FOR PROCESS COORDINATION

Done

Deploy

Select Start agent

Create barrier
& wait

done

Install Software

Deploy

Select Start agent

Create barrier
& wait

done

Generate Workload Datasets

Deploy

Select Start agent

Create barrier
& wait

done

Deploy

Select Start agent

Create barrier
& wait

done

Generate Requests

Analyze Measurements

Start

Fig. 9.29 A representation of the blueprint of the coordinator agent restricted to the client-
side agents. It shows the states and transitions among them, where the states are grouped to
form workflows corresponding to the four steps of the Web benchmark.

<Vector name="WorkloadGenCmdExecServer.Agents">
<Hashtable>
<String name="RemoteAddress">sHost:2000</String>
<String name="Blueprint">sBpt/WorkloadGenCmdExec.bpt</String>
<String name="Model">sMod/WorkloadGenCmdExecServer.xml</String>
</Hashtable>
</Vector>

</Model>

The blueprint for the coordination agent consists of one plane only. In this plane
there are four groups of states each corresponding to one benchmarking step at the
client site and two groups corresponding to the software installation and activation at
the server site. We only discuss the client section of the blueprint for the coordinator
agent. Recall that a monitoring agent goes through the following steps:

APPLICATIONS OF THE FRAMEWORK 379

(i) Install the Surge tools on the client machine.

(ii) Use the Surge tools to generate the workload description files to be used by the
client processes.

(iii) Start-up client processes that generate the HTTP requests.

(iv) Start-up the data analysis tools.

For each of the four steps described above the coordinator uses the information
provided by its model to create and control each monitoring agent. The coordinator
model gives: (a) the host; (b) the path to the blueprint, and (b) the path to the model
for each agent. Figure 9.29 shows that the coordinator goes through the following
states in each step:

1. Locate the hosts where the agents are expected to run.
2. Request the respective agent factories to assemble each agent using the blueprint.
3. Start up each agent using the information in the model
4. Wait until all agents in the group have completed their execution.

The bondMultiAgentDeployStrategy uses different namespaces:
::SoftwareInst to install Surge and
::StartGeneration for measurements.

A partial blueprint for the coordinator agent consisting of only two steps, installa-
tion of the Surge and generation of HTTP requests follows.

import bond.agent.strategydb;
importbond.agent.strategydb.barrier;
create agent WebCoordinationAgent
plane Control
// instal Surge
add state SoftwareInst with strategy

bondMultiAgentDeployStrategy::SoftwareInst;
add state Deploy with strategy

bondAgentExecStrategyGroup.CreateAgent;
add state Start with strategy

bondAgentExecStrategyGroup.StartAgent;
add state FirstBarrier with strategy

bondBarrierWaitStrategy::FirstBarrier;
// measurements
add state StartGeneration with strategy

bondMultiAgentDeployStrategy::StartGeneration;
add state DeployForGeneration with strategy

bondAgentExecStrategyGroup.CreateAgent;
add state StartForGeneration with strategy

bondAgentExecStrategyGroup.StartAgent;
add state GenerationBarrier with strategy

bondBarrierWaitStrategy::GenerationBarrier;

internal transitions {
// Install SURGE

from SoftwareInst to Deploy on success;

380 MIDDLEWARE FOR PROCESS COORDINATION

Tuplespace

Coordinator
Agent

1 4

Notify Completion

2
3

Software Installation Workload Data
Generation

HTTP Request
Generation

Measurement
Data Analysis

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Monitoring
Agent

Fig. 9.30 Coordination of monitoring agents in the agent–based Web benchmarking system.
The coordinator agent supervises a group of three monitoring agents and leads them through
each step. All monitoring agents in the group have to complete a step before the next one is
initiated. The barrier-synchronization is implemented by a tuplespace.

from Deploy to Start on success;
from Start to SoftwareInst on success;
from SoftwareInst to FirstBarrier on next;
from FirstBarrier to WebFileSoftInst on success;

// Generate HTTP requests
from StartGeneration to DeployForGeneration on success;
from DeployForGeneration to StartForGeneration on success;
from StartForGeneration to StartGeneration on success;
from StartGeneration to GenerationBarrier on next;
from GenerationBarrier to GenerationSuccess on success;

}
end plane;
end create.

When the coordinator agent initiates a step, it creates a barrier in the tuplespace
then starts up a set of monitoring agents that have identical tasks. Each monitoring
agent is assigned the tasks required for that step. After finishing a task a monitoring
agent deposits a token in the tuplespace. When the specified number of tokens was
collected, the control agent is notified and it proceeds to the next step.

APPLICATIONS OF THE FRAMEWORK 381

During the software installation step, a monitoring agent downloads from a Web
server the Surge tools, currently the C language version, and then compiles them using
the C compiler and the libraries. Even though Java agents are platform–independent
the agents require that the platforms have pre-installed compilers, and libraries to
install the benchmarking software. Currently we are able to run the Surge tools only
on Linux–based systems, because Surge–requiring thread libraries are unavailable on
other systems.

In the workload dataset generation step, a monitoring agent executes a list of
command–line programs with parameters specifying the number of files, maximum
number of file reference, as required by SURGE, [1].

During the request generation and data analysis steps, a monitoring agent invokes
Linux processes, which handle actual HTTP requests and data processing, and the
agent waits until the processes finish. The monitoring agent checks the correct com-
pletion of the Linux processes by comparing the output strings with expected ones.
We use Perl–written scripts to process the measurement data for efficiency and ease
of use.

We now examine the bondMultiAgentDeployStrategy. Its function is to
get from the model of the coordinator a vector containing the list of agents and then
to go through this list and identify the host where the agent is expected to run, the
path to the blueprint of the agents and Alias of the agent.

public class bondMultiAgentDeployStrategy extends
bondDefaultStrategy {

boolean first = true;
int index = 0;
Vector agents;
long interval;

public long action(bondModel m, bondAgenda ba) {
if (first) {

agents = (Vector)getFromModel("Agents");
first = false; }

if (index < agents.size()) {
try {Thread.currentThread().sleep(interval);}
catch(InterruptedException e) { }
Object o = agents.elementAt(index++);
if (o instanceof Vector) {

Vector v = (Vector)o;
putIntoModel("RemoteAddress", v.elementAt(0));
putIntoModel("Blueprint",

"blueprint/"+v.elementAt(1));
putIntoModel("Alias", "Agent"+index);
transition("success"); return 0l;}

else if (o instanceof Hashtable) {
Hashtable h = (Hashtable)o;
if (h.containsKey("RemoteAddress")) {

putIntoModel("RemoteAddress", h.get
("RemoteAddress"), false);}

else {transition("fail"); return 0l;}

382 MIDDLEWARE FOR PROCESS COORDINATION

if (h.containsKey("Blueprint")) {
putIntoModel("Blueprint",

h.get("Blueprint"), false);}
else { transition("fail"); return 0l;}
if (h.containsKey("Model")) {
putIntoModel("Model", h.get("Model"), false);}

if (h.containsKey("Alias")) {
putIntoModel("Alias", h.get("Alias"), false);}

transition("success"); return 0l;}
}
transition("next");return 0l;}

}

public class bondBarrierWaitStrategy extends
bondBarrierEnabledStrategy {

private Object blocker = new Object();
private bondBarrier barrier;
final static long WAITTIME = 30000;
public long action(bondModel m, bondAgenda ba) {
// create barrier
String bn = (String)getFromModel("BarrierName");
String sa = (String)getFromModel("SpaceAddress");
String sn = (String)getFromModel("SpaceName");
int numToken = ((Integer)getFromModel

("NumToken")).intValue();
try {

if (!createBarrier(bn, sa, sn, numToken, null,
true)) { transition("fail");return 0l; } }

catch (TupleSpaceException e) {
transition("fail");
return 0l; }

// wait until wake-up from callback
while (true) {

try { synchronized (blocker) {
blocker.wait(WAITTIME); } }

catch (InterruptedException e) { }
// compare number of token
if (barrier != null) {

if (barrier.goalReached()) {
barrier = null;
break;

}
else { barrier = null;}

}
}

// make transition
transition("success");
return 0l;

APPLICATIONS OF THE FRAMEWORK 383

}

At each step, failures are monitored by the distributed adaptive fault detection
algorithm described in [33]; failures of an worker agents during benchmarking may
lead to incomplete workload generation or loss of measurement data. The workers
and the coordinator form a ring monitoring topology at each step. The monitoring
topology is initialized at each step with a new set of worker agents. The coordinator
agent is the initial contact point providing current list of fault–free agents and it
responsible for fault recovery in the case of failure detection.

9.3.3 Agent-Based Workflow Management

Motivated by deficiencies of existing workflow management systems (WFMS) in the
area of flexibility and adaptability to change we initiated work on building a workflow
management framework on top of the Bond system [44]. Usually in WFMS imple-
mentations agents enhance the functionality of existing WFMS and act as personal
assistants performing actions on behalf of the workflow participants and/or facilitat-
ing interaction with other participants or the workflow enactment engine. We propose
an agent–based WFMS architecture in which software agents perform the core task
of workflow enactment. In particular we concentrate on the use of agents as case
managers: autonomous entities overlooking the processing of single units of work.
Our assumption is that an agent–based implementation is more capable of dealing
with dynamic workflows and with complex processing requirements where many
parameters influence the routing decisions and require some inferential capabilities.
We also believe that the software engineering of workflow management systems is
critical and instead of creating monolithic systems we should assemble them out of
components and attempt to reuse the components.

Workflow Definition and Analysis

WDL to PN translator

PN -based analysis tools

Workflow Description (WDL or PN))

PN to Blueprint Translator Blueprint to PN Translator

Blueprint
Repository

Bond Agent Framework

Agent Factory

Monitoring Agent

Bond Agent Framework

Agent Factory

WM Agent

Fig. 9.31 Workflow management in Bond

384 MIDDLEWARE FOR PROCESS COORDINATION

Figure 9.31 illustrates the definition and execution of a workflow in Bond. The
workflow management agent originally created from a static description can be modi-
fied based upon the information provided by the monitoring agent. Several workflows
may be created as a result of mutations suffered by the original workflow. Once the
new blueprint is created dynamically, it goes through the analysis procedure and only
then it can be stored in the blueprint repository. The distinction between the moni-
toring agent and the workflow management agent is blurred, if necessary they can be
merged together into a single agent.

We use Petri nets as an unambiguous language for specifying the workflow defini-
tion and provide a mechanism for enacting a large class of Petri net–based workflow
definitions on the Bond finite state machine. For interoperatbility reasons we also
supply a translator from the industry standard Workflow Process Definition Language
[17] to our internal representation.

9.3.4 Other Applications

To test the limitations and the flexibility of our system, we developed several other
applications of Bond agents ranging from a resource discovery agent to a network of
PDE solver agents. We overview some of these applications.

9.3.4.1 Resource Discovery The Bond agents for resource discovery and
monitoring have distinct advantages over statically configured monitors which have
to be re-designed and programmed if they are deployed to other heterogeneous nodes.
Moreover the local monitors should be pre-installed. The dynamic composability and
surgery of the Bond agents makes it possible to deploy monitoring agents on the fly
with strategies compatible with target nodes, and modify them on demand either to
perform other tasks or to operate on other heterogeneous resources.

We developed an agent-based resource discovery and monitoring system shown
in Figure 9.32. Agents running at individual nodes learn about the existence of other
agents by using distributed awareness, a distributed mechanism by which each node
maintains locations of other nodes it has communicated with over a period of time
and exchanges periodically this information among themselves [31]. Whenever an
agent, a beneficiary agent, needs detailed information about individual components
of other nodes, it uses the distributed awareness information to identify a target node,
then creates a blueprint of a monitoring agent capable of probing and reporting the
required information on the target node, and sends the blueprint to an agent factory
of it. The agent factory assembles the monitoring agent and launches it to work. A
blueprint repository, which is either local or remote, stores a set of strategies. By
sending a surgery script, the beneficiary agent can modify the agents as desired.

This solution is scalable and suitable for heterogeneous environments where the
architecture and the hardware resources of individual nodes differ, the services pro-
vided by the system are diverse, the bandwidth and the latency of the communication
links cover a broad range. On the other hand, the amount of resources used by agents
might be larger than those required by other monitoring systems.

APPLICATIONS OF THE FRAMEWORK 385

Bond Resident
at the Target Site

Agent
Factory

Agent

Agent

Bond
Resident

Beneficiary
Agent

Blueprint
Repository(achieve :content assemble-agent

:bpt http://www.cs.purdue.edu/agent.bpt)

(achieve :content modify-agent
 :bpt http://www.cs.purdue.edu/surgery.bpt)

Fig. 9.32 The dynamic deployment and modification of monitoring agents. The Beneficiary
agent sends either a blueprint (solid line) or a surgery script (dotted line) to an agent factory to
deploy a monitoring agent or to modify an existing one. The agent factory assembles it with
local strategies or ones from a remote blueprint repository

9.3.4.2 A Network of PDE Solver Agents. Data parallelism is a common
approach to reduce the computing time and to improve the quality of the solution for
data-intensive applications. Often the algorithm for processing each data segment is
rather complex and the effort to partition the data, to determine the optimal number
of data segments, to combine the partial results, to adapt to a specific computing
environment and to user requirements must be delegated to another program. Mixing
control and management functions with the computational algorithm leads in such
cases to brittle and complex software. We developed a network of PDE solver agents
and discussed its application for modeling propagation and scattering of acoustic
waves in the ocean [51].

Agents with inference abilities coordinate the execution and mediate the conflicts
while solving PDEs. Three types of agents are involved: one PDECoordinator
agent, several PDESolver and PDEMediator agents. The PDECoordinator
is responsible with the control of the entire application, a PDEMediator arbitrates
between the two solvers sharing a boundary between two domains,and aPDESolver
is a wrapper for the legacy application. Thus we were able to identify with relative
ease the functions expected from each agent and write new strategies in Java. The
actual design and implementation of the network of PDE solving agents took less
than one month. Thus, the main advantage of the solution we propose is a drastic
reduction of the development time from several months to a few weeks.

386 MIDDLEWARE FOR PROCESS COORDINATION

9.4 FURTHER READING

The Ph.D. dissertations of Ladislau Bölöni [2] and Kyungkoo Jun [30] describe in
detail various components of the system. The first, covers the distributed object system
and the agent framework, the second the extensions to the system and applications.

An overview of the system is presented in [5] and more details can be found in
[9]. The subprotocols are discussed in [4], security aspects are presented in [24] and
[23]. The agent model is presented in [6] and [7] and the surgery in [8].

Applications of the system are presented as follows: multimedia applications
in [32] and [56], resource discovery in [31], the workflow management system in
[44], the network of PDE solvers in [10] and [51], applications to problem solving
environments in [36], monitoring of web servers in [34]. An algorithm for fault
detection and fault information dissemination can be found in [33].

Tuplespaces are presented in several papers related to Linda [12], [13], Javaspaces
[54], Pagespace [15], Jada, [16], T Spaces, [28], [49].

A number of Java-based agent or distributed object systems are presented in [21],
[53]. The Java expert system shell, Jess is discussed in [20]. Java security is surveyed
in [22]. Excellent references for mixins and design patterns are [11] and [18].

There is a vast literature on Web monitoring, [1], [26], [38], [40], [41], [46], [50].
A discussion of biological metaphors applied to the design on complex systems

can be found in [3] and [37]. Reference [35] discusses applications of mobile agents
for process coordination on information grids.

9.5 ACKNOWLEDGMENTS

The system described in this chapter was developed in the Bond laboratory of the
Computer Sciences Department at Purdue University in the 1998-2001 time frame.
Several postdoctoral fellows and former graduate students have contributed to the
system, they are: Dr. Ladislau Bölöni, now with Cplane, Dr. Kyungkoo Jun, now
with Intel Corporation, and Dr. Ruibing Hao, now with Bell Labs. Kryzsztof Palacz
and Radu Sion have also been associated with the project.

REFERENCES

1. P. Barford and M. Crovella. Generating Representative Web Workloads for Net-
work and Server Performance Evaluation. In Proc. SIGMETRICS 98, June 1998.

2. L. Bölöni. Contributions to Distributed Objects and Network Agents, April 2000.
Ph.D. Dissertation, Department of Computer Sciences, Purdue University.

3. L. Bölöni, R. Hao, K. Jun, and D. C. Marinescu. Structural Biology Metaphors
Applied to the Design of a Distributed Object System. In Proc. Workshop on

ACKNOWLEDGMENTS 387

Biologically Inspired Solutions to Parallel Processing Problems, LNCS, pages
275–283. Springer Verlag, 1999.

4. L. Bölöni, R. Hao, K. K. Jun, and D. C. Marinescu. An Object-Oriented Approach
for Semantic Understanding of Messages in a Distributed Object System. In
Proc. Int. Conf. on Software Engineering Applied to Networking and Parallel/
Distributed Computing, Rheims, France, May 2000.

5. L. Bölöni, K. Jun, K. Palacz, R. Sion, and D. C. Marinescu. The Bond Agent
System and Applications. In Proc. 2nd Int. Symp. on Agent Systems and
Applications and 4th Int. Symp. on Mobile Agents (ASA/MA 2000), volume
1882 of LNCS, pages 99–112. Springer Verlag, 2000.

6. L. Bölöni and D. C. Marinescu. A Component Agent Model - from Theory to
Implementation. In Proc. Second Intl. Symp. From Agent Theory to Agent
Implementation, pages 633–639. Austrian Society of Cybernetic Studies, 2000.

7. L. Bölöni and D. C. Marinescu. A Multi-Plane Agent Model. In Autonomous
Agents, Agents 2000, pages 80–81. ACM Press, 2000.

8. L. Bölöni and D. C. Marinescu. Agent Surgery: The Case for Mutable Agents. In
Proc. Workshop Biologically Inspired Solutions to Parallel Processing Problems,
volume 1800 of LNCS, pages 578–585. Springer Verlag, 2000.

9. L. Bölöni and D. C. Marinescu. An Object-Oriented Framework for Building
Collaborative Network Agents. In H.N. Teodorescu, D. Mlynek, A. Kandel,
and H.-J. Zimmerman, editors, Intelligent Systems and Interfaces, Int. Series
in Intelligent Technologies, chapter 3, pages 31–64. Kluwer Publising House,
2000.

10. L. Bölöni, D. C. Marinescu, P. Tsompanopoulou J.R. Rice, and E.A. Vavalis.
Agent-Based Networks for Scientific Simulation and Modeling. Concurrency
Practice and Experience, pages 845–861, 2000.

11. G. Bracha and W. Cook. Mixin-Based Inheritance. In Norman Meyrowitz,
editor, Proceedings of the Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications / Proceedings of the European Conference on
Object-Oriented Programming, pages 303–311, Ottawa, Canada, October 1990.
ACM Press.

12. N. Carriero and D. Gelernter. Linda in Context. Comm. of the ACM, 32(4):444–
458, April 1989.

13. N. Carriero, D. Gelernter, and J. Leichter. Distributed Data Structures in Linda.
ACM Trans. on Programming Languages and Systems, 8(1), Jan 1986.

14. K. M. Chandy, J. Kiniry, A. Rifkin, and D. Zimmerman. Infosphere Infrastructure
User’s Guide. URL http://www.infospheres. caltech. edu,
January 1998.

388 MIDDLEWARE FOR PROCESS COORDINATION

15. P. Ciancarini, A. Knoche, R. Tolksdorf, and F. Vitali. PageSpace: An Architecture
to Coordinate Distributed Applications on the Web. Computer Networks and
ISDN Systems, 28(7-11):941–952, 1996.

16. P. Ciancarini and D. Rossi. Jada - Coordination and Communication for Java
Agents. In J. Vitek and C. Tschudin, editors, Mobile Object Systems: Towards
the Programmable Internet, volume 1222 of Lecture Notes in Computer Science,
pages 213–228. Springer-Verlag: Heidelberg, Germany, April 1997.

17. Workflow Management Coalition. Interface 1: Process Definition Interchange
Process Model, 11 1998. WfMC TC-1016-P v7.04.

18. E.Grama, R. Helm, R. Johnson, and J.Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Inc, 1995.

19. T. Finin, R. Fritzon, D. McKay, and R. McEntire. KQML - A Language and
Protocol for Knowledge and Information Exchange. In Proc. 13th Int. Workshop
on Distributed Artificial Intelligence, pages 126–136, Seatle, WA, Jul 1994.

20. E. Friedman-Hill. Jess, the Java Expert System Shell. Technical Report SAND98-
8206, Sandia National Laboratories, 1999.

21. G. Glass. ObjectSpace Voyager — The Agent ORB for Java. Lecture Notes in
Computer Science, 1368:38–47, 1998.

22. L. Gong. Java Security Architecture (JDK 1.2). Technical report, JavaSoft, July
1997.

23. R. Hao, L. Bölöni, K. Jun, and D. C. Marinescu. An Aspect-Oriented Approach
to Distributed Object Security. In Proc. Fourth IEEE Symp. Computers and
Communication, ISCC99, pages 23–31. IEEE Press, 1999.

24. R. Hao, K. Jun, and D. C. Marinescu. Bond System Security and Access Control
Models. In Proc. IASTED Conference on Parallel and Distributed Computing,
pages 520–524. Acta Press, 1998.

25. D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the Formal Semantics
of State Charts. In Proc. 2nd Symp. on Logic in Computer Science (LICS 87),
pages 54–64. IEEE Computer Society Press, 1987.

26. Holistix. Holistix. URL http://www.holistix.net.

27. J Hugunin. Python and java: The best of both worlds. In Proceedings of the 6th
International Python Conference, San Jose, California, October 1997.

28. Ibm. TSpaces: Intelligent Connectionware. www.almaden.ibm.com.

29. Ibus. URL http://www.softwired-inc.ch .

ACKNOWLEDGMENTS 389

30. K Jun. Monitoring and Control of Networked Systems with Mobile Agents:
Algorithms and Applications, April 2001. Ph.D. Dissertation, Department of
Computer Sciences, Purdue University.

31. K. Jun, L. Bölöni, K. Palacz, and D. C. Marinescu. Agent–Based Resource
Discovery. In Proc. Heterogeneous Computing Workshop 2000, pages 43–52.
IEEE Press, 2000.

32. K. Jun, L. Bölöni, D. Yau, and D. C. Marinescu. Intelligent QoS Support for
an Adaptive Video Service. In Proc. IRMA 2000 - Challenges of Information
Technology Management in the 21st Century, pages 1096–1098. Idea Group
Publishers, 2000.

33. K. Jun and D. C. Marinescu. An Algorithm for Fault Detection and Fault
Information Dissemination for Federations of Mobile Agents. Submitted.

34. K. Jun and D. C. Marinescu. Monitoring and Adaptive Control of Web Servers
with Mobile Agents. Submitted.

35. D. C. Marinescu. Reflections on Qualitative Attributes of Mobile Agents for
Computational, Data, and Service Grids. In Workshop on Agent-Based Cluster
and Grid Computing 2001. IEEE Press, 2001.

36. D. C. Marinescu and L. Bölöni. A Component-Based Architecture for Problem
Solving Environments. Mathematics and Computers in Simulation, pages 279–
293, 2001.

37. D. C. Marinescu and L. Bölöni. Biological Metaphors in the Design of Complex
Software Systems, journal = Journal of Future Computer Systems. 17:345–360,
2001.

38. Service Metrics. Service Metrics. URL http://www.servicemetrics.
com.

39. Sun Microsystems. Java Developer Connection. http://java.sun.com.

40. Mindcraft. WebStone 2.5. URLhttp://www.mindcraft.com/webstone/.

41. D. Mosberger and T. Jin. httperf: A Tool for Measuring Web Server Performance.
In Proceedings of Internet Server Performance Workshop, pages 59–67, June
1998.

42. OMG. The Common Object Request Broker : Architecture and Specification.
Revision 2.3. TC Document 99-10-07, October 1999.

43. Orbix. URL http://www.iona.com/.

44. K. Palacz and D. C. Marinescu. An Agent-Based Workflow Management Sys-
tem. In Proc. AAAI Spring Symp. Workshop "Bringing Knowledge to Business
Processes", pages 119–127. AAAI Press, 2000.

390 MIDDLEWARE FOR PROCESS COORDINATION

45. R. Sethi and J. D. Ullman. The Generation of Optimal Code for Arithmetic
Expressions. Journal of the ACM, 4(17):715–728, October 1970.

46. SPECweb99. The Standard Performance Evaluation Corporation. SPECweb99.
URL http://www.specbench.org/osg/web99/.

47. Simon St. Laurent. XML: a primer. IDG Books, San Mateo, CA, USA, second
edition, 1999.

48. Sun Microsystems. Java RMI.

49. L. Tobin, M. Steve, and W. Peter. T Spaces: The Next Wave. IBM System
Journal, 37(3):454–474, 1998.

50. tpc. TPC Benchmark W (TPC-W). URLhttp://www.tpc.org/wspec.html.

51. P. Tsompanopoulou, L. Bölöni, D. C. Marinescu, and J. R. Rice. The Design of
Software Agents for a Network of PDE Solvers. In Workshop on Agent Tech-
nologies for High Performance Computing, Agents 99, pages 57–68. IEEE Press,
1999.

52. J. Viega, P. Reynolds, W. Tutt, and R. Behrends. Multiple Inheritance in Class
Based Languages. Technical Report 03, University of Virginia, 1998.

53. Visibroker. URL http://www.borland.com/visibroker/ .

54. J. Waldo. JavaSpace Specification - 1.0. Technical report, Sun Microsystems,
March 1998.

55. WebBench. URL http://www.zdnet.com.

56. D. Yau, K. Jun, and D. C. Marinescu. Middleware QoS Agents and Native
Kernel Schedulers for Adaptive Multimedia Services and Cluster Servers. In
Proc. Real-Time System Symp. 99. IEEE Press, 1999.

