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ABSTRACT
Binary hashing has been widely used for efficient similarity
search. Learning efficient codes has become a research fo-
cus and it is still a challenge. In many cases, the real-world
data often lies on a low-dimensional manifold, which should
be taken into account to capture meaningful neighbors with
hashing. The importance of a manifold is its topology, which
represents the neighborhood relationships between its subre-
gions and the relative proximities between the neighbors of
each subregion, e.g. the relative ranking of neighbors of each
subregion. Most existing hashing methods try to preserve
the neighborhood relationships by mapping similar points
to close codes, while ignoring the neighborhood rankings.
Moreover, most hashing methods lack in providing a good
ranking for query results since they use Hamming distance
as the similarity metric, and in practice, there are often a
lot of results sharing the same distance to a query. In this
paper, we propose a novel hashing method to solve these
two issues jointly. The proposed method is referred to as
Topology Preserving Hashing (TPH). TPH is distinct from
prior works by preserving the neighborhood rankings of data
points in Hamming space. The learning stage of TPH is for-
mulated as a generalized eigendecomposition problem with
closed form solutions. Experimental comparisons with other
state-of-the-art methods on three noted image benchmarks
demonstrate the efficacy of the proposed method.
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1. INTRODUCTION
High-dimensional similarity search is a fundamental prob-

lem in many content-based search systems and also widely
exists in many related application areas, such as machine
learning, computer vision, information retrieval and data
mining. Due to the linear time complexity, traditional linear
nearest neighbor (NN) search is computationally prohibitive,
especially when dataset contains millions or even billions of
data points. To solve this problem efficiently, a number of
methods have been proposed, such as KD-Tree [2] and Lo-
cality Sensitive Hashing (LSH) [1]. Recently, binary hash-
ing [22, 29, 14, 4, 23, 13, 12, 10, 3] is becoming increasingly
popular for efficient approximate nearest neighbor (ANN)
search due to its good query and storage efficiency.

Given a dataset, binary hashing methods map each data
point x to a binary code H(x) and perform bit-wise oper-
ations to search neighbors. To capture meaningful neigh-
bors, the neighborhood structure should be preserved after
Hamming embedding. In many cases, the real-world dataset
often lies on a low-dimensional manifold embedded in a
high-dimensional space [14]. To characterize a manifold, it-
s topology, which represents the neighborhood relationships
between subregions and the relative proximities between the
neighbors of subregions, is essential [11]. A lot of hashing
methods [8, 29, 3, 14, 13, 12] have been developed to pre-
serve the neighborhood relationships (we call neighborhood-
preserving) by mapping similar points to close binary codes.
In these methods, the neighborhood relationships are taken
into account in hash function learning, however, the relative
proximities between the neighbors, e.g. the rankings, are
not. As a result, these methods cannot preserve the data
topology well. More precisely, as shown in Fig. 1(b), for a
data point p and its neighbors q1, q2, H(q1) and H(q2) are
still neighbors of H(p), however, the ranking between H(q1)
and H(q2) is not preserved.

To preserve the local topology of a dataset, a straightfor-
ward way is to preserve the original distance after Hamming
embedding. Many hashing methods [1, 9, 20, 10] have been
developed (we call distance-preserving) and in these meth-
ods, the Hamming distance between binary codes are used as
a reconstruction of the distance between data points in the
original data space or a kernel space. Since the Hamming
distance is bounded by the code length, the original distance
to Hamming distance mapping is many-to-one, which indi-
cates the reconstruction is far from optimal. On the other
hand, characterizing a manifold with distances turns out to
support and bolt it with rigid steel beam [11]. In many cases,
the optimal embedding of a manifold needs some flexibili-
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Figure 1: The essence of our proposed TPH. (a) A
data point p and its neighbors. (b) In neighborhood-
preserving hashing (h1), the neighborhood relation-
ship is preserved, but the ranking of neighbors is
not. (c) In topology-preserving hashing (h2), be-
sides the neighborhood relationship, the ranking is
also preserved. The hash functions are depicted as
linear projections for the sake of illustration.

ty: some subregions should be locally stretched or shrunk
to embed them in a low-dimensional space within which the
topology can be well preserved. Moreover, most distance
functions make no distinction between the manifold and its
surrounding empty space, to some extent, the exact mea-
sure of distance depends not only on the manifold itself, but
also, for a large part, on a given embedding of the manifold.
As a result, although designed for distance-preserving, these
methods [9, 10] still cannot preserve the local topology well.
Another limitation of most hashing methods is that these

methods simply adopt the Hamming distance as distance
metric. Since Hamming distance is bounded by the code
length, there can be a lot of results sharing the same distance
to a query in practice, posing a critical issue for similarity
search, e.g. k nearest neighbor search, where ranking is
important. Weighted Hamming distance [7, 30] have been
developed to alleviate this limitation, however, they are all
post-processing algorithms while the ranking information is
already lost too much after embedding. Apparently, if the
ranking information can be encoded in binary codes, this
limitation would be better alleviated.
In this paper, we propose a Topology Preserving Hash-

ing (TPH) method to solve the above two issues jointly. As
stated in [11], a manifold can be entirely characterized by
giving the relative proximities between its subregions. Ac-
tually, comparative information between distance, like in-
equalities or rankings, suffices to characterize a manifold for
any embeddings. In this work, the relative proximities are
revealed by the distances, i.e. the ranking of neighbors of
each subregion. Therefore, the essence of our Topology P-
reserving Hashing is to not only preserve the neighborhood
relationships, but also preserve the neighborhood rankings.
As shown in Fig. 1(c), TPH ensures that H(q1) and H(q2)
are neighbors of H(p), and H(q1) is still a nearer neighbor
of H(p) in Hamming space. Our method can be considered
as a tight version of neighborhood-preserving and a loose
version of distance-preserving. The main contributions of
this paper are briefly outlined as follows:

(1) We propose a novel hashing method to learn the Ham-
ming embeddings for a dataset, such that not only the
neighborhood relationships between data points, but
also the neighborhood ranking of each data point, is
preserved after embedding. To the best of our knowl-
edge, this is one of the first work that tries to incorpo-
rate neighborhood ranking information with hashing.

(2) Experimental results demonstrate the superiority of
our method as compared with other state-of-the-art
methods. Moreover, the limitation of most hashing
methods, which is lacking in providing a good ranking
for query results, is also well alleviated.

(3) The label information of a dataset can be easily lever-
aged in the learning stage of our method, extending
it to a semi-supervised method to capture semantic
neighbors in a simple manner.

The rest of this paper is organized as follows. The relat-
ed work is discussed in Section 2. The Topology Preserving
Hashing method is proposed in Section 3. Section 4 de-
scribes our experiments and Section 5 concludes this paper.

2. RELATED WORK
With the proliferation of various kinds of data, e.g. mu-

sic, image and video, in content-based search systems, fast
similarity search has attracted a significant attention. One
classical kind of methods to address this problem is the
tree-based index, e.g. KD-Tree [2]. However, this kind of
methods cannot work well for high-dimensional data. Their
performances degrade significantly to linear scan as the di-
mensionality increases. Moreover, most of visual descrip-
tors, like SIFT [15] and GIST [18], are high-dimensional
vectors. Therefore, tree-based indexes are not preferable in
high-dimensional similarity search problems. Another kind
of ANN search algorithm is based on vector quantization,
such as kmeans LSH [19] and Product Quantization (PQ) [5].
The key of these methods is the compositionality. In PQ,
by dividing each data into several subspaces and expressing
data in terms of recurring parts, the representational capac-
ity of PQ grows exponentially in the number of subspaces.
In these methods [19, 5], each data point is represented by
a reconstructed cluster center and the search process is per-
formed in the original data space. As a result, the search
process is time-consuming even with a inverted file index-
ing [5]. Recently, hashing based methods have been widely
used for efficient similarity search [31, 23, 32] since it allows
constant-time search. A lot of hashing methods have been
proposed, and these methods can be roughly divided into
two main categories [3, 14]: data-independent methods and
data-dependent methods.

One representative kind of data-independent methods is
hashing with random projections, such as Hamming Em-
bedding [4] and Locality Sensitive Hashing (LSH) [1, 8, 6].
In these methods, the hash functions are random projec-
tions which are independent of dataset. Theoretically, it
is guaranteed that the original distance or similarity are
asymptotically preserved in Hamming space with increasing
code length, hence LSH-related methods usually require long
codes to achieve good precision. However, long codes result
in low recall since the collision probability of similar points
mapped to close binary codes decreases exponentially as the
code length increases. As a result, LSH-related methods
usually construct multi-tables to ensure a reasonable prob-
ability that a query will collide with its near neighbors in at
least one table, which leads to a long query time and a high
memory occupation. Another representative method is Shift
Invariant Kernel Hashing (SIKH) [20]. It is a distribution-
free method based on random features mapping for shift-
invariant kernels, and the expected Hamming distance be-
tween the binary codes is related to the distance between

124



data points in a kernel space. Similar to LSH, SIKH also
needs relatively long codes to ensure good performance [3].
As a result, in practice, data-independent methods are often
less effective than data-dependent methods.
To generate more compact codes, many data-dependent

methods have been developed to learn hash functions from
dataset. Semantic Hashing [22] adopts a deep generative
model based on restricted Boltzmann machine to learn hash
functions. In PCA-Hashing [28], the eigenvectors corre-
sponding to the largest eigenvalues of the data covariance
matrix are used to form a projection matrix for hashing.
The spectral graph partitioning strategy is employed to de-
velop new kinds of hashing methods, e.g. Spectral Hashing
(SPH) [29, 12]. SPH uses the simple analytical eigenfunction
solution of 1-D Laplacians as the hash function. In SPH [29],
two important constraints on binary codes learning are in-
troduced: (1) each hash bit balanced partitions the dataset;
(2) different hash bits should be uncorrelated. These two
constraints are widely accepted in many research works [26,
14, 3]. In [3], Iterative Quantization (ITQ) is proposed to
learn an orthogonal rotation matrix to refine the initial P-
CA projection matrix [28] to minimize the quantization error
of mapping the data from original data space to Hamming
space. To minimize the reconstruction error between the o-
riginal distance of data points and the Hamming distances of
the corresponding codes, Binary Reconstruction Embedding
(BRE) is proposed in [9]. In BRE, the Hamming distance
is used as an reconstruction of the distance between data
points in the original data space. In [10], the original LSH
is generalized to a kernel space, called Kernelized Locali-
ty Sensitive Hashing (KLSH). KLSH is proposed to address
the limitation that the original LSH methods cannot apply
for high-dimensional kernelized data when the underlying
feature embedding for the kernel is unknown. In KLSH,
the Hamming distance is an approximation of the distance
between data points in a kernel space. To exploit the spec-
tral properties of the data affinity to generate better bina-
ry codes, many other algorithms, such as Semi-Supervised
Hashing (SSH) [25, 26], Anchor Graph Hashing (AGH) [14],
LDAHash [24] and Kernel-Based Supervised Hashing (KSH)
[13], have been developed. Both labeled and unlabeled da-
ta are used in SSH [26] to learn hash functions to minimize
the empirical error on the labeled data and maximize the
information entropy regularization on all data. AGH [14]
applies the similar formulation of SPH [29] for hash codes
generation, while its neighborhood graph is constructed in a
novel way such that it can be applied to large-scale dataset.
Provided a set of positive and negative data pairs, LDA-
Hash [24] learns the hash functions in a supervised manner
by making the Hamming distance minimized between pos-
itive pairs and maximized between negative pairs. In [13],
by leveraging label information and using the equivalence
between optimizing the code inner products and the Ham-
ming distances, KSH could map a dataset to compact codes
whose Hamming distances are minimized on similar pairs
and simultaneously maximized on dissimilar pairs.
In most existing binary hashing methods, including those

methods discussed above, to capture meaningful neighbors,
the neighborhood structure (i.e. local topology) of a dataset
should be preserved after Hamming embedding. Mostly, the
real-world data often lies on a low-dimensional manifold and
to characterize a manifold, the neighborhood relationships
between data points and the relative proximities between the

neighbors of data points are both essential [11]. However, in
most hashing methods [28, 29, 14, 3, 24], the neighborhood
relationships are preserved, while the relative proximities are
not guaranteed to be preserved. Even in the hashing meth-
ods [1, 20, 9, 10] developed for distance preserving, the topol-
ogy is still not well preserved due to the fact that the original
distance reconstruction using Hamming distance is far from
optimal. Therefore, the learned codes of these methods are
not the most optimal embedding for a dataset. In this paper,
we propose a novel hashing method to solve the above prob-
lems. Besides the neighborhood relationships, the relative
proximities between the neighbors of data points are also
taken into account in the hash function learning process.

3. TOPOLOGY PRESERVING HASHING
This section describes our Topology Preserving Hashing

(TPH) method. First, we introduce the motivation of topol-
ogy preserving. Then, we give the deduction of TPH and
formulate its learning stage as an optimization problem with
closed form solutions. After that, we discuss some aspects of
TPH which can be further developed and leave them for our
future work. Some notations are given below to facilitate
our discussion.

Given a dataset consists of n data points X = {xi}ni=1 ∈
Rd that form the columns of the data matrix X ∈ Rd×n, the
paradigm of binary hashing is to first use a set of linear or
non-linear hash functions F = {fk : Rd → R}mk=1 to map
each xi to F (xi) ∈ Rm, and then binarize F (xi) to embed
xi into them-dimensional Hamming space1 Hm ∈ {−1, 1}m.
The binary code of xi is denoted as yi = H(xi) and forms
the i-th column of the code matrix Y ∈ {−1, 1}m×n. In this
paper, we restrict our attention to affine embedding:

H(x) = sgn(WTx+ t) (1)

where W is a d×m projection matrix with each column the
projection vector ωk, and t is a m× 1 vector. Without loss
of generality, we could assume the data are zero-centered,
i.e.

∑n
i=1 xi = 0, thus t is simply set to 0 and each hash

function is given by hk(x) = sgn(ωT
k x). Therefore, we can

write the entire encoding process as Y = sgn(WTX), where
sgn(WTX) is the matrix of signs of individual elements.

3.1 Motivation
As the real-world data often lies on a low-dimensional

manifold [14], to capture meaningful neighbors with hashing,
the neighborhood structure of the manifold should be pre-
served. To characterize a manifold, its topology, which rep-
resents the neighborhood relationships between subregions
and the relative proximities between neighbors of each sub-
region, is essential [11]. As a manifold can be entirely char-
acterized by giving the relative or comparative proximities:
a first region is close to a second one but far from a third one,
comparative information between distances, e.g. rankings,
suffices to characterize a manifold. Therefore, more effective
Hamming embeddings can be learned by taking account of
the data topology in the learning stage. In this work, the
relative proximities between neighbors of a data point are
revealed by distances, i.e. the ranking of neighbors. Ap-
parently, if the local topology is well preserved in Hamming

1We treat ‘0’ bit as ‘-1’ in our deduction and use ‘0’ back
in data embedding and query hashing. The conversion form
-1/1 code to 0/1 code is trivial.
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space, the ambiguity caused by ranking with Hamming dis-
tance can be well alleviated. As a result, topology preserving
hashing is promising and our goal is to learn binary codes
such that the local topology of a dataset is well preserved
after the dataset has been embedded into Hamming space.

3.2 Topology Preserving Projection Learning
We begin with the definition of local topology preserv-

ing [16]: For data points xi,xj ,xs,xt in a metric space
(M, dM), where dM(·, ·) parametrizes the dissimilarity or
distance in M, and their Hamming embeddings yi,yj ,ys,yt

generated by hash function H(x). H(x) is called topology
preserving if the following condition holds:

if dM(xi,xj) ≤ dM(xs,xt), then dH(yi,yj) ≤ dH(ys,yt)
(2)

where dH(y1,y2) = ∥y1 − y2∥22 is the Hamming distance2

between binary codes y1 and y2. This definition says that
for a data point p and its neighbors q1, q2, if q1 is a nearer
neighbor of p, then H(q1) is also a nearer neighbor of H(p),
which means the local topology of the neighborhood of a
data point in the original data space is well preserved in
Hamming space by hashing with H(x).
Given X = {xi}ni=1 ∈ Rd in a metric space (M, dM),

our goal is to learn a set of m-bit Hamming embeddings
{yi}ni=1 ∈ {−1, 1}m in a topology-preserving manner. We
define the following objective function measuring the empir-
ical accuracy of topology preserving:

O(Y ) =
1

2

∑
i,j,s,t

sgn (dM(xi,xj)− dM(xs,xt))

sgn (dH(yi,yj)− dH(ys,yt))

(3)

Clearly, for two pairs (xi,xj) and (xs,xt), the summed ter-
m in Eq. (3) would be 1 if the relative proximity between
(yi,yj) and (ys,yt) is consistent with that between (xi,xj)
and (xs,xt), or -1 otherwise. Hence, O(Y ) is a reasonable
measure function. We replace the signs of summed terms
with their signed magnitudes. This relaxation is quite in-
tuitive in the sense that for a data point p and its neigh-
bors q1, q2, it not only desires dM(p, q1) − dM(p, q2) and
dH(p, q1)−dH(p, q2) to have the same signs in order to pre-
serve the local topology, but also the larger dM(p, q1) than
dM(p, q2), the larger dH(p, q1) than dH(p, q2). Meanwhile,
if dM(p, q1)− dM(p, q2) and dH(p, q1)− dH(p, q2) have d-
ifferent signs, it also desires |dH(p, q1)− dH(p, q2)| small in
order to alleviate the local topology deviation. For brevity,
we denote dM(xi,xj) as dij and dH(yi,yj) as hij in the
following. With this relaxation, O(Y ) (3) becomes:

O(Y ) =
1

2

∑
(dij − dst)(hij − hst) (4)

Apparently, since dij is predefined, the most optimal solu-
tion Y is that makes the ranking of hij in {hij}ni,j=1 identical
with that of dij in {dij}ni,j=1. As a result, based on the Re-
arrangement Inequality, the optimal Y will also maximize
the following function:

T (Y ) =
1

2

∑
ij

dijhij =
1

2

∑
i,j

dij∥yi − yj∥22 (5)

2The actual Hamming distance is ∥y1 − y2∥22/4 when y ∈
{−1, 1}m. For brevity, we simply use ∥y1−y2∥22 to measure
the Hamming distance.

Moreover, since O(Y ) can be rewritten into the difference of
two parts:

O(Y ) =
1

2

∑
(dijhij + dsthst)−

1

2

∑
(dijhst + dsthij)

(6)
Maximize T (Y ) leads to maximizing the first part of O(Y ),
and based on the Rearrangement Inequality, the second part
of O(Y ) will not be maximized when T (Y ) is maximized.
Moreover, in view of the fact that the number of summed
terms in T (Y ) is O(n2), much less than that ofO(Y ), O(n4),
instead of maximizing O(Y ) directly, we try to maximize
T (Y ) alternatively. As a result, the optimization problem
for solving Y is formulated as:

Y = arg max
Y ∈{−1,1}m×n

T (Y ) (7)

In T (Y ), dij weights each summed term ∥yi − yj∥22, thus
we call it the topo-weight and denote it as τij , as not
only the original distance dij can be used as a topo-weight.
More details about topo-weight is given in Section 3.3. By
defining a Topo-Weight Matrix St ∈ Rn×n, St(i, j) = τij ,
problem (7) can be rewritten as:

Y = arg max
Y ∈{−1,1}m×n

Tr{Y ΓtY
T } (8)

where Γt = Dt − St, Dt = diag(St1n×1). In the following,
we call Γt the Topo-Training Matrix.

However, maximizing T (Y ) = Tr{Y ΓtY
T } is not easy to

achieve because it is neither convex nor smooth. Motivat-
ed by the spectral methods for hashing [29, 14], we adop-
t the Spectral Relaxation [13] scheme to approximately
maximize T (Y ). After substituting Y with sgn(WTX) and
applying the spectral relaxation trick to drop the sign func-
tions involved in T (Y ), (8) becomes a quadratic optimiza-
tion problem for solving W :

W = arg max
W∈Rd×m

T (W ) (9)

where T (W ) = Tr{WTXΓtX
TW}.

Maximizing T (W ) is to preserve the neighborhood rank-
ing of each data point. To preserve the data topology, we
also have to preserve the neighborhood relationships as done
in [29, 14, 23]. Suppose wij is the similarity between xi, xj

in the original data space. We call wij a simi-weight and
define a Simi-Weight Matrix Ss ∈ Rn×n, Ss(i, j) = wij .
The problem of solving W for neighborhood preserving is
formulated as [29, 14]:

W = arg min
W∈Rd×m

1

2

∑
ij

wij∥yi − yj∥22 (10)

Applying the same spectral relaxation trick to problem (10),
we have another quadratic optimization problem:

W = arg min
W∈Rd×m

D(W ) (11)

where D(W ) = Tr{WTXΓsX
TW}, Γs = Ds − Ss, Ds =

diag(Ss1n×1). We call Γs the Simi-Training Matrix.
In summary, the optimal projection matrix W should not

only maximize T (W ) (9), but also minimize D(W ) (11).
Hence, given a dataset X, we have two approaches to learn
the optimal projection matrix W . It can be learned by max-
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imizing the following two objective functions:

O1(W ) = T (W )− βD(W ) (12)

O2(W ) =
T (W )

D(W )
(13)

In O1(W ), β is a positive scalar, which relatively weights the
neighborhood-preserving term D(W ). In this work, O2(W )
is used as the objective function as it somewhat resembles
the spirit of linear discriminant analysis (LDA) [24] and has
no regularization weight.
However, the current learning stage cannot scale well with

the size of training set, as the Topo-Training Matrix Γt and
Simi-Training Matrix Γs are both n×n. Therefore, in prac-
tice, only a subset of X, Xt, is used as the training set to
construct Γt and Γs. As a result, the objective function
O2(W ) (13) measures only the empirical accuracy on Xt

and is prone to overfitting especially when the size of Xt is
small compared to the entire dataset X. To get better gen-
eralization ability, we add a regularization by incorporating
conditions that lead to desirable properties of hash codes,
independent of the performance on the training set. Here,
the variances of hash bits are used as the regularization [26].
The overall learning stage of topology preserving hashing is
formulated as the following optimization problem:

W = arg max
W∈Rd×m

O(W ) (14)

where

O(W ) =
Tr{WTAW}
Tr{WTBW}

A = XtΓtX
T
t + αXXT (15)

B = XtΓsX
T
t

α is a positive scalar relatively weights the regularization
Tr{WTXXTW}. In O(W ), a column ωk of W with large
norm makes its associated ωT

k Aωk and ωT
k Bωk the domi-

nant factors in the numerator and denominator of O(W ),
thus affecting the actual maximum of O(W ). Furthermore,
in our hashing method, the direction of ωk is more impor-
tant than its norm. As a result, we impose a “generalized
normalization constraint” on W , which is ωT

k Bωk = 1. By
adding this constraint, problem (14) is equivalent to:

W = arg max
W=[w1,ω2,··· ,ωm]

Tr(WTAW ) (16)

s.t. ωT
k Bωk = 1, ∀k ∈ [1,m]

Note that, in most hashing methods [29, 26, 14], two impor-
tant constraints are often imposed on hash function learning.
One is all hash bits are independent (this constraint is often
relaxed to hash bit decorrelation, i.e. Y Y T = nIm), and the
other one is each bit maximizes its information entropy by
balanced partitioning the dataset, i.e. Y 1n×1 = 0. How-
ever, these two constraints are not imposed on (16). In the
following, we will show that, by using the solutions of (16) as
hash functions, the learned binary codes Y somewhat satisfy
these two constraints implicitly.
Problem (16) can be easily solved and the optimal solution

W is given by the m generalized eigenvectors corresponding
to the top m largest generalized eigenvalues of the following
generalized eigendecomposition problem:

AW = BWΛ (17)

In most cases, A and B are both positive definite Hermi-
tian matrices. Therefore, eigenvectors ωk corresponding to
different eigenvalues are linearly independent. Moreover, we
also have ωT

i Bωj = 0, ∀i ̸= j, which means W is weight-
ed orthogonal with B, i.e. WTBW = Im. This can be
viewed as a generalized orthogonality constraint on W . S-
ince the orthogonality on projection matrixW is a relaxation
of hash bit decorrelation [26], the learned binary codes of
our method somewhat satisfies the decorrelation constrain-
t. Meanwhile, by adding the regularization Tr(WTXXTW )
with all data points to O(W ), the balanced partition con-
straint is also intrinsically satisfied when X is zero-centered
as proved in [26]. As a result, the decorrelation and balanced
partition constraints are not imposed on problem (16).

After learning m projection vectors, one straightforward
hashing method is using hk(x) = sgn(ωT

k x) as the hash
function to first project X on W and then binarize Z =
WTX to embed X into Hamming space. This method is
denoted as TPH in our experiments. However, the latter
quantization step may distort the learned local topology,
hence we have to find another way to binarize Z. It is easy
to see that sgn(v) is the vertex of the hypercube {−1, 1}m
closest to v in terms of Euclidean distance. To preserve
the learned local topology well in Hamming space, a small
quantization loss ∥sgn(v) − v∥2 is desirable. One way to
achieve this is to rotate v and map it to the nearest ver-
tex [3]. Note that, for any orthogonal matrix R ∈ Rm×m,
Tr{RWTAWRT } = Tr{WTAW} and Tr{RWTBWRT } =
Tr{WTBW}. Therefore, we are free to orthogonal trans-
formation to rotate the projected data Z to minimize the
following quantization loss [3]:

Q(Y,R) = ∥Y −RZ∥2F = ∥Y T − ZTRT ∥F (18)

where ∥·∥F denotes the Frobenius norm. Here, we use the it-
erative quantization procedure proposed in [3] to find a local
minimum of Q(Y,R). It consists of two steps in each itera-
tion: fix R and update Y ; fix Y and update R. In the first
step, Y is simply set to sgn(RZ). In the second step, min-
imization of Q(Y,R) is the classical Orthogonal Procrustes
problem, the optimal R can be easily solved by comput-
ing the singular value decomposition of ZY T = UΣV T and
setting RT = UV T , i.e. R = V UT . For more details of
this procedure, please refer to [3]. The final projection ma-
trix is set to WRT and the embedding of X is given by
sgn(RWTX). Hashing with the rotated projection matrix
is denoted as TPH-R in our experiment, the whole proce-
dure of TPH-R is outlined in Algorithm 1. Note that, TPH
uses the projection matrix W learned in Step 2 of Algorithm
1 for hashing, thus its algorithm is not outlined.

3.3 Discussion
In the deduction of TPH, we call dij in T (Y ) (5) topo-

weight as it indicates the relative proximities between the
neighbors of a data point, i.e. the data point is closer to
one neighbor than another. Based on the Rearrangement
Inequality, when maximizing T (Y ), small dij yields small
∥yi−yj∥22 while large dij yields large ∥yi−yj∥22. Therefore,
to preserve the local topology, the more similar a data pair,
the smaller its topo-weight. Any τij = f(dij) can be used as
the topo-weight when f(·) is monotonically non-decreasing
w.r.t. dij . As a result, with metric learning method [27],
TPH can be applied to practical applications where the sim-
ilarity metrics beyond Euclidean distance used. In our ex-
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Algorithm 1: Topology Preserving Hashing (TPH-R)

Input: Dataset X (zero-centered), Training set
Xt ⊂ X, α the regularization weight and m the
number of hash bits.

Output: Topology-preserving binary codes Y and hash
function H(·).

1 Construct the Topo-Training Matrix Γt and
Simi-Training Matrix Γs;

2 Solve the generalized eigenvalue decomposition[
XtΓtX

T
t + αXXT

]
W =

[
XtΓsX

T
t

]
WΛ

to determine m eigenvectors corresponding to the
top-m largest generalized eigenvalue. Set the projection
matrix W = [ω1,ω2, · · · ,ωm] ∈ Rd×m;

3 Use the iterative quantization procedure proposed in [3]
to get an optimal rotation matrix R such that the
quantization loss Q(Y,R) (18) converges to a local
minimum;

4 The rotated projection matrix is given by P = WRT .
The hash function of TPH-R is

H(x) = sgn(PTx)

and the hamming embedding of X is Y = sgn(PTX).

periments, we introduce two weighting schemes based on the
similarity metric of original data space.
Although our TPH in this work is unsupervised, it can

be extended to a semi-supervised method by adopting the
following label-based weighting scheme. In the construction
of Topo-Training Matrix Γt, if the label of each data point
(e.g. semantic/class label) or pairwise relationship (similar
or dissimilar) of each data pair is provided, then for a neigh-
bor pair (xi,xj), the associated topo-weight τij is set to a
small value, while for a non-neighbor pair, τij is set to a
relatively large value. By the same token, the label infor-
mation can also be leveraged in the construction of Simi-
Training Matrix Γs. By adopting this label-based weight-
ing scheme, TPH is allowed to learn the projection matrix
W in a semi-supervised manner. Experimental results in
Section 4.4 demonstrate the effectiveness of adopting this
label-based weighting scheme for semantic neighbor search.
In this paper, the simple linear projection is used as the

hash function (1) and it still gives good similarity search
performance in our experiments. Intuitively, different kinds
of hash functions give rise to various hashing algorithms. In
[9, 13], hash function with kernel κ plugged is given by

hk(x) = sgn

(
s∑

j=1

wkjκ(akj ,x)− bk

)
(19)

where ak1, · · · ,aks randomly selected from dataset are s
kernel points of hash function hk(·), ωk = (wk1, · · · , wks)

T

is the coefficient vector and bk =
∑n

i=1

∑m
j=1 κ(akj ,xi)/n is

the bias. If the set of kernel points of each hash function is
identical, this embedding can be written more compactly in
a matrix form:

Y = sgn
(
WT [K(x1), · · · ,K(xn)]

)
(20)

where K(xi) = (κ(a1,xi)− µ1, · · · , κ(as,xi)− µs)
T , µj =∑n

i=1 κ(aj ,xi)/n and W = [ω1, · · · ,ωm] ∈ Rs×m. It is in-

teresting to find out that this embedding can be interpreted
as first nonlinearly transforming each xi ∈ Rd toK(xi) ∈ Rs

and then linearly projecting K(xi) on W . Therefore, after
transforming each xi to K(xi), the learning method of TPH
can be used to learn W . As a result, more effective embed-
dings can be obtained in a relatively straightforward manner
by introducing kernels. We leave this for our future work.

Another aspect of TPH that can be improved is the rela-
tive proximities between neighbors of data points preserved.
In this paper, the relative proximities are revealed by dis-
tances, which are neighborhood rankings. In some nonlinear
dimensionality reduction methods, such as locally linear em-
bedding (LLE) [21], the relative proximities are revealed by
local angles between neighbors and data points. To some ex-
tent, the preservations of local angle and distance are related
and can be interpreted as two different ways to preserve local
products [11]. In the next step, we would like to investigate
whether the preservation of local angle can be incorporated
to develop more effective hashing method.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
Our experiments are carried out on three noted datasets:

MINST70K3, CIFAR104 and ANN-SIFT1M. The MNIST70K
consists of 70K 784-dimensional images, each of which is as-
sociated with a digit label from ‘0’ to ‘9’, and is split into a
baseset (training set, 60K) and a query set (10K). The CI-
FAR10 consists of 60K 32×32 images (baseset 50K, query set
10K) which are manually labeled into 10 classes. In our ex-
periments, the images are represented with 512-dimensional
GIST descriptors [18]. The ANN-SIFT1M [5] consists of
almost 1M 128-dimensional SIFT descriptors [15], and con-
tains three subsets: learning set (100K), baseset (1M) and
query set (10K). We randomly select 1, 000 points from the
query set as queries in our experiments on ANN-SIFT1M.

There are many hashing methods, and some of them are
either supervised [24, 13] or semi-supervised [25, 26]. S-
ince our TPH in this work is essentially unsupervised, for
fair comparison, we select some representative unsupervised
methods for comparison. The selected baseline methods are
LSH [1], PCAH [28], ITQ [3], SPH [29], AGH [14], BRE
[9] (we use the unsupervised version), KLSH [10] and SIKH
[20]. Among these methods, PCAH, ITQ, SPH and AGH are
designed to preserve the original neighborhood relationships
in Hamming space, while LSH, BRE, KLSH and SIKH are
designed to approximate the distance between data points
in the original data space or kernel space with Hamming dis-
tance. The source codes generously provided by the authors
are used in our experiments. As for the parameters of each
algorithm, we use the recommended settings in their papers.

In BRE, KLSH and TPH, a subset of dataset for train-
ing is essential. We randomly sample 2, 000 points from the
basesets of MINST70K and CIFAR10 (200 for each class),
and 3, 000 points from the baseset of ANN-SIFT1M as the
training sets, respectively. For fair comparison, we use the
same training set for these three methods. The regulariza-
tion weight, α, is not fully tuned and is simply set to 0.1 for
MINST70K, 0.2 for CIFAR10, and 1.0 for ANN-SIFT1M.

3http://yann.lecun.com/exdb/mnist/
4http://www.cs.toronto.edu/∼kriz/cifar.html
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To better validate our method, we also compare TPH with
Semi-supervised Hashing (SSH) [26] and Product Quantiza-
tion (PQ) [5]. As the quantization error of PQ is much small-
er than most hashing methods [29, 3], the Euclidean neigh-
bor search performance of PQ is often better than hashing
based methods [5, 17]. However, as the search process of PQ
is performed in the original data space, it often has a higher
query time. Moreover, as PQ ignores the manifold structure
of dataset, it is not effective for semantic neighbor search.
By contrast, many hashing methods, e.g. AGH, SSH and
our TPH, are more effective to capture semantic neighbor.

4.2 Evaluations for Similarity Search
We first evaluate TPH and TPH-R for similarity search.

Since MINST70K is fully annotated, the neighbors of each
query image are defined as those images with the same digit
labels. For CIFAR10, the ground truth of each query is its
top 5, 000 Euclidean neighbors in the original data space [3,
20]. And for ANN-SIFT1M, a returned point is considered
as a true neighbor if it lies in the top 1% points closest to
the query, measured by the Euclidean distance [25]. In the
learning stage, the topo-weight of data pair (xi,xj) is simply
set to the Euclidean distance, i.e. τij = ∥xi −xj∥2, and the
simi-weight is wij = exp{−∥xi − xj∥22/σ2} [29], where σ is
the kernel width and is set to the average pairwise distance
of a sampled subset of each dataset.
Figure 2 gives the precision-recall curve on MINST70K us-

ing 32 bits binary codes. For clarity, the results are shown
in two parts. From Fig. 2 it is clear that our TPH and its
extension TPH-R perform best for similarity search on this
dataset. More specifically, TPH outperforms most baseline
methods except for ITQ (and AGH in low-recall case), and
TPH-R gives the best search performance under most set-
tings. Moreover, as shown on Fig. 2 and Fig. 3(c), even
with a relatively short binary code (32 bits), the search per-
formance of TPH-R is still better than all baseline methods
with longer binary codes (96 bits). These comparisons in-
dicate that, TPH preserves the neighborhood relationships
better by learning from the topology of the intrinsic mani-
fold structure of MINST70K. It is interesting to note that,
in these experiments, the ground truth is defined based on
semantic label. Although all the evaluated methods are un-
supervised, they give reasonable good performance for se-
mantic neighbor search, especially the TPH-R. This is be-
cause that, in MINST70K, mostly, the Euclidean distances
between data points with same labels are smaller than the
distances between data points with different labels. By us-
ing the Euclidean distance as topo-weight, neighbor pairs
are given smaller weights than non-neighbor pairs, which is
similar with adopting the label-based weighting scheme in
Section 3.3. Therefore, the experimental results also indi-
cate that TPH is capable of capturing semantic neighbors
with the label-based weighting scheme.
Figure 3-5 give the precision-recall curves on MINST70K,

CIFAR10 and ANN-SIFT1M under different code lengths,
respectively. Once again, we can easily find out that our
TPH and TPH-R outperform other state-of-the-art meth-
ods under most settings. These comparisons demonstrate
the effectiveness of incorporating the neighborhood rank-
ing information with binary codes learning. Note that, the
performance improvement of TPH-R on ANN-SIFT1M is
not as remarkable as those on MINST70K and CIFAR10.
This result is reasonable, since the training samples is on-
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Figure 2: Precision-recall curve on MINST70K. All
methods use 32 bits code.
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Figure 3: Precision-recall curves on MINST70K us-
ing different code lengths: (a) 48; (b) 64; (c) 96.

ly 3h of the entire ANN-SIFT1M dataset. This sampling
sparsity makes the data topology of the training set non-
representative, thus the learned W are not optimal. To ver-
ify this, we retrain our model with 30K training samples and
report the mAP (21) of TPH-R: The mAP values of TPH-R
with 32, 48, 64 and 96 bits codes are 0.3327, 0.4015, 0.5022
and 0.5301, respectively. In this case, TPH-R outperforms
ITQ under all settings (mAPs of ITQ are given in Table 1),
which also indicates our method become more effective with
more training samples.

4.3 Evaluations for Topology Preserving
The above experiments demonstrate the superiority of

TPH for similarity search. In this section, we conduct a
series of experiments to evaluate the efficacy of TPH for the
preservation of relative proximities, which is the ranking of
neighbors in this work. In these experiments, the mAP is
used as the performance metric. It is defined as:

Precision =
number of retrieved neighbors

number of all retrieved points

mAP =
1

|Q|

|Q|∑
i=1

1

ni

ni∑
k=1

Precision(Rik) (21)

where Q is query set, |Q| is its cardinality and ni is the num-
ber of neighbors of query qi ∈ Q in dataset. The neighbors
are ordered as x1,x2, · · · ,xni and Rik is the set of ranked
retrieval results from the top result to xk. This definition
says that, for two hashing methods returning the same num-
ber of neighbors for a query, if one gives a better ranking for
the neighbors, it would have a higher mAP, which indicates
it preserves the local data topology better.

The mAP values of different methods with different code
lengths on MINST70K, CIFAR10, and ANN-SIFT1M are
given in Table 1. It is obvious that our TPH outperforms
almost all baseline methods except for ITQ, and its exten-
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Figure 4: Precision-recall curves on CIFAR10 dataset. Code lengths: (a) 32; (b) 48; (c) 64; (d) 96.
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Figure 5: Precision-recall curves on ANN-SIFT1M dataset. Code lengths: (a) 32; (b) 48; (c) 64; (d) 96.

sion TPH-R again gives the best performance under most
settings. These experimental results demonstrate that TPH
and TPH-R preserve the local topology of a dataset better.

4.4 Leveraging Label Information
In this section, we show the performance of semantic neigh-

bor search of TPH by leveraging label information. With la-
bel information, Topo-Training Matrix Γt and Simi-Training
Matrix Γs can be constructed to better capture the semantic
structure of a dataset, extending TPH semi-supervised.
Our experiments are carried out on MINST70K and CI-

FAR10. Each image in MINST70K is labeled with a digital
number from ‘0’ to ‘9’ and each image in CIFAR10 is labeled
into one of the following ten classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The neigh-
borhood relationships are defined based on semantic labels.
We adopt the label-based weighting scheme in Section 3.3
such that for a neighbor pair, its topo-weight is set to a small
value, while for a non-neighbor pair, its topo-weight is set
to a relatively large value. In the construction of Γt, for a
neighbor pair, we set τij = 1.0, and for a non-neighbor pair,
we set τij = 10.0 to ensure that the corresponding binary
codes can be well separated in Hamming space. In the con-
struction of Γs, the simi-weight is wij = 1.0 for a neighbor
pair and wij = exp{−∥xi − xj∥22/σ2} for a non-neighbor
pair. For comparison, we select some methods which give
good performances in our previous experiments. In addition,
we also compare our method with PQ [5] and SSH [26] for
better validation. For PQ, the original data is decomposed
into 8 subspaces and the asymmetric distance calculation
(ADC) is used for neighbor search. For SSH, we use the
same training set as that of TPH.

Table 2 reports the mAP values of different methods for
semantic neighbor search on MINST70K and CIFAR10, and
Fig. 6 gives the qualitative retrieval results of TPH lever-
aging label information applied on CIFAR10 using 32 bits
codes. Our TPH with label information is denoted as TPH-
L. We can easily see that, when label information is incor-
porated, the retrieval results are much more semantically
consistent. Moreover, TPH-L gives a better ranking for the
neighbors of each query. Since most of the compared base-
lines are unsupervised, the comparison results given here are
not to show that TPH outperforms these methods for seman-
tic neighbor search, but to demonstrate that, by leveraging
label information, our TPH can be easily extended to a semi-
supervised method to capture semantic neighbor effectively.

4.5 Summary
In summary, the experimental results demonstrate the ef-

ficacy of TPH for fast similarity search. From the results we
can conclude that, by learning from the local topology of the
intrinsic manifold structure of a dataset, TPH can generate
more optimal Hamming embeddings, which not only pre-
serve the neighborhood relationships between data points,
but also preserve the neighborhood ranking of each data
point. This finding has important implications for learning
to hashing: the neighborhood ranking information is also
valuable for effective hashing. Moreover, by leveraging label
information, the learning stage of TPH can be easily ex-
tended to a semi-supervised manner, which gives TPH the
capability of capturing semantic neighbors. In the future,
we will refine the formulation of TPH, making the label in-
formation be better incorporated with the learning stage.
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Table 1: mAP values on MINST70K, CIFAR10 and ANN-SIFT1M under different settings. The best mAP
among TPH, TPH-R and other methods is shown in bold face.

dataset MINST70K CIFAR10 ANN-SIFT1M
PPPPPPPmethod

#bits
32 48 64 96 32 48 64 96 32 48 64 96

PCAH 0.2456 0.2272 0.2159 0.2009 0.2409 0.2261 0.2155 0.2000 0.2136 0.2286 0.2167 0.1931

ITQ 0.4480 0.4620 0.4752 0.4815 0.4362 0.4591 0.4724 0.4893 0.3173 0.3820 0.4665 0.5083

SPH 0.2699 0.2544 0.2569 0.2604 0.2770 0.3023 0.2950 0.3131 0.2345 0.2750 0.3231 0.3103

AGH 0.3674 0.3311 0.3074 0.2777 0.2540 0.2515 0.2467 0.2390 0.2373 0.2835 0.3312 0.3390

LSH 0.2561 0.3064 0.3328 0.3702 0.2667 0.3111 0.3462 0.3807 0.1696 0.2543 0.3231 0.3603

BRE 0.3604 0.4006 0.4014 0.4470 0.3143 0.3484 0.3824 0.4219 0.2432 0.2998 0.3430 0.3553

KLSH 0.2227 0.2848 0.2956 0.3207 0.1996 0.2670 0.2100 0.2392 0.1045 0.1364 0.2367 0.3243

SIKH 0.1454 0.1562 0.1717 0.1867 0.1922 0.2481 0.2709 0.3309 0.0610 0.0960 0.1171 0.1302

TPH 0.3648 0.3878 0.3864 0.3934 0.3878 0.4144 0.4346 0.4625 0.2766 0.3312 0.3648 0.3687

TPH-R 0.5027 0.5194 0.5213 0.5283 0.4558 0.4707 0.4936 0.5160 0.3056 0.3810 0.4803 0.5210

Table 2: mAP values of semantic neighbor search on
MINST70K and CIFAR10.

MINST70K
#bits PQ SSH TPH-R TPH-L
32 0.4454 0.4670 0.5027 0.5161
64 0.4521 0.4861 0.5213 0.5333

CIFAR10
#bits ITQ SPH AGH BRE
32 0.1634 0.1307 0.1340 0.1493
64 0.1740 0.1313 0.1345 0.1578

PQ SSH TPH-R TPH-L
32 0.1766 0.1982 0.1658 0.2126
64 0.1820 0.2144 0.1772 0.2223

5. CONCLUSIONS
To capture meaningful neighbors, most hashing methods

are developed to preserve the neighbor relationships while
ignoring the neighborhood rankings. In this paper, we show
that the neighborhood rankings are as important as the
neighborhood relationships for learning to hashing, and pro-
pose a novel hashing method, Topology Preserving Hashing
(TPH), by incorporating the neighborhood ranking informa-
tion with hash function learning. Our approach is distinct
from prior works by not only preserving the neighborhood
relationships between data points, but also preserving the
neighborhood rankings. Since the ranking information is
encoded in the codes, the ranking ambiguity of most hash-
ing methods is also well alleviated. Experimental results on
three large-scale image datasets containing up to one mil-
lion high-dimensional data points show the efficacy of TPH.
Moreover, although our method is entirely unsupervised in
this work, it can be easily extended to a semi-supervised
method for semantic neighbor search as demonstrated. In
the future, we will evaluate more sophisticated techniques
to solve the problem of topology preserving and apply our
method to a large spectrum of information retrieval prob-
lems such as image retrieve and near-duplicate detection.
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