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Abstract—Target search in content-based image retrieval
(CBIR) systems refers to finding a specific (target) image such as
a particular registered logo or a specific historical photograph.
Existing techniques, designed around query refinement based on
relevance feedback, suffer from slow convergence, and do not
guarantee to find intended targets. To address these limitations,
we propose several efficient query point movement methods. We
prove that our approach is able to reach any given target image
with fewer iterations in the worst and average cases. We propose
a new index structure and query processing technique to improve
retrieval effectiveness and efficiency. We also consider strategies
to minimize the effects of users’ inaccurate relevance feedback.
Extensive experiments in simulated and realistic environments
show that our approach significantly reduces the number of
required iterations and improves overall retrieval performance.
The experimental results also confirm that our approach can
always retrieve intended targets even with poor selection of initial
query points.

Index Terms—Content-based image retrieval, relevance feed-
back, target search, index structures.

I. INTRODUCTION

CONTENT-based image retrieval (CBIR) has received
much attention in the last decade, which is motivated by

the need to efficiently handle the immensely growing amount
of multimedia data. Many CBIR systems have been developed,
including QBIC [12], Photobook [27], MARS [26], [30],
NeTra [22], PicHunter [10], Blobworld [7], VisualSEEK [34],
SIMPLIcity [39] and others [2], [6], [9], [14], [17], [24], [32],
[38]. In a typical CBIR system, low-level visual image features
(e.g., color, texture and shape) are automatically extracted
for image descriptions and indexing purposes. To search for
desirable images, a user presents an image as an example of
similarity, and the system returns a set of similar images based
on the extracted features. In CBIR systems with relevance
feedback (RF), a user can mark returned images as positive or
negative, which are then fed back into the systems as a new,
refined query for the next round of retrieval. The process is
repeated until the user is satisfied with the query result. Such
systems are effective for many practical CBIR applications
[13].

There are two general types of image search: target search
and category search [10], [13]. The goal of target search is
to find a specific (target) image, such as a registered logo,
a historical photograph, or a particular painting. The goal of
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Fig. 2. Slow convergence in existing approaches

category search is to retrieve a given semantic class or genre
of images, such as scenery images or skyscrapers. In other
words, a user uses target search to find a known image. In
contrast, category search is used to find relevant images the
user might not be aware ahead of time. We focus on target
search in this paper.

Two orthogonal issues in CBIR research are efficiency and
accuracy. For instance, indexing techniques, such as R*-tree
[3], may improve the efficiency of the search process. Their
retrieval accuracy, however, depends on the effectiveness of
the visual features used to characterize the database images.
An effective CBIR system, therefore, needs to have both
an efficient search mechanism and an accurate set of visual
features. Addressing the effectiveness of the visual features is
beyond the scope of this paper. We assume that the Euclidean
distances between the images reflect their semantic similarity,
and focus on investigating new search techniques to improve
the efficiency of target search.

Existing target search techniques re-retrieve previously ex-
amined images (i.e., those retrieved in the previous iterations)
when they again fall within the search range of the current
iteration. This strategy leads to the following disadvantages:

• No guarantee that the target can be found. The search
operation generally takes several iterations of relevance
feedback to examine a number of regions in the feature
space, before it reaches the target image. During this iter-
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ative process, the search advancement might get trapped
in a region as illustrated in Figure 1. It shows s and t as
the starting point ps and the target point pt, respectively.
Initially, the 3-NN search with ps as the query point yields
three points ps, p1, and p2 as the query result. Let us
say, the user marks points p1 and p2 as relevant. This
results in point pr, their centroid, as the new query point.
With pr as the refined query, the next 3-NN computation
again retrieves points p1, p2, and ps as the result. In this
scenario, the search process is trapped in this local region,
and can never reach the target point pt. Although, the
system can escape the local maximum trap with a larger
k, it is difficult to guess a proper threshold (k = 14 in this
example). Consequently, the user might not even know a
local maximum trap is occurring.

• Slow convergence. Including previously examined images
in the computation of the current centroid results in repeat
retrieval of some of the images. This prevents a more
aggressive movement of the search in the feature space.
This drawback is illustrated in Figure 2, where k = 3. It
shows that it takes six iterations for the search operation
to reach the target point pt. This slow convergence incurs
longer search time, and significant computation and disk
access overhead.

To address the aforementioned limitations, we propose four
target search methods: naı̈ve random scan (NRS), local neigh-
boring movement (LNM), neighboring divide-and-conquer
(NDC), and global divide-and-conquer (GDC) methods. All
these schemes are built around a common strategy: they do
not reexamine previously checked images. Furthermore, NDC
and GDC exploit Voronoi diagrams to aggressively prune
the search space in order to move faster towards the target
image. We formally prove that GDC and NDC converge
much faster than NRS and other methods can. Our exten-
sive experimental results confirm our complexity analysis,
and show the advantage of the proposed techniques in both
simulated and realistic environments. A preliminary version
of this study was presented in [21]. In the current paper,
we extend the original technique to consider inaccurate user
relevance feedback. Furthermore, we introduce a new index
structure and the corresponding query processing technique to
further improve performance. More experimental results are
also provided to make the study more complete.

The remainder of this paper is organized as follows. In
Section II, we survey related work on target search. The pro-
posed methods are presented in Section III in detail. Handling
inaccurate user relevance feedback is discussed in Section IV.
We introduce a new index structure and query processing
technique for target search in Section V. Our experimental
results are given in Section VI. Finally, we conclude the paper
in Section VII.

II. RELATED WORK

In this section, we survey existing techniques for target
search and category search. Category search techniques can
be used for target search if the desired category has only one
target image.

1. Original 2. Dimension Weighting 3. Generalized Weighting

Fig. 3. Single-point movement query shapes

3. Query Decomposition1. Convex   Shape 2. Concave Shape 

Fig. 4. Multiple-point movement query shapes

Two well-known techniques for target search were proposed
in QBIC [12] and PicHunter [10]. IBM’s QBIC system allows
users to compose queries based on visual image features such
as color percentage, color layout, and texture present in the
target image, and ranks retrieved images according to those
criteria. QBIC, however, is not an RF technique, so that it
is difficult for users to define the ideal queries in the first
try (because this system does not allow them to refine their
queries as in recent RF systems). To lessen the burden on
users, PicHunter proposes to predict query’s intents by using
a Bayesian-based RF technique to guide query refinement
and target search. PicHunter’s performance, however, depends
on the consistency of users’ behavior and the accuracy of
the prediction algorithm. More importantly, both QBIC and
PicHunter do not guarantee to find target images and suffer
local maximum traps.

Techniques for category search can be divided into two
groups: single-point and multiple-point movement techniques.
A technique is classified as a single-point movement technique
if the refined query Qr at each iteration consists of only
one query point. Otherwise, it is a multiple-point movement
technique. Typical query shapes of single-point movement and
multiple-point movement techniques are shown in Figures 3
and 4, where the contours represent equi-similarity surfaces.
Single-point movement techniques, such as MARS [26], [30]
and MindReader [18], construct a single query point close to
relevant images and away from irrelevant ones. MARS uses
a weighted distance (producing shapes shown in Figure 3.2),
where each dimension weight is inversely proportional to the
standard deviation of the relevant images’ feature values in
that dimension. The rationale is that a small variation among
the values is more likely to express restrictions on the feature,
and thereby should carry a higher weight. On the other hand, a
large variation indicates this dimension is not significant in the
query, thus should assume a low weight. MindReader achieves
better results by using a generalized weighted distance, see
Figure 3.3 for its shape. Ostensive relevance feedback [5] can
be used to adjust the weights based on the checked images,
while the length of time since an image was checked is used
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in a decay function to modulate the impact of those already
checked images.

In multiple-point movement techniques such as Query Ex-
pansion [8], Qcluster [20], and Query Decomposition [17],
multiple query points are used to define the ideal space that
is most likely to contain relevant results. Query Expansion
groups query points into clusters and chooses their centroids
as Qr’s representatives (see Figure 4.1). The distance of a
point to Qr is defined as a weighted sum of individual dis-
tances to those representatives. The weights are proportional
to the number of relevant objects in the clusters. Thus, Query
Expansion treats local clusters differently, as opposed to the
equal treatment in single-point movement techniques.

In some queries, clusters are too far apart for a unified,
all-encompassing contour to be effective; separate contours
can yield more selective retrieval. This observation motivated
Qcluster to employ an adaptive classification and cluster-
merging method to determine optimal contour shapes for
complex queries. Qcluster supports disjunctive queries, where
similarity to any of the query points is considered as good,
see Figure 4.2. To handle disjunctive queries both in vector
space and in arbitrary metric space, a technique was proposed
in FALCON [40]. It uses an aggregate distance function to
estimate the (dis)similarity of an object to a set of desirable
images. To bridge the semantic gap more effectively, we
recently proposed Query Decomposition [17]. Based on the
user’s relevance feedback, this scheme automatically decom-
poses a given query into localized subqueries, which more
accurately capture images with similar semantics but in very
different appearance (e.g., the front view and side view of
a car), see Figure 4.3. Other techniques [13], [36], [39] are
also available to address the semantic gap. This issue is
beyond the scope of this paper. In general, the above category
search techniques do not guarantee to find target images and
still suffer slow convergence, local maximum traps and high
computation overhead.

To avoid local maximum traps and their associated prob-
lems, our methods will ignore all checked images. They will
be discussed in the order of their sophistication in the next
section. The most complex GDC is based on the single-
point movement method, which proves to converge faster than
multiple-point movement methods. GDC employs Voronoi
diagrams to prune irrelevant images, assisting users in query
refinement and speeding up convergence.

Unlike queries in traditional database systems, users in most
cases cannot specify an ideal query to retrieve the desired
result in multimedia database systems, and have to rely on
iterative feedback to refine their queries. Target search may
involve four typical types of queries: sampling queries [8],
[10], [12], [17], [18], [20], [21], [26], constrained sampling
queries [21], k-NN queries [18], [26] and constrained k-
NN queries [21] as discussed in Section III. Among all the
aforementioned techniques, only Chakrabarti et al. discussed
how to efficiently evaluated k-NN queries in the Query Ex-
pansion model [8] for category search. They observed that
the refined queries in the Query Expansion model are not
modified dramatically from one iteration to another. Instead
of evaluating subsequent queries from scratch, they proposed

several techniques to save most of the disk I/O cost and CPU
cost by appropriately exploiting the information generated
during the previous iterations.

In related work, there have been many research efforts
in sampling for selectivity estimation [41], [42], real-time
CPU scheduling for mobile multimedia systems [43], and
efficiently evaluating k-NN queries [16], [19], [29], [37] and
constrained k-NN queries [11] without relevance feedback, but
much less has been reported on efficiently answering sampling
queries, constrained sampling queries and constrained k-NN
queries involved in target search, where we need to consider
iterative feedback and users’ inaccurate relevance feedback.
Most existing hierarchical index structures (e.g., R-tree [15],
R*-tree [3], and A-tree [31]) were not designed specifically
for target search, which typically cannot be answered in one
iteration and may require auxiliary information (e.g., sampling
points) to answer sampling queries and constrained sampling
queries. Collecting auxiliary information on the fly during each
feedback iteration causes overheads on CPU and disk I/O. In
summary, a new index structure and efficient query processing
technique for target search are highly demanded.

III. TARGET SEARCH METHODS

In this section, we present the four proposed target search
methods. Again, the goals of our target search methods are
avoiding local maximum traps, achieving fast convergence,
reducing resource requirements, and guaranteeing to find target
images.

Reconsidering already checked images is one of the several
shortcomings of existing techniques that leads to the local
maximum trap problem and slow convergence; the idea of
leaving out checked images is our chief motivation for a new
design principle. To simplify discussion, we assume that users
are able to accurately identify the most relevant image from the
returned images, and this most relevant image is the closest to
the target image among the returned ones. Table I summarizes
the notations we use throughout this paper.

In target search, the ultimate goal is to locate the target
images, and if none is found, the final precision and recall
of the search is zero. In CBIR with RF, the traditional recall
and precision can be computed for individual iterations. For
target search, we will use the so-called ‘aggregate’ recall and
precision: if after several, say i, iterations the target image
is found, the average precision and recall are 1/(i · k) and
1/i, where k is the fixed number of images retrieved at each
iteration. In short, the number of iterations to find a target
image is not only the most significant measure of efficiency,
but also the most significant indicator of precision and recall.
Therefore, we use the number of iterations as the major
measure for theoretical analysis and experimental evaluation
of the four proposed target search methods.

A query for target search is defined as Q =
〈nQ, PQ, WQ, DQ, S′, k〉, where nQ denotes the number of
query points in Q, PQ the set of nQ query points in the
current search space S

′, WQ the set of weights associated
with PQ, DQ the distance function, and k the number of
points to be retrieved in each iteration (see Figure 5). As
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TABLE I
NOTATIONS

Notation Description
Q a query
k the number of data points to be retrieved with Q
nQ the number of query points in Q
PQ a set of nQ query points in Q
WQ a set of weights associated with PQ

DQ the distance function for Q
Qs the starting query
Qr a refined query at a feedback iteration
Sk the query result set
S the whole space (i.e., the whole image database)
|S| the cardinality of S

S′ the current search space, where S′ ⊆ S

ps the starting query point
pt the target point (i.e., the target image)
M the node capacity (i.e., fanout)
m the minimum number of entries in a node
MBB the minimum bounding box
CBIR content-based image retrieval
RF relevance feedback
NRS the naı̈ve random scan method
LNM the local neighboring movement method
NDC the neighboring divide-and-conquer method
GDC the global divide-and-conquer method

Initial Random Images
or Query Result Images

Relevance Feedback
Refined Query Qr

Terminate
Find Target

Not Find Target
Target Search

Methods

Evaluate Qr

User Evaluate

Fig. 5. Overview of the target search systems

discussed in Section II, various techniques have been proposed
to automatically determine nQ and PQ as well as adjusting
WQ and DQ for improved retrieval effectiveness. For single-
point movement techniques, nQ = 1; for multiple-point
movement techniques, nQ > 1. Now we illustrate below how
to use this model to represent the four typical types of queries:

• For a sampling query, we set nQ = 0 and S
′ = S, which

signify that this query is to randomly retrieve k points in
the whole image database S.

• For a constrained sampling query, we set nQ = 0.
• For a k-NN query with single-point movement tech-

niques, we set nQ = 1 and S
′ = S; For a k-NN query

with multiple-point movement techniques, nQ > 1 and
S
′ = S.

• For a constrained k-NN query with single-point move-
ment techniques, we set nQ = 1 while for a constrained
k-NN query with multiple-point movement techniques,
nQ > 1.

This definition is a generalized version of Q =
〈nQ, PQ, WQ, DQ〉 defined in [8], where the search space
is assumed to be the whole database for every search. In
our generalized definition, S

′ is included to account for the
dynamic size of the search space, which shrinks gradually
after each iteration. Let Qs denote the starting query, Qr a
refined query at a feedback iteration, Qt a target query which

NAIVERANDOMSCAN(S, k)

Input:
set of images S

number of retrieved images at each iteration k
Output:

target image pt

01 Qs ← 〈0, PQ, WQ, DQ, S, k〉
02 Sk ← EVALUATEQUERY(Qs) /* randomly retrieve k

points in S */
03 S

′ ← S − Sk

04 while user does not find pt in Sk do
05 Qr ← 〈0, PQ, WQ, DQ, S′, k〉
06 Sk ← EVALUATEQUERY(Qr) /* randomly retrieve k

points in S′ */
07 S′ ← S′ − Sk

08 enddo
09 return pt

Fig. 6. Naı̈ve Random Scan Method

results in the retrieval of the intended target, and Sk the query
result set.

A. Naı̈ve Random Scan Method

The NRS method randomly retrieves k different images at
a time until the user finds the target image or the remaining
set is exhausted, see Figure 6. Specifically, at each iteration, a
set of k random images are retrieved from the candidate (i.e.
unchecked) set S

′ for relevance feedback (lines 2 and 6), and
S
′ is then reduced by k (lines 3 and 7). Clearly, the naı̈ve

scan algorithm does not suffer local maximum traps and is
able to locate the target image after some finite number of
iterations. In the best case, NRS takes one iteration, while the
worst case requires

⌈
|S|
k

⌉
. On average NRS can find the target

in

⌈∑� |S|
k �

i=1 i/
⌈
|S|
k

⌉⌉
=

⌈
(
⌈
|S|
k

⌉
+ 1)/2

⌉
iterations. In other

words, NRS takes O(|S|) to reach the target point regardless
of data distribution. Therefore, NRS is only suitable for a small
database set.

B. Local Neighboring Movement Method

Existing techniques allow already checked images to be
reconsidered, which leads to several major drawbacks as
mentioned in Section I. We apply our non-re-retrieval strategy
to one such method, such as MindReader [18], to produce the
LNM method. LNM is similar to NRS except lines 5 and 6
as follows:

05 Qr ← 〈nQ, PQ, WQ, DQ, S
′, k〉 based on the user’s

relevance feedback
06 Sk ← EVALUATEQUERY(Qr) /* perform a

constrained k-NN query */

Specifically, Qr is constructed such that it moves towards
neighboring relevant points and away from irrelevant ones,
and a k-NN query is now evaluated against S

′ instead of S

(lines 5 and 6). When LNM encounters a local maximum trap,
it enumerates neighboring points of the query, and selects the
one closest to the target. Therefore, LNM can overcome local
maximum traps, although it could take many iterations to do
so.

Again, one iteration is required in the best case. To sim-
plify the following worst-case and average-case complexity
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analysis, we assume that S is uniformly distributed in the n-
dimensional hypercube and the distance between two nearest
points is a unit.

Theorem 1: For LNM, the worst and average cases are⌈√
n n

√
|S|/�log2n k�

⌉
and

⌈
(
√

n n
√

|S|
�log

2n k� + 1)/2

⌉
, respectively,

assuming S is uniformly distributed.
Proof: The hypercube’s edge length is n

√
|S|−1, and the

diagonal’s
√

n( n

√
|S|−1). Let the distance between the initial

query point and the target point be l, then l ≤ √
n( n

√
|S|−1) <√

n n

√
|S|. Note that the expected radius for k-NN search in

S is r = �log2n k� because the distance between two nearest
points is a unit as given above. Since S

′ ⊂ S, k-NN search
in LNM requires a radius larger than r, but less than 2r. In
other words, at each iteration, LNM moves towards the target
image at an average speed of cr where 1 ≤ c < 2. It follows
that the number of iterations needed to reach the target is
�l/(c�log2n k�)�, which is bounded by

⌈√
n n

√
|S|/�log2n k�

⌉
.

Then, the worst and average cases are
⌈√

n n

√
|S|/�log2n k�

⌉

and

⌈
(
√

n n
√

|S|
�log

2n k� + 1)/2

⌉
, respectively.

If the data were arbitrarily distributed, then the worst case
could be as high as NRS’s, i.e.

⌈
|S|
k

⌉
iterations (e.g., when

all points are on a line). In summary, in the worst case LNM
could take anywhere from O( n

√
|S|) to O(|S|).

C. Neighboring Divide-and-Conquer Method

Although LNM can overcome local maximum traps, it does
so inefficiently, taking many iterations and in the process
returning numerous false hits. To speed up convergence, we
propose to use Voronoi diagrams [1], [28] in NDC to reduce
search space. The Voronoi diagram approach finds the nearest
neighbors of a given query point by locating the Voronoi cell
containing the query point. Specifically, NDC searches for the
target as follows, see Figure 7. From the starting query Qs,
k points are randomly retrieved (line 2). Then the Voronoi
region V Ri is initially set to the minimum bounding box of S

(line 3). In the while loop, NDC first determines the Voronoi
seed set Sk+1 (lines 6 to 10) and pi, the most relevant point
in Sk+1 according to the user’s relevance feedback (line 11).
Next, it constructs a Voronoi diagram V D inside V Ri using
Sk+1 (line 12). The Voronoi cell region containing pi in V D
is now the new V Ri (line 13). Because only V Ri can contain
the target (as proved in Theorem 2), we can safely prune out
the other Voronoi cell regions. To continue the search in V Ri,
NDC constructs a k-NN query using pi as the anchor point
(line 15), and evaluates it (line 16). The procedure is repeated
until the target pt is found. When NDC encounters a local
maximum trap, it employs Voronoi diagrams to aggressively
prune the search space and move towards the target image,
thus significantly speeding up the convergence. Therefore,
NDC can overcome local maximum traps and achieve fast
convergence. We prove the following invariant.

Theorem 2: The target point is always contained inside
or on an edge (surface) of V Ri, the Voronoi cell region
enclosing the most relevant point pi.

NEIGHBORINGDIVIDECONQUER(S, k)

Input:
set of images S

number of retrieved images at each iteration k
Output:

target image pt

01 Qs ← 〈0, PQ, WQ, DQ, S, k〉
02 Sk ← EVALUATEQUERY(Qs) /* randomly retrieve k

points in S */
03 V Ri ← the minimum bounding box of S

04 iter ← 1
05 while user does not find pt in Sk do
06 if iter �= 1 then
07 Sk+1 ← Sk + {pi}
08 else
09 Sk+1 ← Sk

10 endif
11 pi ← the most relevant point ∈ Sk+1

12 construct a Voronoi diagram V D inside V Ri using
points in Sk+1 as Voronoi seeds

13 V Ri ← the Voronoi cell region associated with the
Voronoi seed pi in V D

14 S
′ ← such points ∈ S that are inside V Ri except pi

15 Qr ← 〈1, {pi}, WQ, DQ, S
′, k〉

16 Sk ← EVALUATEQUERY(Qr) /* perform a
constrained k-NN query */

17 iter ← iter + 1
18 enddo
19 return pt

Fig. 7. Neighboring Divide-and-Conquer Method

Proof: Theorem 2 can be proved by contradiction. First,
note that according to the properties of the Voronoi cell
construction, if V Ri contains the most relevant point (i.e. the
closest point) pi to the target point pt, its seed pi is the nearest
neighbor of pt among Sk+1. Suppose pt is inside V Rj , i 	= j.
Then there exits another point in Sk+1 closer to pt than pi, a
contradiction.

Figure 8 explains how NDC approaches the target. In the
first iteration, Sk = {p1, p2, ps} is randomly picked by the
system, assuming k = 3. The user identifies ps as pi (the
most relevant point in Sk). NDC then constructs a Voronoi
diagram based on those three points in Sk+1 = Sk, partitioning
the search space into three regions. According to Theorem 2,
the target must be in V Ri. NDC thus ignoring the other two
regions, performs a k-NN query anchored at ps and retrieves
Sk = {p3, p4, p5}, the three closest points inside V Ri. Again,
the user correctly identifies p5 as the most relevant point in
Sk+1 = {ps, p3, p4, p5}. The system constructs a Voronoi
diagram and searches only the Voronoi cell associated with
p5. The search continues and, finally, at the fourth iteration,
the target point is reached as the result of a k-NN query of
p6, the most relevant point in {p5, p6, p7, p8} retrieved in the
third iteration. We now determine the worst-case complexity
for NDC, assuming that S is uniformly distributed.

Theorem 3: Starting from any point in S, NDC can reach
any target point in O(logk |S|) iterations.

Proof: At the first iteration, S is divided into k Voronoi
cells. Since the points are uniformly distributed from which k
points are randomly sampled, each V R is expected to contain⌈
|S|
k

⌉
points. According to Theorem 2, we only need to search

one V R, which contains about
⌈
|S|
k

⌉
points. In the second
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Fig. 9. Example of GDC

iteration, the searched V R contains
⌈
( |S|k − 1)/k

⌉

 ⌈|S|/k2

⌉
points. In the ith iteration, each V R contains about

⌈
|S|
ki

⌉
points. Since |S|

ki ≥ 1, NDC will stop by i ≤ logk |S|. Hence,
NDC reaches the target point in no more than O(logk |S|)
iterations.

When S is arbitrarily distributed, the worst case could take
up to

⌈
S

k

⌉
iterations (e.g., all points are on a line), the same as

that of NRS. In other words, NDC could still require O(|S|)
iterations to reach the target point in the worst case.

D. Global Divide-and-Conquer Method

To reduce the number of iterations in the worst case in NDC,
we propose the GDC method. Instead of using a query point
and its neighboring points to construct a Voronoi diagram,
GDC uses the query point and k points randomly sampled
from V Ri. Specifically, GDC replaces lines 15 and 16 in NDC
with:

15 Qr ← 〈0, PQ, WQ, DQ, S′, k〉
16 Sk ← EVALUATEQUERY(Qr) /* randomly retrieve k

points in S
′ */

Similar to NDC, when encountering a local maximum trap,
GDC employs Voronoi diagrams to aggressively prune the
search space and move towards the target image, thus sig-
nificantly speeding up the convergence. Therefore, GDC can
overcome local maximum traps and achieve fast convergence.

Figure 9 shows how the target could be located according
to GDC. In the first iteration, Sk = {p1, p2, ps} is the result of
k = 3 randomly sampled points, of which ps is picked as pi.
Next, GDC constructs a Voronoi diagram and searches the V R
enclosing ps. At the second iteration, Sk+1 = {ps, p4, p5, p6}
and p5 is the most relevant point pi. In the third and final
iteration, the target point is located; GDC takes 3 iterations to

reach the target point. We prove that the worst case for GDC
is bounded by O(logk |S|) regardless of data distribution.

Theorem 4: Starting from an initial point in S, GDC can
reach any target point in O(logk |S|) iterations.

Proof: We will focus our attention on the size of V R
at each iteration, keeping in mind that points are randomly
sampled for Voronoi diagram construction. Thus, at the first
iteration, the searched V R contains

⌈
|S|
k

⌉
points; at the

second iteration, it contains
⌈

|S|
k·(k+1)

⌉
points; and so on.

At the ith iteration, it contains
⌈

|S|
k·(k+1)i−1

⌉
points. Because

|S|
k·(k+1)i−1 > 1, that is, it requires that i < logk |S|. In
other words, GDC can reach any target point in no more than
O(logk |S|) iterations.

Theorem 4 implies that for arbitrarily distributed datasets,
GDC converges faster than NDC in general, although NDC
might be as fast as GDC in certain queries, e.g., if the starting
query point is close to the target point. In the previous example
(Figure 8), NDC could also take three iterations, instead of
four, to reach the target point if the initial k points were the
same as in Figure 9, as opposed to Figure 8.

IV. HANDLE INACCURATE RELEVANCE FEEDBACK

3
t

1'
2

3
t

1

1. One Case 2. Weighted Centroid

Fig. 10. One case and the weighted centroid

Users’ inaccurate relevance feedback is a major issue for
CBIR systems with RF. We need to make our system less
sensitive to users’ uncertainty. For simplicity, we have assumed
that users accurately picked the most relevant image out of the
returned images for each iteration in the above discussion. In
practice, however, users could make a wrong choice, or they
might pick several seemingly good choices instead of settling
on one in a target search query. Hence, we should not assume
the system is always presented with correct queries.

To deal with this situation, we construct, in each iteration, a
single query point that is a weighted centroid of all the picked
images, as in MARS and MindReader. For example, the visual
difference between images 1 and 2 (illustrated in Figure 10.1)
could be so small that there is a high probability that users
select the wrong image (i.e., image 1) for the next iteration.
If this happens, the target image may never be found unless
backtracking is allowed in NDC and GDC (NRS and LNM still
work). When a single good choice is uncertain such as in this
case, users are allowed to mark those images as relevant, and
our system will choose their weighted centroid as the refined
query point, shown in Figure 10.2.

Detecting inaccurate relevance feedback is also desirable.
The following theorem and lemma can facilitate the detection.

Theorem 5: If cos(α) < 0 where α is the angle between
one vector from the previous query point po to the new query
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Fig. 11. Inaccurate relevance feedback and linear regression

point pn and the other from po to the target pt, the user must
be giving inaccurate relevance feedback.

Proof: When the user is giving inaccurate relevance
feedback, the new query point pn is farther from the target pt

compared with the previous query point po. Because −180◦ ≤
α ≤ 180◦ and cos(α) < 0, then 90◦ < |α| ≤ 180◦. When
|α| = 180, pn heads in the direction away from the target,
and therefore the user must have given inaccurate relevance
feedback. When 90◦ < |α| < 180◦, |α| should be the largest
angle in the triangle, made by po (e.g., point 2 in Figure 11.1),
pn (e.g., point 3 in Figure 11.1) and pt. This is because it is
impossible to have two obtuse angles in this triangle. Then the
edge connecting pn and pt is the longest edge in the triangle
based on triangle’s properties. This means pn is farther from
pt compared with po, indicating the user must have given
inaccurate relevance feedback.

Lemma 1: The relevance feedback must be inaccurate if

c1
−−→popn · c2

−−→popt = c1c2|−−→popn||−−→popt|cos(α) < 0

where c1 and c2 are two positive constants.
Lemma 1 simplifies the detection of inaccurate relevance

feedback since only the vectors’ directions, and not their
magnitudes matter. Even though the exact location of the
target might be unknown, but its position relative to other
results can be inferred from its visual features the user already
knows. Thus, for a given target image, the user knows how
to move towards the target in the search space. Based on the
user’s feedback, our target search technique is able to zoom
in a narrower space the target must be in. In other words,
we now know the approximate whereabouts of the target,
though not its exact location (within that space). Lemma 1
relaxes the requirement of the exact location (i.e., only the
direction of −−→popt is needed to approximate). Assume that most
of user’s behavior is consistent; i.e., the probability of accurate
relevance feedback is larger than 0.5. This approximation
problem can be treated as a probability problem. Basically, the
more query points, the better the approximation. One way to
estimate the direction is to use linear regression. For example,
suppose the user has made four feedback iterations (see Figure
11.1), moving the query point from ps, p1, p2 to p3. Then the
direction of −−→popt (i.e., −−→p2pt in this case) can be approximated
by vector −→v1 , which moves towards the search space containing
pt and is a linear regression of points ps, p1 and p2. In other
words, α is approximated by β, where β is the angle between
−−→p2p3 and −→v1 . If the dot product of −−→p2p3 and −→v1 is less than
0, it suggests that the user is likely to have given inaccurate
relevance feedback, and a warning should be issued. However,
if the relevance feedback is in fact accurate and the dot product
is less than 0, this indicates that the direction approximation of

Node 6 Node 7 Node 8Node 5

Node 2 Node 3

Node 1
Level 1

Level 2

Level 3

[1,3] [4,6] [7,9] [10,12] [13,15]

[1,6] [7,15] [16,23]

Node 4

Node 9 Node 10 Node 11 Node 12

[16,18] [19,21] [22,23]

Fig. 12. Our new index structure

−−→popt is not accurate and we need to adjust it. For example, the
dot product of −−→p2p3 and −→v1 is less than 0 in Figure 11.2 while
the user’s relevance feedback is accurate. We can replace p2

with p3 for linear regression (i.e., only use points ps, p1 and
p3 for linear regression, omitting p2), producing −→v2 for the
approximation of −−→popt in the next iteration.

Detecting users’ inaccurate relevance feedback is a difficult
and open problem. We rely on short-term memory—the last
few relevance feedbacks—to predict the general direction
towards the destination, and focus on warning users if their
feedbacks seem to be contradictory (our technique is only able
to give a summary warning to the user, who may not be able to
tell which one among the previous steps is inaccurate). Such
a warning points out to users that their consecutive feedbacks
appear contradiction, and is helpful to users in providing a
better relevance feedback for the subsequent rounds. Actually,
we have taken the following steps to ensure our system is less
sensitive to users’ inaccurate relevance feedback, in design
and in implementation. First, we still keep LNM besides GDC
and NDC in our prototype. Although converging slowly, LNM
is robust against inaccurate relevance feedback because it
basically enumerates the candidate images. Second, we use
the above proposed method to automatically monitor users’
feedbacks, and issue warnings if inconsistent behaviors are
detected. These warnings prompt the users to re-evaluate their
feedbacks. Finally, our prototype allows users to backtrack
their selections if missteps have been made.

V. INDEX STRUCTURE AND QUERY PROCESSING

TECHNIQUE FOR TARGET SEARCH

In this section, we will discuss how to construct the index
structure and to efficiently evaluate the three typical types of
queries (i.e., sampling queries, constrained sampling queries
and constrained k-NN queries) involved in the proposed target
search methods.

A. Index Structure for Target Search

Our index structure (see Figure 12) is constructed in two
stages as follows:

Hierarchical Clustering: A hierarchical clustering tech-
nique, similar to the R*-tree [3], is used to organize the
entire image database into a hierarchical tree structure. With
each node in this hierarchy representing a cluster, we extend
the original node structure of the R*-tree to include also
information to identify the images in their children nodes. We
selected the R*-tree for our study because it is well known and
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has been widely used in practice, although other hierarchical
clustering techniques [4] can be used as well. The hierarchical
clustering is constructed as follows. When a new element (i.e.,
an image represented as a high-dimensional point) is inserted
into the tree, this element is placed in a leaf node that requires
the least enlargement in its bounding box, and a leaf node’s
MBB is based on all dimensions of its contained image points.
If a leaf node overflows, this node is split (i.e., a portion of
its entries are removed from the node and reinserted into the
tree), and such splits propagate up the tree [3].

Information Augmenting: We traverse the tree in a pos-
torder fashion. In the original R*-tree, an internal node
contains an array of node entries. Each node entry is a pair
(mbb, node-id), where mbb is the minimum bounding box
(MBB) that spatially contains the MBBs in the child node,
with node-id as the child node address. In our index structure,
each node entry is extended to be a tuple (mbb, node-id,
imageID-range), where imageID-range refers to the range of
image identifications contained in the pointed child node and
imageID-range ⊆ [

1, |S|]. Let us describe how to augment
the structure illustrated in Figure 12. We start from the root
node (i.e., Node 1) which has three node entries. We first
visit the first node entry which points to Node 2. Node 2 has
two node entries, pointing to leaf nodes 5 and 6 in order.
Our depth-first traversal leads us to Node 5, which contains
3 image points. Then we set the imageID-range of the first
entry in Node 2 to

[
1, 3

]
, and each image contained in this

node can randomly pick an exclusive ID within this range.
That is, the three images in Node 5 can be assigned IDs 1,
2, and 3, respectively. We of course need to build up a one-
one mapping between image IDs and exact image names, such
as building a B+-tree index on the image ID field, or simply
changing the image names to their corresponding image IDs as
in our current implementation. Similarly, we set the imageID-
range of the second entry in Node 2 to

[
4, 6

]
. As Node 2

doesn’t have any more node entries, we track back to Node
1 and set imageID-range to encompass the ranges of all its
children, which is

[
1, 3

]∪[
4, 6

]
=

[
1, 6

]
in this example. The

above procedure is repeated for the second entry of Node 1.
The imageID-range values in different internal node entries
are shown in Figure 12.

When a new image is inserted, the structure has to be
rebuilt. Because image databases are fairly static [13], the
reconstruction is still acceptable considering the performance
gains (shown in Section VI) we obtain. Our index structure
has two properties as stated in the following theorems. Let M
(i.e., node capacity or fanout) denote the maximum number of
entries that can fit in a node, m the minimum number of entries
in a node (we set m = M/2 assuming M is an even number),
L the total number of leaf nodes in our index structure, and
LQ the total number of leaf nodes related to a user query Q
(assuming all related leaf nodes are contained in S

′ of Q).
Theorem 6: For sampling queries, if k < L/2, no re-

trieved points will be sampled from the same leaf node.
Proof: Recall that R*-tree is a height-balanced tree and

the number of image points in each leaf node is between
m and M . For sampling queries, S is the search space,
therefore the corresponding imageID-range is

[
1, |S|]. One

possible solution is the following sampled image ID set{
1, M+1, 2M+1, 3M+1, . . . , (k−1)∗M+1

}
. We first prove

that (k − 1)M + 1 ≤ |S|, which means the highest ID in the
above set is a valid ID. Obviously, |S| ≥ L∗m = L∗M/2. On
the other hand, (k−1)M +1 < (L/2−1)∗M +1 ≤ L∗M/2.
It follows that |S| > (k − 1)M + 1. Next we prove that no
two images in this set are from the same leaf node. Clearly,
if two images are in the same node, the difference between
the values of the two corresponding IDs should be less than
M (see Figure 12 for an example, M = 3). The difference
between any two IDs in the above set is cM where c is a
natural number, therefore no two images in the above set are
from the same leaf node.

Theorem 7: For constraint sampling queries, if k > 2LQ,
each leaf node related to Q will be sampled.

Proof: Each relevant leaf node corresponds to an
imageID-range. We union those imageID-ranges, and trans-
form the union into a consecutive range

[
1, |S′|] for analysis

simplicity. One possible solution is: we sample the consecutive
range at fixed interval M/2, then we obtain the following
sampled image ID set{

M/2, 2M/2, 3M/2, . . . , s ∗ M/2
}
,

where s =
⌊

|S′|
M/2

⌋
. Obviously, LQ ∗ M/2 ≤ |S′| ≤ LQ ∗ M ,

from which we have LQ ≤ s ≤ 2LQ. Since k > 2LQ, then
LQ ≤ s < k, which implies the number of sampled points in
the above set is even fewer than k. Each relevant leaf node
contains a imageID-range ⊆ [

1, |S′|] with length at least M/2,
therefore its imageID-range will contain at least one sampled
point in the above set. Hence, each leaf node related to Q will
be sampled.

The above desirable properties show that our index structure
can facilitate sampling as many relevant leaf nodes as possible,
and the sampled points can better capture the data distribution,
thus are more representative. The results of our empirical study
in Section VI confirm that our index structure, in fact, can help
improve both retrieval effectiveness and retrieval efficiency.

B. Efficient Query Processing for Target Search

We discuss our query processing technique
EVALUATEQUERY(Q) on top of the above index structure
for the three types of queries (i.e., sampling queries,
constrained sampling queries and constrained k-NN queries)
based on our four target search methods. k-NN queries are
omitted because our target search methods do not use them.
The query cost is the sum of disk seek (including cylinder
seek and rotation), data transfer and CPU time, in which seek
time dominates the total query cost. Figure 13 lays out our
query processing technique, designed to minimize the disk
I/O cost.

For sampling queries, we just need to retrieve the root node
(in line 3), which is stored in memory to reduce the disk
I/O cost for the subsequent sampling queries. The root node
contains all possible image IDs. If k is relatively small (i.e.,
k < L/2), we will choose the technique based on Theorem 6
to guarantee that no images will be sampled from the same leaf
node in order to make the sampled images as representative
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EVALUATEQUERY(Q)

Input:
given query Q

Output:
query result Sk

01 Sk ← ∅
02 if Q is a sampling query then /* based on nQ and S′ */
03 read the root node of our index structure
04 if k < L/2 then
05 choose a random non-negative integer n such that

imageIDset = {1 + n, M + 1 + n, 2M + 1 + n,
3M + 1 + n, . . . , (k − 1) ∗ M + 1 + n}
⊆ {1, . . . , |S|}

06 else
07 imageIDset ← randomly sample k IDs from

{1, . . . , |S|} stored in root
08 endif
09 Sk ← retrieve images whose ID ∈ imageIDset
10 elseif Q is a constrained sampling query then
11 IDset ← All image IDs whose corresponding points

∈ S′ by performing a modified range query
12 if k > 2LQ then
13 transform IDs ∈ IDset into a consecutive range

[1, |S′|]
14 choose a random non-negative integer n such that

imageIDset = {
M/2� + n, 
2M/2� + n,

3M/2�+n, . . . , 
s∗M/2�+n} ⊆ {1, . . . , |S′|}

15 transform all IDs ∈ imageIDset back to the original
ones

16 add some different IDs ∈ IDset − imageIDset into
imageIDset such that |imageIDset|=k

17 else
18 imageIDset ← randomly sample k IDs from IDset
19 endif
20 Sk ← retrieve images whose ID ∈ imageIDset
21 else /* Q is a constrained k-NN query */
22 Queue ← NEWPRIORITYQUEUE()
23 Insert nodeSet into Queue, where nodeSet is pruned

by mbb(S′)
24 while not ISEMPTY(Queue) and |Sk| < k do
25 Element ← DEQUEUE(Queue)
26 if Element is an image object and Element is

inside mbb(S′) then
27 Sk ← Sk

⋃
{the image corresponding to

Element}
28 elseif Element is a leaf node then
29 for each Object in leaf node Element do
30 ENQUEUE(Queue, Object,

OBJDIST(PQ, Object))
31 enddo
32 else /* Element is a non-leaf node */
33 for each Child node of node Element do
34 ENQUEUE(Queue, Child,

DIST(PQ, Child))
35 enddo
36 endif
37 enddo
38 endif
39 return Sk

Fig. 13. Query Processing Technique

as possible (in line 5). Otherwise, random sampling can be
performed to retrieve the query result (in line 7).

For constrained sampling queries, we will use the minimum
boundary box of S

′, denoted by mbb(S′), as the range, then
perform a modified range query on our index structure to
collect sampling image IDs (in line 11). Since in our index
structure, each internal node entry is a tuple (mbb, node-
id, imageID-range), thus if mbb(S′) contains a node’s mbb,
we can put the node’s imageID-range into IDset without
visiting its children. If mbb(S′) overlaps with or is contained
in a node’s mbb, we will visit its children recursively. Conse-
quently, we can prune a lot of nodes to answer a constrained
sampling query, therefore significantly reducing the disk I/O
accesses. If k is relative large (i.e., k > 2LQ), the technique
based on Theorem 7 will guarantee that each leaf node related
to Q will be sampled in order to make the sampled images
more representative (from line 13 to 16). Otherwise, random
sampling over IDset is performed to retrieve the query result
(in line 18). To take advantage of the shrinking of the search
space S

′ after each iteration (e.g., in GDC), we can recycle
the nodes visited in the previous iterations to avoid re-reading
those nodes from the disk. That is, we can put those visited
nodes into nodeSet residing in memory, and perform the range
query over nodeSet.

For constrained k-NN queries, we extend the well-known
k-NN algorithm proposed in [16]. Considering the search
space S

′ is shrunk after each iteration and the results of
two consecutive constrained k-NN queries may overlap, we
recycle the visited nodes in the previous iterations as does
for constrained sampling queries. We first prune nodeSet by
mbb(S′) (in line 23); that is, only nodes that either overlap
with or are contained in mbb(S′) are kept. To answer a given
constrained k-NN query, all nodes in nodeSet are inserted into
a new priority queue Queue (in line 23) while nodeSet only
contains the root node in the first iteration. In the while loop
(from line 24 to 37), an element is dequeued from Queue (in
line 22). If the element is an image object and is contained in
mbb(S′), this image object is put into the query result Sk and
the next element is dequeued from Queue until all k nearest
neighbors are found or Queue is empty. If the element is a
leaf node, all image objects in it are inserted into Queue (in
line 30). If the element is an internal node, its child nodes
are inserted into Queue (in line 34). In sum, we reuse the
visited nodes in the previous iterations and prune nodeSet by
mbb(S′) to reduce the disk I/O cost for answering constrained
k-NN queries.

VI. EXPERIMENTS

In this section, we present experimental results for target
search in both simulated and realistic environments, and
evaluate the effectiveness of the query processing technique
described in Section V.B. Our dataset consists of more than
68,040 images from the COREL library. 37 visual image
features divided into three main groups were used: colors (9
features) [35], texture (10 features) [33], and edge structure (18
features) [44]. The combination of those features captures es-
sential image characteristics and facilitates effective similarity
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Fig. 14. False Hit Ratio

5 15 30 50 75 100
0

5

10

15

20

25

k

av
er

g
ae

 it
er

at
io

n
s

LNM
NDC
GDC

Fig. 15. Average Iterations
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Fig. 16. Maximum Iterations
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Fig. 17. Minimum Iterations
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Fig. 18. Standard Deviation of Iterations
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Fig. 19. Average Aggregate Recall
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Fig. 20. Average Aggregate Precision
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Fig. 21. Average Total Checked Images
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Fig. 22. CPU Time

comparison. Our experiments were run on Sun UltraSPARC
with 2GB memory.

A. Simulated Experiments

In these experiments, we evaluated the performances of
MARS [26], [30], MindReader [18], and Qcluster [20] against
our techniques (NRS’s results are omitted since its perfor-
mance can be statistically predicted). All the data resided in
memory. The performance metrics of interest are the average
total visited images, precision, recall, computation time and
the number of iterations (average, maximum, minimum, and
their variance) needed for each method to retrieve an intended
target. These were measured as k takes different values
in {5, 15, 30, 50, 75, 100}. There were 100 pairs of starting
points-target points selected randomly for the experiments.

In order to accurately evaluate the prime metrics, relevance
feedback in these experiments was simulated: the point in
the retrieval set closest to the target point was automatically
selected as the most relevant point. To save computation
overhead for NDC and GDC, we constructed the Voronoi
region V Ri containing the most relevant point instead of
the whole Voronoi diagram, and approximated V Ri by its
minimum boundary box if V Ri contains too many surfaces.

To illustrate the common problems of slow convergence
and local maximum traps with the existing approaches, we
demonstrate that MARS, MindReader and Qcluster have poor
false hit ratios for small k. Figure 14 shows that when k is
small, their performance is affected by local maximum traps,
i.e., their false hit ratios are very high even for a fairly large k.
For example, when k = 100, MARS’s false hit ratio is about
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20% and Qcluster’s exceeds 40%, while the best performer
MindReader is just below the 20% mark. As a result, users of
these techniques have to examine a large number of returned
images, but might not find their intended targets.

In the experiments that produced the number of iterations,
we had to make sure that the compared techniques could
successfully reach the intended targets. We thus used LNM
in place of MindReader (LNM is an improved version of
MindReader, see Section III). The experimental results for
LNM, NDC and GDC are shown in Figures 15 to 22. They
show that NDC and GDC perform more efficiently when k is
small, with GDC being slightly better than NDC. Specifically,
when k = 5, the average numbers of iterations for LNM,
NDC and GDC (see Figure 15) are roughly 21, 10 and
7, respectively (compared to 68040

5 = 13608 iterations in
NRS); the maximum numbers are 58, 20 and 11, respectively
(see Figure 16); and the minimum numbers are 7, 4 and 4,
respectively (see Figure 17). The results also confirm our
analysis of GDC complexity (see Figure 15): GDC can reach
the target point in O(logk |S|) = (log5 68040) = 6.9141 
 7
iterations.

The standard deviations of the iterations are shown in
Figure 18. GDC and NDC are much more stable than LNM,
with GDC’s slightly more uniform than NDC’s. This indicates
that GDC and NDC can achieve fast convergence even with a
poor selection of initial query points.

The average ‘aggregate’ recalls and precisions, defined in
Section III, are shown in Figures 19 and 20 respectively.
Again, experimental results show that NDC and GDC achieve
better retrieval effectiveness (precision and recall) when k is
small compared to LNM, with GDC being slightly better than
NDC.

The average total checked images for LNM, NDC, and GDC
in the experiments are plotted in Figure 21. The figure shows
that GDC and NDC examined fewer than half of the total
checked images of LNM (compared to 68040

2 = 34020 images
need to be checked in NRS). In terms of CPU time, GDC is the
most efficient, although the difference is smaller as k increases
(see Figure 22). This is because NDC and GDC take some
computation overhead to construct V Ri, while LNM requires
more iterations and associated computation time for adjusting
the generalized distance function. Overall, GDC and NDC
significantly outperform LNM, with GDC slightly outdoing
NDC. Figure 23 shows that using our index structure, the
average iterations of GDC over 100 simulated target searches
can be reduced by 1 when k = 5 and 15, although the
difference is smaller as k increases. The reason is that our
index structure is designed to sample as many relevant leaf
nodes as possible and to better capture the data distribution,
thus facilitating GDC to prune the search space.

B. Realistic Experiments

In simulated experiments, the most relevant points were
assumed to be accurately selected among the returned points.
In practice, however, this cannot be easily achieved by human
evaluators, unless the most relevant images are distinctly stood
out. To evaluate our methods’ performance in realistic environ-
ments, we have extended the previous prototype [21] (based
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Fig. 23. GDC Average Iterations Comparison

Fig. 24. Target Search GUI Interface
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Fig. 25. Number of Iterations Comparison (with our index structure vs.
without our index structure) with k=50
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Fig. 26. Sampling Queries
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Fig. 27. Constrained Sampling Queries
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Fig. 28. Constrained Sampling Queries in
Feedback Iterations (k = 50)

on ImageGrouper [23]) to couple with our index structure.
Our prototype, shown in Figure 24, allows users to pose
queries by dragging and grouping multiple relevant images
on the work space (i.e., the right pane), choose discriminative
visual features, and select one of the three retrieval methods
(LNM, NDC and GDC). It monitors users’ feedback and
prompts users to reexamine their relevance feedback if certain
conditions are true as discussed in Section IV. It also allows
users to rollback their feedback in the previous iteration if they
wish. Thus, for instance, if there are several relevant images,
the user can group them together to form a query, and if he
reaches a dead-end without finding the target image, he can
rollback.

We trained 20 graduate students (i.e., 15 engineering stu-
dents and 5 art students) to use the target search system and
asked them to find 36 given target images from different
semantic categories in both situations (with or without our
index structure). In Figure 25, we show the results for finding
the given 36 target images with k = 50 (i.e., 50 images were
retrieved at each feedback iteration). The two images (i.e.,
an ancient building and race cars) took, on average, more
iterations than the others to retrieve, mainly because many
similar images exist in the collection. Even so, only 6 iterations
on average were needed to locate them, while 7 iterations
were needed without our index structure [21]. The results
illustrate that our index structure can help reduce the number
of iterations. The reason is that our index structure is designed
to sample as many relevant leaf nodes as possible, and the
sampled images can be very representative, which facilitates
target search. To evaluate our target search technique in more
practical real world scenarios, we conducted experiments on
the collection through Google Image Search (randomly chose
Corel category descriptions as queries). This collection con-
tains the same number (i.e., 68040) of images as the COREL
dataset, and we also randomly picked the same number (i.e.,
36) of target images. The results show that 8 iterations on
average were needed to locate them. The log information
indicates that LNM has been used by most users probably
because some of the Google images have low image quality,
and are hard to give the accurate relevance feedback. After
analyzing the experimental results, we also found out that art
students on average took fewer iterations than the engineering
ones in both experimental settings (using Corel images, and
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Fig. 29. Constrained k-NN Queries in Feedback Iterations (k = 50)

using Google images), probably because the former are better
at recognizing the visual features, and then gave more accurate
relevance feedback.

Observe that users’ inaccurate response may compromise
the benefits of any CBIR systems with relevance feedback. To
minimize its effects, we make our system, in design and in
implementation, less sensitive to users’ inaccurate relevance
feedback. First, our prototype (see Figure 24) still keeps
LNM as a useful option. This is because LNM is robust
against inaccurate relevance feedback as mentioned before,
although converging slowly. Based on our observations, users
in practice can use GDC or NDC to prune a lot of non-
target images at the first few iterations, and use LNM to
finally locate the target. Second, in the experimental study, our
system monitored users’ feedback, and issued warnings in the
Status window if inconsistent behaviors were being detected
(discussed in Section IV). These warnings prompt the users to
re-evaluate their feedback. Finally, our prototype allows users
to backtrack their selections if missteps have been made. The
results were satisfactory overall, indicated by the successful
finding of the intended targets. Of course users’ inaccurate
relevance feedback is a difficult and open problem but our
results are encouraging.

C. Query Processing Technique

In this section, we evaluate the effectiveness of the proposed
query processing technique described in Section V.B. The node
size of the original R*-tree and our index structure were both
set to 4KB, and both had three levels in our experimental
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settings. Following the suggestion of the R*-tree [3], the
minimum utilization parameter of each node was set to 40%
and the reinsert fraction parameter was set to 30% for all
index structures. We compare the performance of the proposed
query processing technique on top of our index structure
(denoted as QNEW) against the existing technique with R*-
tree (denoted as QOLD). Specifically, our methods to evaluate
sampling queries, constrained sampling queries, constrained
k-NN queries are from line 2 to 9, 10 to 20, and 21 to 38 in
Figure 13, respectively. The existing counterparts are proposed
in [25], [25] with a straightforward extension by integrating
the constraint, and [11], respectively. As mentioned in Section
V.B, the new index structure is introduced specifically for
our query processing technique. To be fair, we also utilize
an index structure (i.e., R*-tree) for the existing counterparts.
It is not our claim that the proposed index structure is better
than R*-tree. Actually, we claim that our query processing
technique coupled with the new index structure outperforms
existing ones with R*-tree. We use the number of disk
accesses as the main measure of performance to compare
QNEW and QOLD. Sampling queries, constrained sampling
queries, and constrained k-NN queries were executed in these
experiments; they were randomly generated, and relevance
feedback was simulated as in Section VI.A. For constrained
sampling queries, mbb(S′) was randomly chosen up to 75%
of mbb(S). The dataset and image features were those used in
Section VI.A. The results are averaged over 100 runs.

Figure 26 depicts that QNEW significantly outperforms
QOLD for answering sampling queries in terms of disk ac-
cesses. For example, QOLD performs about 5 times more
disk accesses than QNEW when k = 5, 150 times when
k = 50, and 300 times when k = 100. This figure shows that
QNEW is independent of the number of sample points (i.e.,
k) because QNEW just needs to access the root node of our
index structure, resulting in only one disk access for answering
a sampling query. On the other hand, QOLD is proportional to
k, which is because QOLD has to traverse the R*-tree to obtain
sample points one by one, incurring almost 3 disk accesses
per sample point. Figure 27 compares the performance of
both approaches for answering constrained sampling queries.
QNEW is again independent of k because QNEW just needs
to perform a modified range query instead of sampling one
by one as done by QOLD. Although QOLD slightly outdoes
QNEW when k is very small, QNEW is superior when k > 8
and the performance gap widens as k increases. Specifically,
QOLD requires about 7 times more disk accesses than QNEW
when k = 50, and almost 15 times when k = 100. In feedback
iterations, QNEW can reduce the cost further as shown in
Figure 28 while QOLD cannot. The reason is that QNEW
reuses the visited nodes in the previous iterations, instead of
reloading them from the disk. Similarly, QNEW significantly
outperforms QOLD by almost two orders of magnitude for
answering constrained k-NN queries in terms of the overall
I/O cost, as illustrated in Figure 29.

The performance difference between QNEW and QOLD
confirms that the proposed query processing technique reduce
the disk I/O cost significantly by taking advantage of our index
structure, reusing the visited nodes in the previous iterations,

and pruning non-relevant nodes as early as possible.

VII. CONCLUSIONS

In this paper, we proposed four target search methods using
relevance feedback for content-based image retrieval systems.
Our research was motivated by the observation that revisiting
of checked images can cause many drawbacks including
local maximum traps and slow convergence. Our methods
outperform existing techniques including MARS (employing
feature weighting), MindReader (employing complex feature
weighting), and Qcluster (employing probabilistic models).
All our methods are capable of guaranteeing finding intended
target images, with NDC and GDC converging faster than
NRS and LNM (which represents an improved version of
MindReader). Simulated experiments have shown that NDC
and GDC work more efficiently and effectively when k (i.e.,
the number of allowed returned images) is smaller, and GDC
achieving O(logk |S|) iterations is slightly better than NDC.
We also proposed an index structure and efficient query pro-
cessing technique. Experiments with our prototype show that
our approach can achieve fast convergence (i.e. O(logk |S|)
iterations) even in the realistic environments, and is very
promising for large CBIR systems.
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[9] L. Chen, M. T. Özsu, and V. Oria. MINDEX: An efficient index structure
for salient-object-based queries in video databases. Multimedia Systems,
10(1):56–71, 2004.

[10] I. J. Cox, M. L. Miller, T. P. Minka, T. V. Papathomas, and P. N.
Yianilos. The Bayesian image retrieval system, PicHunter: theory,
implementation, and psychophysical experiments. IEEE Transactions
on Image Processing, 9(1):20–37, 2000.

[11] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Con-
strained nearest neighbor queries. In Proceedings of the 7th International
Symposium on Spatial and Temporal Databases (SSTD), pages 257–278,
2001.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



14

[12] M. Flickner, H. S. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image
and video content: The QBIC system. IEEE Computer, 28(9):23–32,
1995.

[13] T. Gevers and A. Smeulders. Content-based image retrieval: An
overview. In G. Medioni and S. B. Kang, editors, Emerging Topics
in Computer Vision. Prentice Hall, 2004.

[14] A. Gupta and R. Jain. Visual information retrieval. Communications of
the ACM, 40(5):70–79, 1997.

[15] A. Guttman. The R-tree: a Dynamic Index Structure for Spatial
Searching. In Proceedings of the ACM SIGMOD Conference, pages
47–57, June 1984.

[16] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.
ACM Transaction on Database Systems, 24(2):265–318, 1999.

[17] K. A. Hua, N. Yu, and D. Liu. Query Decomposition: A Multiple
Neighborhood Approach to Relevance Feedback Processing in Content-
based Image Retrieval. In Proceedings of the IEEE ICDE Conference,
2006.

[18] Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader: Querying
databases through multiple examples. In Proceedings of the 24th VLDB
Conference, pages 218–227, 1998.

[19] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. iDistance:
An adaptive B+-tree based indexing method for nearest neighbor search.
ACM Transactions on Database Systems, 30(2):364–397, 2005.

[20] D.-H. Kim and C.-W. Chung. Qcluster: relevance feedback using
adaptive clustering for content-based image retrieval. In Proceedings
of the ACM SIGMOD Conference, pages 599–610, 2003.

[21] D. Liu, K. A. Hua, K. Vu, and N. Yu. Fast Query Point Movement
Techniques with Relevance Feedback for Content-based Image Retrieval.
In Proceedings of the 10th EDBT Conference, pages 700–717, 2006.

[22] W. Y. Ma and B. Manjunath. Netra: a toolbox for navigating large
image databases. In Proceedings of the IEEE International conference
on Image Processing, pages 568–571, 1997.

[23] M. Nakazato, L. Manola, and T. S. Huang. ImageGrouper: a group-
oriented user interface for content-based image retrieval and digital
image arrangement. Journal of Visual Languages and Computing,
14(4):363–386, 2003.

[24] V. Ogle and M. Stonebraker. Chabot: retrieval from a relational database
of images. IEEE Computer, 28(9):40–48, 1995.

[25] F. Olken and D. Rotem. Sampling from Spatial Databases. In
Proceedings of the IEEE ICDE Conference, pages 199–208, 1993.

[26] M. Ortega-Binderberger and S. Mehrotra. Relevance feedback tech-
niques in the MARS image retrieval systems. Multimedia Systems,
9(6):535–547, 2004.

[27] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: content-based
manipulation for image databases. International Journal of Computer
Vision, 18(3):233–254, 1996.

[28] F. P. Preparata and M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, New York Inc., 1985.

[29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries.
In Proceedings of the ACM SIGMOD Conference, pages 71–79, 1995.

[30] Y. Rui, T. Huang, M. Ortega, and S. Mehrotra. Relevance feedback:
A power tool for interactive content-based image retrieval. IEEE
Transactions on Circuits and Systems for Video Technology, 8(5):644–
655, 1998.

[31] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-
tree: An Index Structure for High-Dimensional Spaces Using Relative
Approximation. In Proceedings of the 26th VLDB Conference, pages
516–526, 2000.

[32] H. T. Shen, B. C. Ooi, and X. Zhou. Towards effective indexing for very
large video sequence database. In Proceedings of the ACM SIGMOD
Conference, pages 730–741, 2005.

[33] J. R. Smith and S.-F. Chang. Transform features for texture classification
and discrimination in large image databases. In Proceedings of the
International Conference on Image Processing, pages 407–411, 1994.

[34] J. R. Smith and S.-F. Chang. VisualSEEk: A fully automated content-
based image query system. In Proceedings of the 4th ACM Multimedia
Conference, pages 87–98, 1996.

[35] M. A. Stricker and M. Orengo. Similarity of color images. In
Proceedings of Storage and Retrieval for Image and Video Databases
(SPIE), pages 381–392, 1995.

[36] S. Tong and E. Y. Chang. Support vector machine active learning for
image retrieval. In Proceedings of the ACM Multimedia Conference,
pages 107–118, 2001.

[37] K. Vu, K. A. Hua, H. Cheng, and S.-D. Lang. A non-linear
dimensionality-reduction technique for fast similarity search in large

databases. In Proceedings of the ACM SIGMOD Conference, pages
527–538, 2006.

[38] K. Vu, K. A. Hua, and W. Tavanapong. Image retrieval based on regions
of interest. IEEE Transactions on Knowledge and Data Engineering,
15(4):1045–1049, 2003.

[39] J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive
integrated matching for picture libraries. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(9):947–963, 2001.

[40] L. Wu, C. Faloutsos, K. Sycara, and T. R. Payne. FALCON: feedback
adaptive loop for content-based retrieval. In Proceedings of the 26th
VLDB Conference, pages 297–306, 2000.

[41] Y. L. Wu, D. Agrawal, and A. E. Abbadi. Applying the golden rule of
sampling for query estimation. In Proceedings of the ACM SIGMOD
Conference, pages 449–460, 2001.

[42] Y. L. Wu, D. Agrawal, and A. E. Abbadi. Query estimation by adaptive
sampling. In Proceedings of the IEEE ICDE Conference, pages 639–
648, 2002.

[43] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems. In Proceedings of the ACM
Symposium on Operating Systems Principles, pages 149–163, 2003.

[44] X. S. Zhou and T. S. Huang. Edge-based structural features for content-
based image retrieval. Pattern Recognition Letters, 22(5):457–468, 2001.

Danzhou Liu received the BE degree in information
engineering from the Beijing University of Aero-
nautics and Astronautics in 1994, the ME degree
in computer engineering from the Nanyang Tech-
nological University in 2002, and the MS degree
in computer science from the University of Central
Florida in 2005. He is currently a PhD candidate in
the Data System Group at the University of Central
Florida. His research interests include multimedia
retrieval, multimedia communications, data mining,
and machine learning. He received the 2007 IEEE

Orlando Section Outstanding Graduate Student Award. He is a member of the
IEEE.

Kien A. Hua received the BS degree in computer
science and the MS and PhD degrees in electrical
engineering, all from the University of Illinois at
Urbana-Champaign, in 1982, 1984, and 1987, re-
spectively. From 1987 to 1990, he was with the IBM
Corporation. He joined the University of Central
Florida in 1990 and is currently a professor in
the School of Electrical Engineering and Computer
Science. He served as the Interim Associate Dean for
Research of the College of Engineering and Com-
puter Science at the University of Central Florida

from 2004 to 2006. Dr. Hua has published widely, including several papers
recognized as best/top papers at various international conferences. He has
served as a general chair, vice-chair, associate chair, demo chair, and program
committee member for numerous conferences. He was an associate editor
of the IEEE Transactions on Knowledge and Data Engineering from 2001
to 2005. He is currently serving on the editorial board of the Journal of
Multimedia Tools and Applications and the International Journal of Advanced
Information Technology. He is a senior member of the IEEE.

Khanh Vu received his BS and PhD degrees in
Computer Science from the University of Central
Florida in 1995 and 2002, respectably. After a
brief time with Oklahoma State University, he has
been working at University of Central Florida as a
Research Associate. His research interest includes
Information Retrieval, Databases, Image/Video Pro-
cessing, and Networking.

Ning Yu received the BS degree in computer science
from the Tsinghua University in 2000, and the MS
degree in computer science from the University of
Central Florida in 2005. She is currently a PhD
candidate in the Data System Group at the University
of Central Florida. Her research interests include
indexing and relevance feedback retrieval in mul-
timedia database, affective computing and human-
computer interface, and medical image processing
and applications. She is a member of the IEEE.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


