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Abstract In this paper, we examine the frame loss probabilities for multiple-
description coded video transmitted over independent paths. We apply an efficient
multiple description coding technique for the analysis, and we investigate the impact
of drifting error in terms of the probability of receiving freeze frames for recon-
structed video. In order to improve the video delivery, an adaptive video coding
scheme by adjusting the length of group-of-pictures is investigated in this paper. In
addition, a scalable video streaming framework from client-server, centralized peer-
to-peer, and decentralized peer-to-peer network topologies are examined. Analytical
and experimental results based on Gilbert model are used to evaluate the perfor-
mance of the proposed adaptive and scalable video streaming framework.

Keywords Video · Streaming · Peer-to-peer · Multi-path

1 Introduction

Video streaming delivers video over the Internet (or intranet) to end-users who
are playing back the video content at real time. The video can either be pre-
recorded or live streamed. The major challenge posed in video streaming is its timing
requirement, and a packet will be considered lost if the transmission fails to meet a
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real-time constraint. This differs significantly from a play-after-download approach
where transmission delays are not considered as a factor of error. Another challenge
for video streaming is the best-effort nature of today’s Internet, where a successful
data delivery is not guaranteed.

To resolve these problems, numerous techniques on transmission feedback con-
trol, adaptive source encoding algorithm, efficient packetization, resource allocation,
and error control coding have been proposed to improve the quality of video
communication [21, 22]. In [3], Chow et al. proposed a variation of Gilbert model [24]
where the loss parameters of a path depend on an application’s transmission rate.
Using this model, the authors optimized the load distribution among multiple paths
to achieve an improved streaming quality. An optimization framework was proposed
to minimize the aggregate distortion for multiple video streams transmitted over
a shared communication channel [2]. A distributed video streaming from multiple
servers to a single receiver was also studied in [1]. The servers independently
partitioned the media packets based on the bandwidth information, such that the
resulting video quality at the receiver was maximized.

Among different approaches proposed for video streaming to resolve the chal-
lenges on packet-based and best-effort Internet today, distributed streaming over
collaborative peer-to-peer (P2P) overlay networks has attracted increased atten-
tions recently from both research and industrial communities. Unlike conven-
tional client/server infrastructures commonly used for content distribution networks
(CDN), in P2P networks each node acts both as a client and as a server. This
approach yields a high throughput and a good tolerance to loss and delay caused
by network congestion [15]. P2P multimedia streaming and caching services also
reduce initial delays for playback, and hence minimize jitters during playback [7].
Tran et al. [19] investigated application-layer multicast tree, and proposed ZIGZAG
which possessed features on short end-to-end delay, low control overhead, efficient
join and failure recovery, and low maintenance overhead. Another study which
utilized advantage of the strong buffering capabilities of end hosts was oStream [5],
which is a tree based overlay that was specifically designed for one-to-many
on-demand media distribution.

Due to the heterogeneous nature of today’s Internet, data transmission over a
massive number of channels is difficult to control by a centrally managed solution at a
low cost. Multimedia content in general has a highly time varying bandwidth require-
ment since media data are variable bit rates (VBR) in nature using modern coding
techniques [6, 8]. In addition, streaming applications demands guaranteed delivery in
order to meet specified temporal and spatial constrains. The services which provide
guaranteed delivery in Network Multimedia System (NMS) was improved in the
control management level of the host and the underlying network architectures [14].
Physically copying data is expensive for the guaranteed services for network trans-
mission. The integrated processing loops for performing manipulation functions
over a single common unit instead of performing them serially with the concept
of Application Level Framing [4]. Media synchronization is also need to guarantee
jitter-free playback requirements [16, 18]. The high bandwidth requirement and
a real time delivery constraint are the two major challenges for streaming video.
Driven by the goal of improving long-term system performance, dynamic resource
allocation schemes with application specific adaptation capabilities are integrated in
the solution. Previous work enables complex adaptations by use of general models of
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target systems [17]. With large variations in bandwidth requirements of multimedia
content, rate adaptation [20] adjusts the bandwidth used by a transmission channel
according to the existing network conditions.

Our work in this paper focuses on overcoming the limitations of conventional
client-server streaming applications using a multi-path streaming infrastructure and
spatial domain MDC [10] technique. In this paper, we evaluate the performance
of different real-time streaming systems in terms of the frame loss rate of the
reconstructed video, which reflects the probably of a frozen playback video frame
at the receiver device. Different scenarios are examined by adjusting three factors:
(1) number of MDC sub-streams, (2) length of group of pictures, and (3) transmission
with aligned and unaligned I-frame. Based on the multi-path video streaming frame-
work, we also propose an adaptive system which dynamically adjusts GOP lengths
for each sub-stream according to the network conditions. Frame loss rate under
different scenarios are investigated: (1) sub-dividing a GOP into multiple sub-GOPs,
(2) multiple MDC sub-streams with different GOP lengths, and (3) an adaptive
streaming system based on time-series projection of the frame loss rate. In addition,
this paper also presents different approaches to offload the bottleneck traffic by
applying the MDC compressed video over the peer-to-peer network infrastructure.
Three different streaming infrastructures: client/server, centralized P2P streaming,
and decentralized P2P streaming, are examined. To extend from traditional network
performance analysis in terms of packet loss rate, this paper further investigates the
impacts of the loss traffic to the reconstructed video quality due to drifting error. The
frame loss rate, which indicates the un-reconstructable video frames at the receiver,
is analyzed in this paper.

The remainder of this paper is organized as follows. In Section 2, the adaptive
multi-path video streaming scheme is introduced, followed by its frame loss pattern
analysis in Section 3. The studies of aligned and unaligned I-frames are investigated
in Section 4. In order to improve video delivery and reduce frame loss rates, an
adaptive source coding based on channel conditions is investigated in Section 5. In
Section 6, a scalable video streaming framework with different network topologies is
studied. Experiments are presented in Section 7.

2 Adaptive multi-path video streaming

MDC techniques are designed for path diversity. They encode media content into
multiple independent descriptions, and these descriptions are also known as sub-
streams. Once a sub-stream is received at the client end, the granules within the
stream can be decoded. The overall quality of recovered content is depending
on the number of successfully delivered sub-streams. The more sub-streams are
received, the higher the reconstructed video quality can be achieved. MDC provides
loss tolerance, and it is therefore beneficial for delay-sensitive, real-time streaming
applications where data losses are highly disruptive.

An efficient MDC technique proposed in [10] is applied in this paper. Figure 1
illustrates the concept of the MDC codec, which sub-samples each video frame
into multiple sub-frames over the spatial domain before encoding with an H.264
video encoder. The corresponding MDC decoder applies cubic-spline interpolation
to reconstruct the missing sub-frames. Thus, the system is capable of reconstructing
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Fig. 1 An efficient MDC codec with spatial diversity

video with different quality levels depending on the number of MDC sub-streams
received at the destination.

MDC is typically applied in scenarios where multiple nodes independently for-
ward video content to the client node over physically connected networks. Prior re-
search in [10] has proposed to apply MDC for a decentralized peer-to-peer streaming
system, where the MDC sub-streams (M1 + M2 + M3 + · · · + Mn) received at server
nodes are forwarded to the end user who request those sub-streams. Therefore, the
more forwarding servers exist, the more paths can be used for transmission. The
combination of the under utilized network bandwidth of multiple forwarding servers
may give an overall broader bandwidth for MDC streaming, hence yielding a better
reconstructed video quality at the receiver.

Prior research in [10] and [11] assume that MDC sub-streams are transmitted over
channels with identical delay and throughput characteristics, and these parameters
are unchanged for an entire streaming session. In this paper, we consider the nature
of today’s Internet where delay and throughput vary dynamically. An adaptive
video streaming system is therefore required. We proposed an infrastructure which
allows the receiver to report network conditions to the servers, and adaptively adjust
the encoded bitstreams to improve the performance of video streaming. Figure 2

Fig. 2 Workflow of adaptive
length of GOP
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illustrates the work flow of the proposed infrastructure. The receiver monitors the
network condition, and using time series projection to predict the loss pattern
of subsequent video frames. The predicted value is delivered to the servers as a
feedback to adjust the GOP lengths. In-depth analysis of the performance measure
in terms of frame loss rate under different scenarios, as well as the details for the
adaptive streaming infrastructure, are explained under the subsequent sections.

3 Frame loss analysis for reconstructed video

The video stream is consist of group of pictures. In this paper, we apply H264 baseline
profile which uses two types of frames: Inter (I)-frame and Predictive (P)-frame.
I-frames are encoded independent of prior frames. P-frames are encoded with
respect to a prior I-frame or P-frame, where motion compensation techniques are
applied for improving the compression efficiency. A group of frames that starts with
an I-frame, followed by a set of P-frames and ends before the next I-frame is called a
Group of Pictures (GOP). Losing an I-frame or a P-frame will result in distortion of
the following frames within the same GOP. This is known as the drifting error.

In this paper, we simulate the packet delivery of the video bitstreams using Gilbert
Model [24], which is a two-state Markov chain indicating a success state and a
failure state for packet delivery. To simplify the analysis, we assume that each packet
contains one encoded video sub-frame. Let S0 (good) denote good state when the IP
network packages are received correctly and timely, and S1 (bad) denotes bad state
when the packages are lost. The probabilities of the network transition from S0 to
S1 and from S1 to S0 are denoted as P01 and P10, respectively. The probabilities of
staying in the same state are denoted as P00 for state S0 and P11 for state S1. Steady
state analysis shows that the overall probabilities of good state PS0 and bad state
PS1 are:

PS0 = P11 − 1

P00 + P11 − 2
(1)

PS1 = P00 − 1

P00 + P11 − 2
(2)

Let T denote the length of GOP, and M denote the number of sub-streams.
At anytime i, the probability of a good frame transmission is PS0 P i−1

00 , where
i = 1, 2, . . . , T. The complement value, ρi, reflects the probability of all combinations
with a frame loss before or at time i, and ρi = 1 − PS0 P i−1

00 ,

εaligned = 1

T

T∑

i=1

(
1 − PS0 P i−1

00

)M
(3)

Substitute (1) into (3), the mean frame loss rate can be written in terms of
transition probabilities P00 and P11, as shown in (4).

εaligned = 1

T

T∑

i=1

(
1 − (P11 − 1) P(i−1)

00

P00 + P11 − 2

)M

(4)
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3.1 MDC multi-path frame loss rate on different number of sub-streams

In this section, we study the frame loss rate of different number of MDC sub-
streams. Let integers M1 and M2 denote the numbers of MDC sub-streams, where
1 ≤ M1 ≤ M2. Since 0 ≤ 1 − PS0 Pi−1

00 ≤ 1 and M1 < M2, 0 ≤ [
1 − PS0 Pi−1

00

]M2 ≤
[
1 − PS0 Pi−1

00

]M1 ≤ 1. Let �ε represent the difference of the frame loss rate between
M1 sub-streams and M2 sub-streams, and

�ε = ε1 − ε2 ≥ 0 (5)

Thus, the frame loss rate is a decreasing function of number of MDC sub-streams.
The more MDC sub-streams exist, the less frames will drop, and hence the better
video quality.

3.2 MDC multi-path frame loss rate on different length of GOP

In this section, we study the frame loss rate of different lengths of MDC GOPs. Let
XT = 1 − PS0 PT−1

00 , then (3) can be represent as εaligned = 1
T

(
xM

1 + xM
2 + · · · + xM

T

)
.

Let two integers T1 and T2 denote any two different lengths of GOP, and 1 ≤ T1 <

T2. Then, �T = T2 − T1 > 0 Since M ≥ 1, T ≥ 1, and 0 ≤ x = 1 − PS0 PT−1
00 ≤ 1, the

following relationship holds: xM
1 ≤ xM

2 ≤ · · · ≤ xM
T . Let �εT represent the difference

of the frame loss rate between T1 and T2 GOP lengths. Let �w = w2 − w1, where
w1 = xM

1 + xM
2 + · · · + xM

T1
, w2 = xM

1 + xM
2 + · · · + xM

T2
, and

�εT = εT2 − εT1 = w2

T2
− w1

T1
=

�w
�T − w1

T1

(T1+�T)T1
T1�T

(6)

To determine whether (6) is positive or negative, we can investigate the following
relationship:

w1

T1
≤ X M

T1
≤ X M

T1+1 ≤ �w

�T
(7)

Taking the relationship expressed in (7) into (6), we observe that �εT = εT2 − εT1 >

0. Therefore, the frame loss rate is an increasing function of the GOP length: the
longer the GOP length, the higher probability of frame loss will appear.

4 MDC streaming with aligned and unaligned I-frames

In the multi-path video streaming infrastructure proposed in this paper, the receiver
can reconstruct the output video upon receiving any number of MDC substreams.
Only if all sub-streams are lost, the video frame cannot be reconstructed. In this
paper, we investigate the scenarios where the MDC sub-streams encode I-frames at
different points of time.

To evaluate the performance of systems using aligned and unaligned I-frames,
we need to determine the position of the I-frame in each channel. Let T denote
the processing period, which is equal to the length of one GOP, let M denote the
number of MDC sub-streams and dn denote the offset in n-th path which equal to
the period before the I-frame arrival. The GOP transmission time in can be presented
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as in = (T − dn + i)modT, where i = 0, 1, 2, . . . , T − 1. Then, the average frame loss
rate of M paths during the T period can be represented as:

εunaligned = 1

T

T−1∑

i=0

M∏

n=1

(
1 − PS0 P(T−dn+i)modT

00

)
(8)

4.1 MDC multi-path frame loss rate on homogeneously distributed
and aligned I-frame

In this section, the special scenario of homogeneous I-frame offset was studied.
As the number of substreams is theoretically infinite large, and GOP length has
a finite size, usually M ≥ T. When the number of sub-streams M equals the GOP
length T (M = T), and offset dn = n, we can get a square matrix where I-frames are
homogeneously scattered over MDC sub-streams. At any time i, we can always find
a path has offset n = i, and the frame loss rate for this scenario is:

εhomo = M
T

(
1 − PS0 P0

00

)
. . .

(
1 − PS0 PM−1

00

) = (
1 − PS0 P0

00

)
. . .

(
1 − PS0 PM−1

00

)
(9)

Let αi = (
1 − PS0 P0

00

)
. Equations (5) and (9) can be represented as

εaligned = 1

M

[
α0 + α1 + · · · + αM−1

]
(10)

εhomo = (α0α1 . . . αM−1)
1/M (11)

The values for α0, α1, . . . , αM−1 is a set of positive real numbers, M is a positive
integer. Since arithmetic mean of the set αi is represented as εaligned, and the geo-
metric mean the set αi is represented as εhomo, as εaligned ≥ εhomo. Thus, distributing
I-frames homogeneously over multiple sub-streams can reduce the frame loss rate
for the reconstructed video at the receiver.

In the Internet environment, we can theoretically get infinity transmission chan-
nels. Meanwhile, the content that can be decoded depends on the active frames
received from each channel at any point of time. As Fig. 3 shows, under the same
network conditions, when MDC sub-streams consist of unaligned I-frames, the
total number of reconstructable video frames will vary. Better video output can be
obtained by properly adjusting the I-frame positions for each MDC substreams. The
overall output is determined by network transmission rate, number of transmission
paths, GOP length, as well as the I-frame position in each substream.

Fig. 3 Comparison of frame
loss patterns for multi-path
streaming with aligned and
homogeneous unaligned
I-frames
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5 Adaptive compression according to channel condition

Dynamic resource allocation is a critical component in the system expected to
deliver reliable performance while subject to the unpredictable workload. Instability
and heterogeneous characteristics of MDC streaming channels may result in a
severe quality impact for real-time media transmission. We propose a solution that
integrates source coding techniques and network adaptation schemes to construct
a distributed media streaming system. The video content processing components
(encoder / decoder) are consisting of multiple control models. The FGS (fine
granularity scalable) video coding [23] workflow control models can collaborate with
transmission condition of any independent sub-channels. The MDC streaming frame
loss rate depends on both the transmission conditions and encoding factors (length
of GOP). The real time performance of video streaming is based on the overall
consolidated result from all sub-channels. From (11), the network transmission
rate (P00 and PS0) and the number of sub-streams (n) are part of the network
infrastructure performance metrics and they are mostly are based on the physical
resources and devices. Adjustments over those devices involve more hardware and
devices, which are expensive and difficult to give the prompt response according to
the real time media transferring rate fluctuation. Therefore, the GOP length is the
nominated component for the adaptive solutions. It can be adjusted according to real
time streaming condition change.

5.1 Frame loss rate in single channel with multiple lengths of GOP

In this section, we study the scenario where each channel carrying an MDC sub-
streams is encoded with a different GOP length (Gy, y is the number of GOP in
that sub-stream) when the network condition P00 is constant. Let Y denote the total
number of GOP for that single channel, in case there is an offset (dn) of the first
I-frame in the sub-stream transmission, from (3), frame loss rate of that sub-stream
εn is:

εn = 1

T

T∑

i=1

(
1 − PS0 P

i−dn−∑Y−1
y=1 (Gy−1−1)

00

)
(12)

For the network condition change scenario, at any time i, we have (P00i) to
indicate the transmission states, (12) can be expressed in the following form, εn =
1
T

∑T
i=1

(
1 − PS0

∏T−dn− f (i)−1
i=1 P00i

)
, where f (i) indicates the location of the closest

I-frame occurred before or at frame i. As shown in Section 3.2, the frame loss rate is
an increasing function of the GOP length. Let εy denote the frame loss rate of any
GOP within one sub-stream, and Gy ≤ T , then εy ≤ εn when the network condition
remains the same.

εy = 1

Gy

Gy∑

i=1

⎛

⎝1 − PS0

Gy−dn− f (i)−1∏

i=1

P00i

⎞

⎠

≤ 1

T

T∑

i=1

⎛

⎝1 − PS0

T−dn− f (i)−1∏

i=1

P00i

⎞

⎠ = εn (13)
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The overall sub-channel frame loss rate can be presented as:

1

T

(
G1ε1 + G2ε2 + · · · + Gyεy

) ≤ 1

T

(
G1 + G2 + · · · + Gy

)
εn = εn (14)

During the total transmission period i, the frame loss rate of single channel with
different GOP lengths (Gy) will be equal to or less than the identical GOP length
across all sub-streams.

5.2 Dynamic resource allocation trigger by sub-channel transmission time
series projection

The classic time series forecast model is used to reduce the computing complexity
when people estimate each sub-channel transmission condition. According to the
projected network transferring rate, the adjustment on the GOP length is determined
for the upcoming video compression and transmission. Depending on the services
level and the broadcasting environment, the GOP length is adjusted to meet the
multimedia application requirement more effectively and to transfer video content
more efficiently. We use projection of the network transferring rate P00 as the
integrated factor of the overall network conditions, and the estimated sub-stream
frame loss rate can be calculated from (12). By solving (12) with the projected value
of transmission rate, we can determine the adjusted GOP length. The frame loss rate
will be regarded as the overall streaming quality factor to drive the transmission. A
linear forecast model is applied and the general form of the model can be expressed
as P00 = βt + c + e, where P00 is a transition state probability, t represents the frame
counter, β is the gradient of the linear function, c is an arbitrary constant, and e is the
white noise.

To simplify the calculations on the adjustment of the GOP length, we analyze β

to determine the adjustment. When β < trigger, which indicate the worse network
transmission, we decrease the GOP length. When β > trigger, the GOP length will
be increased. And when β = trigger, the GOP length will remain unchanged.

6 From centralized to decentralized video streaming

Conventional video streaming applications using the client/server architecture face
the scalability constraints. In this section, we present different video streaming
approaches, including client/server, centralized P2P streaming, and decentralized
P2P streaming.

6.1 Client/server streaming

As illustrated in Fig. 4a, a centralized server is responsible for serving all the client
requests. The aggregation link thus represents the bottleneck since the entire video
traffic to all clients is carried on a single link. That is, the client/server model faces a
scalability problem when the number of clients increases.

Two popular approaches are used for today’s Internet to resolve scalability issues:
(1) using cache engines, or (2) applying multicast. Cache engines are typically
located at the edge of the network, and they temporally store duplicated data traffic
designated to different clients. Thus, a download requests may be retrieved from a
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Fig. 4 Distributed video streaming with different network topologies. a Client/server streaming.
b Centralized P2P streaming. c Decentralized P2P streaming

close-by cache engine instead of the far-away server, thus decreasing the download
time and reducing the load on the bottleneck link. However, since the video traffic in
general demands a much higher bandwidth than conventional text and image based
traffic (such as the webpage applications), the storage space required on the cache
engines will be substantially increased and making this approach impractical for
video applications. Multicast eliminates duplicated traffics transmitted over network
links, and it is best for broadcasting applications. However, the multicast may not
fits the requirements for video on-demand applications where end-users may not
download video simultaneously. In addition, multicast is not widely deployed on
today’s Internet backbone, and the cost for upgrading the Internet backbone also
represents a barrier for its popularity.

In this paper, we choose multiple-description coding to compress video signals.
Different P2P infrastructures will be examined. In the subsequent sections, an
overview of centralized P2P streaming, and decentralized P2P streaming, will be
discussed. The cache engine and the multicast techniques could both be applied to
these P2P streaming models; however, the study is beyond the scope of this paper.
This paper will focus on the comparisons without caching or multicast.
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In general, the probability of receiving n frames followed by a lost frame is PS0 ·
Pn−1

00 · P01, and the frames loss rate for receiving n frames followed by a lost frame is
T−n

T · PS0 · Pn−1
00 · P01, where T is the length of the GOP. The mean frame loss rate,

εSDC can be represented as

εSDC = 1 − (P11 − 1)
(
PT

00 − 1
)

T (P00 + P11 − 2) (P00 − 1)
(15)

6.2 Centralized P2P streaming

Applications over the P2P framework offer promising alternatives to resolve many
problems existing in the conventional client/server framework, with a cost of cen-
tralized manageability. Besides, P2P nodes do not serve with high availability, which
may result in severe service degradation, especially for real-time applications such as
video streaming.

In this paper, we propose a centralized P2P streaming framework with centralized
manageability while offloading the traffic from the bottleneck bandwidth to under-
utilized access networks. Centralized P2P streaming is controlled with a management
server, which keeps track of the peer topology and manages the transmission of
multimedia download sessions. The management server is in general a highly reliable
source and it is used to deliver prioritized data; the P2P nodes are less reliable
and therefore it is responsible to forwarding low prioritized data. Centralized P2P
streaming was designed with layered video codec [9], but the same arrangement may
be applied with MDC. This arrangement guarantees a minimum quality level with the
multimedia data delivered from the reliable server, and a best-effort enhancement
from the unreliable peers.

As illustrated in Fig. 4b, centralized P2P streaming offloads part of the video traffic
from the bottleneck link to under-utilized P2P networks. In the client/server stream-
ing framework illustrated in Fig. 4a, the entire MDC substreams (M1+M2+M3)
are transmitted to each individual end-user. For centralized P2P streaming, multiple
peers may forward the missing MDC substreams. The server may arrange to transmit
different MDC-streams into multiple peer-nodes, and these peer-nodes are acting as
the forwarding peers. Therefore, there are multiple forwarding peers within a P2P
cluster. The proposed framework is illustrated in Fig. 4b.

Centralized P2P streaming offloads part of the MDC bitstreams to the P2P
network. Let M denote the number of MDC substreams, and each substream with
bitrate ri where i ∈ {1 . . . M}, ri ∈ R and ri ≥ 0. Let n denote the number of peers
within a P2P cluster, n ∈ Z + where Z + is the set of all positive integers. There is
one forwarding peer for each P2P cluster. The bottleneck bandwidth requirement
for client/server streaming framework is n

∑M
i=1 ri, and bottleneck bandwidth for

centralized P2P streaming framework is
∑M

i=1 ri + (n − 1)r1. Thus, the bandwidth
reduction by upgrading from client/server streaming to centralized P2P streaming
is (n − 1)

∑M
i=2 ri. Since (n − 1) ≥ 0 and ri ≥ 0,∀i. The bandwidth requirement for

centralized P2P streaming is always equal to or less then that of client/server
streaming.

In centralized P2P streaming, the server and the peer nodes possess different
loss attributes. The server is a reliable source and the peer-nodes are non-reliable
sources. Hence the server should have a higher good state probability compares to
the peer-nodes. To simplify the analysis, we assume that the peers have identical loss
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attributes, hence identical steady state probabilities will be used for all peers. In this
section, we need to separate the steady state probabilities in (1) and (2) for servers
and peers. For the server, the two states of Gilbert model are denoted as (S0, s)
(good) where the packets are received correctly and timely, and (S1, s) (bad) where
the packets are assumed to be lost. The state transition probability from (S0, s)-
to-(S1, s) and (S1, s)-to-(S0, s) are denoted as P01,s and P10,s, respectively. The
probability of remaining in the same state are denoted as P00,s and P11,s where P00,s =
1 − P01,s and P11,s = 1 − P10,s. Px,s ∈ R and 0 < Px,s < 1, ∀x ∈ {00, 01, 10, 11}. Sim-
ilarly, the steady state probabilities and the transmission probabilities for the peers
are denoted as PS0,p, PS1,p, Px,p ∈ R+ and 0 < Px,p < 1,∀x ∈ {00, 01, 10, 11}, respec-
tively. The steady state probabilities of successful and unsuccessful packet trans-
missions from the server are PS0,s = P11,s−1

P00,s+P11,s−2 and PS1,s = P00,s−1
P00,s+P11,s−2 . Similarly,

the steady state probabilities of successful and unsuccessful packet transmissions
from the peers are PS0,p = P11,p−1

P00,p+P11,p−2 and PS1,p = P00,p−1
P00,p+P11,p−2 . For centralized P2P

streaming with M MDC substreams transmitted over M independent paths, output
video can be reconstructed upon receiving any substream. With MDC, the video
frames cannot be reconstructed only if all substreams are lost. Let γi and ρi denote
the probability of transmitting i − 1 frames followed by a frame drop from the server
and the peer nodes, respectively. Therefore, γi and ρi are

γi =
{

PS1,s when i = 1
PS0,s Pi−2

00,s P01,s when i > 1
(16)

ρi =
{

PS1,p when i = 1
PS0,p Pi−2

00,p P01,p when i > 1
(17)

For each MDC stream, a lost frame will make the remaining frames un-
reconstructable, which is known as the drifting error. The probability that at least
one channel transmits the video at and before i = k, and all the channels have lost a
frame at and before i = k + 1 is

(
k+1∑

i=1

ρi

)M−1 (
k+1∑

i=1

γi

)
−

(
k∑

i=1

ρi

)M−1 (
k∑

i=1

γi

)
(18)

Let w(n) = ∑n
i=1 ρi and v(n) = ∑n

i=1 γi, the mean frame loss rate εCP2P for the
multi-path transmission scheme can be expressed as

εCP2P = 1

T

[
T∑

k=1

xM−1 y

]
(19)

where x = PS1,p − PS0,p
(
Pk−1

00,p − 1
)

and y = PS1,s − PS0,s
(
Pk−1

00,s − 1
)
. By substituting

steady state probabilities into (19), the frame loss rate for multi-path transmission
can be simplified as

εCP2P = 1

T

T∑

k=1

αM−1β (20)

where α = 1 − (P11,p−1)Pk−1
00,p

P00,p+P11,p−2 and β = 1 − (P11,s−1)Pk−1
00,s

P00,s+P11,s−2 .
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6.3 Decentralized P2P streaming

Centralized P2P streaming partially offloads video traffic from the bottleneck link;
it extends the threshold of the client size but it is still constrained to a certain
population. In other words, it is not fully scalable. Decentralized P2P streaming is
the next phase after centralized P2P streaming, which aims to resolve the scalability
issue when centralized P2P streaming faces the critical point where traffic congestion
occur on the bottleneck traffic.

Figure 4c illustrates the scenario of the decentralized P2P streaming. Decentral-
ized P2P streaming assumes that there are a significant number of peers receive the
MDC substreams from the previous phase (i.e. centralized P2P streaming phase).
When the bottleneck link observes traffic loss, any new peer requesting the video
will be joining the decentralized P2P streaming framework, where the entire video
substreams are transmitted from the P2P network. In decentralized P2P network, a
central server is no longer required to guarantee the video delivery. Thus, decentral-
ized P2P streaming is highly scalable with the trade-off in the guaranteed service.
The reliability of the video stream, in terms of the frame loss probability, will be the
main focus of discussion in this paper.

Consider a video sequence divided into M MDC substreams, and transmitted over
M-independent paths. To simplify the analysis, assume each path has an identical loss
attribute, and therefore contains identical state transition parameters in the Gilbert
model.

For multiple-description coding with M independent substreams, output video
can be reconstructed from any substream. Under MDC, the video frames cannot
be reconstructed only if all streams are lost. Let T denotes the GOP period, and ρi

denotes the probability of successfully transmitting i − 1 frames followed by a frame
drop. Then, ρi is represented by the following sequence:

ρi =
{

PS1 when i = 1

PS0 Pi−2
00 P01 when i > 1

(21)

The probability that one channel loses a frame before or at i = k is
∑k

i=1 ρi, and

the probability that all the channels lose a frame before or at i = k is
(∑k

i=1 ρi

)M
.

Similarly, the probability that all the channels have lost a frame before or at i = k + 1

is
(∑k+1

i=1 ρi

)M
. The probability that at least one channel transmits the video at and

before i = k, and all the channels have lost a frame at i = k + 1 is

(
k+1∑

i=1

ρi

)M

−
(

k∑

i=1

ρi

)M

(22)

The mean frame loss rate for the M multi-channel transmission scheme is therefore

εMDC = 1

T

T∑

k=1

[
PS1 − PS0

(
Pk−1

00 − 1
)]M

(23)
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Finally, by substituting (1) and (2) into (23), we obtain the frame loss rate for multi-
path transmission εMDC

εMDC = 1

T

T∑

k=1

[
1 − (P11 − 1) Pk−1

00

P00 + P11 − 2

]M

(24)

7 Experiments

In this paper, MDC video streams consist of both I-frame and P-frames as de-
scribed in Section 3. The transition state probability P00 decreases from 0.9 to 0.5
as illustrated in Figs. 5 and 6. The experiment is based the system discussed in
Section 5.2 with initial GOP length equals 15, and at each transition the GOP length
may be adjusted by a length of 5. We observe that the frame loss rate resets to 0.3
periodically, which indicates the beginning of GOPs (i.e. I-frames). For the fixed
approach, we observed that the peak frame loss rates increase with P00 decreases. For
the adaptive approach, GOP lengths are adjusted after changes of P00 are observed.
We noticed that between each P00 transitions, multiple I-frames are observed. This
is because the linear projection model is evaluated based on ten historical frames in
this experiment. The proposed method resets GOP with different lengths multiple
times before stabilization.

Figure 7 shows the experimental results for centralized P2P streaming, which
examines the frame loss rate by evaluating (20) with P00,p = 0.9, P11,p = 0.2, P00,s =
0.95, and P11,s = 0.15. These parameters indicate that the server is more reliable than
each individual peers. We observe that the frame loss rate increases with a larger
GOP length due to drifting error.

The frame loss rate of the single video stream transmission and the MDC transmis-
sion using the Gilbert model are shown in (15) and (24), respectively. The frame loss
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Fig. 5 Adaptive GOP length with different adjustment step sizes
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Fig. 6 Adaptive GOP length versus fixed GOP length in multi-channels

rate is a function of length of GOP (T), number of MDC substreams (M), and Gilbert
model transition probabilities (P01 and P10). To highlight the performance gain of
multi-path transmission using MDC over SDC, identical Gilbert model transition
probabilities are chosen for Fig. 8a to b, with P00 = 0.9 and P11 = 0.2. As shown in
Fig. 8a, the frame loss rate increases with T, due to a higher drifting error associate
with a larger T value. We observe that under all T values, MDC outperforms
single stream transmission (the lower the frame loss rate, the higher perceived video
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Fig. 7 Frame loss rates for centralized P2P streaming
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Fig. 8 Frame loss rates for decentralized P2P streaming (a, b)

quality). Figure 8b examines the number of MDC substreams and their impacts to
the frame loss rate. We observed that the higher the number of MDC substreams,
the lower the frame loss rate.

8 Conclusions

In this paper, we studied streamed MDC video over multiple paths. Adaptive GOP
length in the sub-channel transmission was used to improve the reconstructed video
quality over varying channel conditions. MDC with unaligned I-frames were also
investigated. The frame loss rate analysis with experiments based on Gilbert Model
is examined. Factors of MDC, such as different multiple description levels (GOP
length, number of multiple sub-streams and offset of I-frame in sub-stream), and
different Gilbert model transition state probabilities, were evaluated. We proved that
the frame loss rate of MDC streaming over multiple paths is sensitive to the GOP
lengths and the number of MDC streams. We observed that loss rates increase when
the number of GOP increases, and loss rates decrease when the number of MDC
sub-streams increases. We also observed that MDC with homogeneous unaligned
I-frame distribution in transmissions performed better than the aligned cases in
our analysis.

We investigated adaptive GOP lengths and their impacts on the frame loss
rate. Scenarios under observation include deteriorated network conditions, different
adjustment step sizes, as well as multi-path transmissions. We observed that the
proposed adaptive solution outperforms the fixed solution in terms of lowering the
frame loss rates.

The frame loss rates for different network topologies are also investigated in
this paper. By adaptively escalating the network topology from client/server, to
centralized P2P, and then to decentralized P2P phases, the bottleneck traffic can
gradually be offloaded to under-utilized P2P networks. From the experimental
results, we observed that increasing the MDC substreams reduced the frame loss
rate; increasing the GOP length increased the frame loss rate; increasing the good
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state transition probabilities and decreasing the bad state transition probabilities also
yielded a lower frame loss rate.
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