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ABSTRACT 
Two-dimensional similarity-based image organizing studies how 
to place photos within 2D virtual canvas based on their visual 
contents so that the users can easily locate the desired photos. As 
an extension to our previous work [10], several improvements are 
made in this paper to allow better photo browsing experiences. 
For example, the new approach pre-orders all the photos so that a 
consistent set of photos is selected for display. This solves the 
photo flickering problem of our previous approach, which uses K-
mean algorithm to dynamically select photos. 

The main focus of this paper however is on the evaluation of the 
effectiveness of different feature vectors for 2D photo 
organization. A performance metric is proposed to measure how 
well photos with similar visual contents are grouped together on 
the 2D canvas. Feature vectors generated using eight different 
low-level feature extraction approaches are tested. The evaluation 
results reveal the pros and cons of different feature extraction 
approaches, which can be a useful guide for developing new 
feature vectors. 

Categories and Subject Descriptors 
I.4.10 [IMAGE PROCESSING AND COMPUTER VISION]: 
Image Representation – multidimensional, statistical 

General Terms 
Algorithms, Performance 

Keywords 
Similarity-based photo browsing, 2D similarity-based photo 
organizing, self organizing map, performance evaluation 

1. INTRODUCTION 
With the increasing easiness of capturing digital photographs, 
personal photo collections have been getting larger and larger. It 
is not unusual for a regular person having tens of thousands 
photos in his/her computer. Unfortunately, the techniques for 
photo organizing and browsing have not advanced in a matching 

speed. Photos are stored in the computer the same way as other 
types of files. When looking for a particular photo without 
knowing its file name, users need to first find the right folder and 
then browse through all the photos in the folder to find the right 
one. 

Several techniques [3, 9, 12] have been proposed to facilitate 
active exploration of a collection of photos by organizing them 
based on their visual similarity. The paper presented here is an 
extension to our previous work in this area. In our previous work 
[10], we proposed to organize photos on 2D virtual canvas 
according to their similarities. Photo content is first analyzed and 
then transformed into a feature vector for arrangement processing. 
A Self Organizing Map (SOM) is then used to find the optimal 
location for each photo so that the ones with similar feature 
vectors are closer to each other. To speed up the SOM training 
processing, the algorithm is implemented on the Graphics 
Processing Unit (GPU) of programmable graphics hardware. In 
the end, the users can interactively organize thousands of photos 
and browse them through intuitive operations, such as pan and 
zoom [10]. 

While the SOM can effectively map high dimensional space to 2D 
canvas in a topology preserving way, it relies on the feature 
extraction approach to assign similar feature vectors to visually 
similar photos. The final organization can only be as good as how 
well the feature vectors model the photo’s similarity to one 
another. Hence, which feature extraction approach is best suited 
for similarity-based photo organization is worth investigating. 

Until now the normal way of evaluating feature extracting 
approaches was through statistic measures, such as precision and 
recall. These measures are suitable for image retrieval 
applications, where users know what type of photos they want. 
However when the goal is for image browsing, these measures do 
not offer an intuitive evaluation on how well visually similar 
photos are grouped together. In this paper, we propose a new 
measure of feature vector effectiveness that quantifies similarity-
based photo organizing potential. This photo browsing index 
differs from other common measures as it does not focus on 
retrieval accuracy but rather the aesthetic appeal of the 
organization that can be achieved with a feature vector type from 
the user’s perspective. When browsing a collection of photos 
users prefer that photos of similar content category be clustered in 
the same relative region during visualization. Springing from this 
idea, our evaluation metric is derived based on the average 
distance of photos in each category. 
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2. RELATED WORK 

2.1 Content-based Image Retrieval 
Content based image retrieval (CBIR) has been an active research 
area in the past decade [8]. Based on the user interaction required, 
existing approaches can be classified into two categories: query 
by example (QBE) and relevance feedback (RF). QBE approaches 
require the user to present an example image (or a hand-drawn 
sketch) as a visual query [2], whereas the RF approaches require 
the user to provide feedback (relevant or irrelevant) information 
on multiple images [13], which is used to model what the user is 
looking for. 

The proposed image organizing and browsing algorithm is similar 
to existing QBE approaches since in both cases the performance 
depends on the low-level features extracted from images. Many 
advanced feature extraction techniques have been proposed and 
their relative performances for CBIR are evaluated [11]. However 
we argue that the precision/recall based evaluation results may not 
help for similarity-based photo organizing application, which has 
different objectives. In addition, these advanced feature extraction 
techniques are generally computationally expensive. When the 
goal is to interactively organize a dynamic set of photos, such as 
the ones returned by online image search engine, simple feature 
vectors have to be used so that hundreds of photos can be 
analyzed at interactive speed. 

2.2 Similarity-based Image Browsing 
While CBIR approaches are for users with clear goal about what 
they are searching for, similarity-based image browsing 
approaches aim for users who just want to surf/browse an image 
collection [3]. The challenge here is how to arrange images based 
on visual similarities. 

Several approaches have been proposed for browsing images. 
Torres et al. use both spiral-based and concentric-based 
representations to display images based on similarities, with more 
similar ones closer to the center [12]. Chen et al. visualize image 
database using pathfinder networks in which similar images are 
linked together. Snavely et al arrange community photos based on 
the viewpoints used for capturing the photos [9]. Our previous 
work [10] falls into this category and is used as a tool for the 
feature vector evaluation. 

2.3 Self Organizing Map 
A self organizing map (SOM) is a special type of artificial neural 
network which consists of a set of interconnected units [5]. Once 
trained using unsupervised learning, a SOM can represent a set of 
high-dimensional samples in a topology preserving way, meaning 
similar samples will be placed together whereas dissimilar ones 
will be pushed away from each other. As a result, the SOM is 
useful for clustering and visualizing high-dimensional data, such 
as the feature vectors of photos. 

SOM-based algorithms have been proposed for both image 
retrieval [6] and image browsing [7]. Both approaches use tree-
structured SOM to organize images. Due to the high computation 
cost for training, the SOMs used in these two approaches are quite 
small in size. Same as our previous approach [10], here the GPU 
is used to train large SOMs at interactive speed. The large SOM 
size ensures that photos with distinct features are mapped unique 
units in the SOM. The coordinates of these units are used for 

evaluate how close visually similar photos are grouped together. 

3. SIMILARITY-BASED PHOTO 

ORGANAZING AND BROWSING 
The objective of similarity-base photo organizing is to position 
photos on a 2D virtual canvas based on their visually similarities. 
We argue that solving 2D photo organizing problem has important 
and practical applications. For example, operating systems can 
adopt this technique as an option to arrange photos in a folder by 
their visual contents, rather than the visually meaningless file 
names or sizes. Online photo sharing sites and image search 
engines can organize images by visual similarities so that the 
users can easily locate the images they have in mind. 

To facilitate the proposing of new evaluation metrics, here we 
formally defined the similarity-based photo organizing problem 
as: 

Given a set of photos,  , assign a 2D coordinate !"# $ %#& to each 

photo '$ (' )  *, so that 1) the distance between two visually 
similar photos are as small as possible; and 2) overall photos are 
evenly distributed to make full use of display space. 

3.1 Photo Organizing and Browsing Tool 
In order to assign 2D coordinates to photos based on visual 
content, we first apply a feature extraction algorithm so that the 
visual appearance of a photo can be represented using a feature 
vector. The choices of feature extraction algorithms and their 
performances are the focus of this paper and will be discussed in 
Section 4. Here we explain how to organize and browse photos 
based on extracted feature vectors. 

Once the high dimensional feature vectors for all photos are 
generated, they are mapped onto the 2D virtual canvas using the 
GPU-based SOM training algorithm that we previously proposed. 
The mapping is topology preserving so that feature vectors closer 
in the feature space are also closer on the 2D canvas. Interested 
readers please refer to [10] for the details of the SOM training 
algorithm. 

The SOM training algorithm assigns a 2D coordinate !"+$ %+& to 

each photo ,, based on which the browsing tool displays the 
photo. When the number of photos in the collection is high, it is 
infeasible to display all photos to the scene at a reasonable 
resolution. To address this problem, a photo collage is 
dynamically generated using selected photos. The browsing 
interface allows users to use intuitive operations, such as pan and 
zoom, to locate photos of interest. The photo collage is 
automatically updated as the user moves around. 

Here, an important improvement over our previous approach is 
how the photo collage is generated. In [10], the photo collage is 
generated based on the K-mean clustering algorithm. That is, 
when there are - photos within the current viewport and only . 
photos can be displayed, the K-mean algorithm is used to classify 

the photos into . clusters and the photos at the center of each 
cluster are shown. While this approach works well in general, it 
cannot guarantee the consistency of photos that are selected for 
display when the user slightly zooms or pans the 2D canvas, 
resulting photos flickering on and off. 

To solve this problem, an extra step is performed to pre-order 
photos, i.e., to assign a static order to all photos in the collection 
so that when only . photos can be displayed, the first . visible 



photos in the order will be used to compose the photo collage. The 
ordering is based on the following two criteria: 

  The photos that are more representative should have higher 
priorities to allow them to be selected first. 

  Photos with similar priorities should be ordered in a 
dispersive way so that the photos selected for display are 
spread across the screen evenly. 

The priorities of different photos are determined using a multi-
resolution SOM. The bottom SOM, i.e. the one with the highest 
resolution, is obtained using the above described SOM training 
procedure. The upper level SOMs are generated from lower level 
SOMs directly without training. This is done by assigning each 
unit in an upper level SOM a weight vector that equals to the 
average of its children’s weight vectors in the lower level SOM. 
The average weight vector is then used to find a best matching 
photo for each unit in the upper level SOMs. Since these photos 
have feature vectors that are closer to the average feature vector of 
its neighborhood, we consider these photos more representative 
and hence give them higher priority for display. Here we simply 

assign each photo ' a priority value /# that equals to the highest 

level in the multi-resolution SOM that the photo is mapped to. 

To ensure the subset of photos selected spreads uniformly across 
the screen, the photos are also disperse ordered. Here we borrow 
the idea from image halftoning and pre-calculate a dispersed-dot 
dithering matrix of the same dimension as the bottom level SOM. 

When photo ' is mapped to unit !"# $ %#& in the bottom level SOM, 

it will be assigned a disperse order 0#, which equals to the value at 

!"# $ %#& of the dithering matrix. The property of dispersed-dot 

dithering matrix ensures that when the first . photos selected for 
display spreads uniformly across the SOM. 

After the above two steps, each photo ' in the collection is 

assigned with a 4D vector !"# $ %# $ /# $ 0#&. When selecting among 

visible photos to composite photo collage, the ones with smaller / 

values are selected first. Then for photos with the same / value, 

the ones with smaller 0 values are selected first. Once selected for 
display, the photo is texture mapped to a rectangle centered at 

location !"# $ %#&. 

3.2 The Proposed Evaluation Metrics 
To allow quantitative evaluation we assume that a ground truth 

classification of photos is available. That is, the photo collection   

is manually divided into multiple subsets 12 $ 3 1245256 7  , so 
that photos within each subset are considered as visually similar. 
The quality of photo organizing result can then be evaluated using 
the span of the area occupied by photos in each subset. 

To evaluate a given subset 8, we first need to find the centroid 

photo for this subset. That is, find a photo 92 $ (92 ) 12* that 
satisfies the following condition: 

:'(' ) 12;' < 92*$ = >(?$ 92*
@)AB

C = >(?$ '*
@)AB

 

where >(?$ '* is the Euclidean distance between the coordinates of 

photos ? and '. 
Then, the span of the area occupied by photos in subset 8 is 
measured using the average distance between each photo in subset 
8 and the centroid: 

D2(12* 7 E
F12F= >(?$ 92*

@)AB
 

where F12F represents the number of photos in subset 12. This 
metric tells us how close photos in a given subset are. It is worth 
noting that the average distance, instead of the maximum distance, 
is used because it is less prone to outliners. 

On the other hand, we can calculate the average distance for all 
photos not in the subset 8 using: 

D2( G 12* 7 E
F G 12F= >(?$ 92*

@HAB
 

where F G 12F represents the number of photos not in the subset 
12. This metric tells us how far away that photos not belonging to 
a given subset are. 

The ratio of the above two measures is a dimensionless number, 
which is a good evaluator of the effectiveness of the photo 

organization for subset 12: 

I2 7 D2( G 12*
D2(12*  

where I2 is referred as the effectiveness of the feature vector 

being used on photo subset 12. An average effectiveness measure 
across the entire set of photos is then simply: 

I 7 E
F.F=I2

6

2J4
 

where the higher the I value the better the overall organization is, 
as it indicates that the photos from the same subset are close to 
each other whereas the photos not belonging to the same subset 
are far away. 

The above effectiveness measure evaluates how well the first 
objective for photo organizing is satisfied. A similar approach can 
also be used for evaluate the second objects, i.e., whether photos 
from all of the different subsets are distributed across the whole 
canvas. That is, we can calculate the average span of all photos in 
the collection using: 

K 7 E
F F=>(?$ 9*

@)L
 

where F F is the total number of photos and 9 is the centroid 

photo for the whole set  . Since the 2D virtual canvas size we 

used is normalized to 2×2, evenly distributed photos will give a K 
measure about 0.75 in value. 

4. FEATURE VECTORS UNDER STUDY 
This study focuses on the use of features vectors in the application 
of photo organizing and browsing. For this reason the feature 
vectors discussed are chosen to be as robust to superficial image 
modifications like translation and scaling as possible, as well as 
their being fast to compute since any system that is doing the 
organizing will be accessed by users with finite patience that 
expect reasonably interactive processing speeds. 

The notation used in the following sections will be as follows: 

  M denotes an image or more formally a set of pixels , that 

each have a color !N+$ O+$ P+&. 



  Q(,* 7 R.S T N+ UVWX Y T .Z T .[ \ R.Z T O+ UVWX Y T .[ \
R.[ T P+ UVWX Y is the quantized color of pixel ,, where 

.S$ .Z $ .[ are the total number of bins used for quantizing the 
RGB color channels, respectively. 

  F1F denotes cardinality of a set 1. 

  ,] denotes the 2D coordinates of pixel , in M. 
  ^_] G P̀]^ denotes the Manhattan distance between two vectors 

_] and P̀]. 
   

a(,* 7 bcdc ) M e c < , e d,] G c]d f gh is the set of pixels 

within the g T g neighborhood of pixel ,. 

  i is the gradient map of image M and i(,* 7 !j+$ k+& keeps 

the gradient direction and magnitude for pixel ,. 

  !(,* 7 R.! T j+ UlX Y is the quantized gradient direction for 

pixel ,, where .! is the number of bins used for quantizing 
directions. 

  m(,* 7 R.n T k+ mopqX Y is the quantized gradient magnitude, 

where mopq is the maximum possible gradient magnitude and 

.n is the number of bins used for quantizing directions. 

4.1 Color-based Approaches 
Color-based features are the dominating ones when images are 
small and shape is unperceivable or are displayed in a large group 
and details are less focused upon. 

4.1.1 Color Histogram 
The baseline of all image feature vectors is the color histogram. 
Each dimension of the final vector is the relative number of times 
that a certain color occurs in the image. By simply summing up 
the occurrences of colors in the image and normalizing these sums 
by the total number of pixels we have a feature vector that is 
robust to rotational and scaling transformations. The main caveat 
when using the color histogram is caused by the same property 
that makes it robust — its lack of spatial information. An example 
of this issue is that you can randomly shuffle the pixels of an 
image and get the same histogram, which is undesirable. The .-

dimensional color histogram feature vector r] can be calculated as 
follows: 

r] 7 E
FMF st4$ u $ t6v 

tw 7 Fb,d, ) M e Q(,* 7 9hF 

where the vector’s dimension is decided by . 7 .S T .Z T .[. 

4.1.2 Color Autocorrelogram 
The color autocorrelogram [4] extends the color histogram by 
introducing spatial information in the form of neighboring color 
probability. Each dimension of the final vector is the probability 
of finding two neighboring pixels of a certain color in the image. 
It is computed by counting the number of pairs of neighboring 
pixels that have the same color and then dividing by the total 
number of pairs that were checked. Since the spatial information 
in this type of vector is relative, it is robust to rotational and 
scaling transformations. The problem with this type of vector is it 
does not account for shape in the image. 

The original color autocorrelogram considers multiple 
neighborhood size samples [4]. Our experiments show that a 

single neighborhood size sample is often more effective and hence 
the autocorrelogram calculation is simplified to: 

r] 7 xt4y4
$ u $ t6y6

z{
yw 7 Fb(,$ c*dQ(,* 7 9 e c ) |}(,*hF{
tw 7 Fb(,$ c*dQ(,* 7 Q(c* 7 9 e c ) |}(,*hF 

where the dimension of the vector is also decided by . 7 .S T.Z T .[. 

4.2 Gradient-based Approaches 
Gradient based feature vectors organize by shape, which is useful, 
but when considered in solitary can potentially lead to unobvious 
results when an organization is viewed from afar and the shape in 
photos is less apparent.  

In all cases the initial gradient information is extracted from a 
grayscale version of the image by first convolving it with Sobel 
filters. The horizontal and vertical gradient values are then 
converted into direction (angle) and magnitude for every pixel in 
the image. Since gradient direction is linked to image rotation, the 
resulting feature vectors are not rotationally invariant. Feature 
vector of a rotated image contains the same set of values in the 
same order but these values will be translated in the vector with 
respect to the amount of rotation applied to the image [1]. Vectors 
based on gradients are however robust to scaling until the 
resolution of the image becomes too low to display the original 
shape, for example a circle becomes a dot. 

4.2.1 Gradient Histogram 
This is a direct adaptation of the color histogram to gradient data 
derived from an image. The directions and magnitudes of possible 
gradients are quantized into a number of bins. Each dimension in 
the feature vector represents the number of occurrences of 
gradient values belonging to the corresponding bin. Similar to 
color histogram, the occurrences are normalized based on the total 
number of samples available: 

r] 7 E
FiF st4$ u $ t6v{

t@ 7 Fb,dm(,* T .~ \ �(,* 7 ?hF 

where the dimension of the vector is decided by . 7 .~ T .n. 

4.2.2 Gradient Autocorrelogram 
This vector extends the probabilistic nature of the color 
autocorrelogram to the gradients. The gradient information is first 
quantized, as seen in the previous case, and then the neighboring 
occurrences of gradients are counted, summed into a final vector 
position, and divided by the total pairs of neighbors checked. The 
feature vector extracted measures how an image’s gradient 
changes within the neighborhood. 

r] 7 xt4y4
$ u $ t6y6

z 
y@ 7 Fb(,$ c*dm(,* T .~ \ �(,* 7 ? e c ) |}(,*hF{
t@ 7 ��(,$ c*� m(,* 7 m(c* e �(,* 7 �(c* e

m(,* T .~ \ �(,* 7 ? e c ) |}(,*�� 

where the vector’s dimension is also decided by . 7 .~ T .n. 

4.2.3 Gradient Direction Histogram 
Like the standard gradient histogram, this version models the 



global distribution of the gradient vectors but where it differs it 
eliminates the quantization of the gradient magnitude. Each 
dimension of the final vector represents the sum of all gradient 
magnitudes along a certain direction. The final values are 
normalized by the sum of all of the magnitudes. When the total 
feature vector dimension is fixed, this histogram allows the 
gradient direction to be quantized in finer resolution than the 
gradient histogram does. The computation of gradient direction 
histogram can be represented as: 

r] 7 sy4$ u $y6v
� ����J4

{
y@ 7 = k+

+)Z$~(+*J@
 

where the dimension of the vector . 7 .~. 

4.2.4 Gradient Direction Autocorrelogram 
Similar to gradient direction histogram, an autocorrelogram can 
also be defined using the gradient direction only, without 
considering the gradient magnitude. The corresponding feature 
vectors depict how edges in a given image change orientations 
within the local windows. 

r] 7 xt4y4
$ u $ t6y6

z 
y@ 7 Fb(,$ c*d�(,* 7 ? e c ) |}(,*hF{
t@ 7 Fb(,$ c*d�(,* 7 �(c* 7 ? e c ) |}(,*hF 

where we also have . 7 .~. 

4.3 Hybrid Approaches 
The visual content of an image is likely described by both color 
and gradient information. Hence, feature vectors based on either 
color or gradient only may not provide the best photo organizing 
results. Here two hybrid approaches are proposed which combines 
color- and gradient-based approaches in two different ways. 

4.3.1 Color Histogram + Gradient Direction 

Autocorrelogram Aggregation 
In this approach, the feature vector is split into two portions. The 
first potion is generated using the color histogram and the second 
is obtained using gradient direction autocorrelogram. Our 
experiments, discussed in the next section, suggest that, to achieve 
the optimal performance, the gradient-based approach generally 
requires feature vectors with higher dimensions than the color-
based approach does. Hence here we allocate roughly 1/4 of the 
feature vector to store the color histogram information and 3/4 for 
the gradient direction autocorrelogram information. That is: 

. 7 .S T .Z T .[ \ .~ and .~ � � �� .. 

4.3.2 Color-Gradient Correlation Histogram 
Rather than computing two vectors and appending them together 
as described above, this vector is computed by measuring the 
correlation between color and gradient direction in the image. It is 
computed by assigning a bin to every possible color and gradient 
direction pair and then summing into those bins the gradient 
magnitudes of pixels that have the corresponding color-gradient 
direction pair. The vector r] can be represented as follows: 

r] 7 sy4$ u $y6v
� ����J4

{

y@ 7 = k+
+)Ze

�(+*T6��~(+*J@

 

where the dimension of the vector is decided by . 7 .S T .Z T.[ T .~ and .~ � .S T .Z T .[. 

4.4 Random Vector 
This is simply a vector of random numbers of given dimension 
whose evaluation results serve as a basis of observation. The 
vector can be represented like so: 

r] 7 sN4$ u $ N�v{N@ 7 N_t0(�$ E* 
where N_t0(�$ E* simply a function that returns a random real 
number from the given range. 

5. EXPERIMENT RESULTS 
The experiment is performed using a collection of photos 
downloaded from the Flickr website. We selected 22 keywords 
and used use each of them to retrieve 100+ photos though photo 
tag search. It is worth nothing that some of the keywords used, 
such as lily and daisy, returns visually similar photos, which 
makes it challenging to clustering. 

In all experiments described below, the number of units in the 
SOM is set to 256×256, which is large enough to ensure photos 
with distinct feature vectors be mapped to unique locations in 2D 
canvas. The number iterations use in SOM training is fixed at 30, 
which is sufficient for the process to converge. 

5.1 Photo Distribution Measure 

 

Figure 1: The average span of all photos on 2D canvas and the 

average feature vector distance in the feature space 

We first evaluate whether the SOM training approach can evenly 
distribute photos across the 2D canvas under different feature 
vectors settings. Figure 1 plots the average span of all photos on 

the 2D canvas, the measure K, as well as the average feature 
vector distance in the vector space. It confirms that, when 
different types of feature vectors are used, the average distances 
among feature vectors differ dramatically. However, the average 
span of photos’ locations on the 2D canvas stays at about 0.71, 
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(a) 64 dimensional 
random vector 

(b) 64 dimensional 
color histogram vector 

(c) 64 dimensional 
color-gradient 

correlation vector 

Figure 5: Photo organizing results obtained. Left column shows all the photos and right column shows the distribution of different 

categories using different colors. Please note that the 2D virtual canvas is wrapped around for better browsing experience and 

hence similar photos may be placed near boundaries of the opposite sides. 



  Using only four numbers, the color histogram can effectively 
group together photos of fire, lightning, rose, star and winter. 
This can be attributed to the distinct color distributions of 
these photos. 

  The color autocorrelogram performs the best on the fire, 
iceberg, and sun categories. This may due to the unique 
neighbor color pattern existed in photos of these categories. 

  The gradient direction autocorrelogram is very effective for 
grouping daisy and lily photos. These photos contain detailed 
textures and allow the gradient direction autocorrelogram 
vector to extract distinct gradient direction pattern. However, 
it does poorly on desert and winter photos where the image 
gradient is not as prevalent. 

  With combined color and gradient direction information, the 
hybrid color-gradient correlation approach performs the best 
for blossom, desert, forest, sky, stars, and wave photos and 
also performs well in categories such as fire, sun and winter. 

  Some categories are hard to distinguish from others since they 
are visually similar. For example waterfall photos may appear 
similar to wave or river photos. Beach and field photos 
contain large portion of sky, which can influence the feature 
vectors generated. 

Figure 5 shows the photo organizing results generate using three 
different feature vectors. As expected, photos are placed at 
random locations when the random feature vector is used for 
training. The result obtained using color-gradient correlation 
feature vector is noticeable better than the one generated with 
color histogram, which is consistent with the effectiveness values 
measured. 

6. CONCLUSIONS 
This paper studies the 2D similarity-based image organizing and 
browsing problem, the objective of which is to position photos 
based on their visual similarities on 2D virtual canvas for a better 
photo browsing experience. We believe that solving the 2D 
similarity-based photo organizing problem has important and 
practical applications. For example, operating systems can adopt 
this technique as an option to arrange photos in a folder by their 
visual contents, rather than the visually meaningless file names or 
sizes. 

The presented paper extends our previous work [10] in both photo 
organizing and browsing directions. In terms of organization, the 
new application allows the users to select from eight different 
ways of extracting feature vectors for organizing photos, whereas 
our previous approach only supports two. In terms of photo 
browsing, here we propose to pre-order all the photos based on 
both multi-resolution SOM and a dithering matrix. When only a 
subset photos can be displayed due to screen resolution, the pre-
computed order allows a consistent set of photos to be selected. 
This solves the photo flickering problem of our previous 
approach, which uses K-means algorithm to dynamically select 
photos for display [10]. 

The main focus of this paper however is on the evaluation of the 
effectiveness of different feature vectors for 2D photo 
organization. A performance metric is proposed to measure how 
well photos belonging to the same category are grouped together 
on the 2D canvas. The evaluation reveals the pros and cons of 

different feature vectors, which can be a useful guide for 
developing new feature vectors. 

Much future work can be done along this direction since we only 
implemented and tested simple feature extraction approaches in 
this paper to ensure that photos can be organized at interactive 
speeds. Whether or not more complex feature extraction 
approaches can help to group visually similar photos into tighter 
areas is worth investigation. 
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