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ABSTRACT
Data clustering is a difficult problem due to the complex
and heterogeneous natures of multidimensional data. To
improve clustering accuracy, we propose a scheme to cap-
ture the local correlation structures: associate each cluster
with an independent weighting vector and embed it in the
subspace spanned by an adaptive combination of the di-
mensions. Our clustering algorithm takes advantage of the
known pairwise instance-level constraints. The data points
in the constraint set are divided into groups through in-
ference; and each group is assigned to the feasible cluster
which minimizes the sum of squared distances between all
the points in the group and the corresponding centroid. Our
theoretical analysis shows that the probability of points be-
ing assigned to the correct clusters is much higher by the
new algorithm, compared to the conventional methods. This
is confirmed by our experimental results, indicating that
our design indeed produces clusters which are closer to the
ground truth than clusters created by the current state-of-
the-art algorithms.

1. INTRODUCTION
A cluster is a set of data points which share similar char-

acteristics to one another compared to those not belong-
ing to the cluster [18]. While the definition is fairly intu-
itive, it is non trivial at all to partition a multi-dimensional
dataset into meaningful clusters. Such a problem has at-
tracted much research attention from various Computer Sci-
ence disciplines because clustering has many interesting and
important applications [19].

In general, data objects are represented as feature vec-
tors in clustering algorithms. Although the feature space is
usually complex, it is believed that the intrinsic dimension-
ality of the data is generally much smaller than the original
one [27]. Furthermore, the data are often heterogeneous.
That is, different subsets of the data may exhibit different
correlations; and in each subset, the correlations may vary
along different dimensions [25]. As a result, each feature
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dimension may not necessarily be uniformly important for
different regions of the entire data space. These observations
motivate a lot of interest in constructing a new ‘meaning-
ful’ feature space over a given set of data. Many global
dimension reduction techniques such as [13] work on the
derivation of new axes in the reduced space, onto which the
original data space is projected. Recent studies in manifold
learning [37] embed the space onto low-dimensional mani-
folds in order to discover the intrinsic structure of the entire
space, which have shown encouraging results. To directly
tackle the heterogeneous issue, adaptive distance metrics
have been proposed [14], which define the degree of simi-
larity between data points with regard to their surrounding
subspaces. Basically, the focus of the above research is to
work out a new salient representation of the data in order
to improve the clustering performance.

Although clustering is traditionally an unsupervised learn-
ing problem, a recent research trend is to utilize partial in-
formation to aid in the unsupervised clustering process. It
has been pointed out that the pairwise instance-level con-
straints are accessible in many clustering practices [29], each
of which indicates whether a pair of data points must reside
in the same cluster or not. The constraint set is useful in
two ways. One way is to learn an appropriate distance met-
ric. The other way is to direct the algorithm to find a more
suitable data partitioning by enforcing the constraints and
penalizing any violations of them.

In this paper, we propose to improve the accuracy of the
clustering process in two aspects:

1. We capture the local structures and associate each
cluster with its own local weighting vector. For each
cluster, a dimension along which the data values of
the cluster exhibit strong correlations receives a large
weight; while a small one is assigned to a dimension of
large value variations.

2. We integrate the constrained learning into the local
weighting scheme. The data points in the constraint
set are arranged into disjoint groups, each assigned as
a whole to a cluster according to our defined criteria.

Our experimental results as well as the theoretical analysis
reveal advantages of the proposed technique.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a survey of the related works. The locally
weighted cluster concept, and the constrained learning are
discussed in Section 3 and 4, respectively. The experimental
results are reported in Section 5. Finally we conclude the
paper in Section 6.
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2. RELATED WORK
In this section, we will discuss the related research works

in different areas, including clustering, dimension reduction,
manifold learning, and constrained clustering.

There are different types of clustering algorithms, such as
partitional clustering and hierarchical clustering. An exam-
ple of partitional clustering is K-Means [17, 33], in which
a cluster is represented by its centroid. K-Means takes the
iterative approach to minimize the sum of distances between
data points and their respective nearest centroid. In hierar-
chical clustering, an agglomerative tree structure on a given
dataset is generally created in either a bottom-up or top-
down fashion. In the bottom-up approach, each data point
is initially treated as a cluster by itself; and these clusters are
merged in subsequent steps according to some specific cri-
teria, such as Single-Link, Complete-Link or Ward’s method
[21]. A limitation of these methods is that they are sensitive
to outliers [35]. A representative of top-down clustering is
Bisection K-Means [36], which starts with the entire dataset
as one big cluster and iteratively picks a cluster and divides
it into two parts using K-Means until the desired number
of clusters has been reached. Since the clusters produced
by this repeated bisection procedure tend to have relatively
uniform sizes, this approach generally has a more robust per-
formance compared to the bottom-up clustering algorithms
[35]. Recently there are also some proposals on graph theo-
retic clustering techniques [24, 34]. Generally, they are very
computationally intensive [37].

Dimension reduction techniques aim to reduce the di-
mensionality of the original data space. One well-known
technique is Principal Component Analysis [13], which min-
imizes the information loss caused by the reduction. Since
it optimizes the mapping based on the global correlations
in the dataset, PCA is likely to distort the local correlation
structures of individual clusters that might reside in different
subspaces. To address this problem, the Locality Preserv-
ing Projection [37] encodes the local neighborhood informa-
tion into a similarity matrix and derives a low-dimensional
linear manifold embedding as the optimal approximation
to this neighborhood structure. Nonetheless, this type of
global transformation schemes lacks the flexibility to directly
model different shapes of individual clusters. As each clus-
ter generally is compactly embedded in a different subspace,
ProClus and its generalization [3, 4] seek to directly deter-
mine the subspaces for individual clusters. One disadvan-
tage of these methods is that it may not be easy to deter-
mine the optimal dimensionality of the reduced space or the
subspaces [25]. To overcome these problems, all the feature
dimensions are properly weighted in the Locally Adaptive
Clustering technique [14]. Specifically, the local feature se-
lection is adopted so that different weighted distance metrics
are in effect around the neighborhoods of different clusters.
LAC and our local weighting scheme share the same mo-
tivation and both formulate the clustering problem as an
optimization problem. However, as detailed in Section 3,
our proposal differs in defining the objective function and
the constraints. Moreover, our method does not require any
tuning to control the weighting scheme and thus the perfor-
mance is more stable, while that of LAC is fairly sensitive
to its own tunable factor [5].

In constrained clustering, instance-level constraints indi-
cate whether the corresponding pairs of data points belong
to the same cluster or not. The constraints are usually used

in learning a suitable Mahalanobis distance metric [6, 32] so
that the data points marked similar are kept close to each
other and the points which are identified dissimilar are dis-
persed far apart. The constraints are also used to directly
guide the cluster assignment process. For a given set of
constraints, it is desirable that a clustering algorithm does
not violate any of them when producing data partitions.
Constrained K-Means [30] adopted this idea and strictly en-
forces all the constraints over the cluster assignments. How-
ever, it has been shown that constrained clustering is a hard
problem [10] and it is not necessarily a good idea to derive
the partitions strictly satisfying every constraint [28]. In-
stead of enforcing the constraints directly, recent techniques
introduced penalties on constraint violations; for example,
the proposal in [10] seeks to minimize the constrained vector
quantization error. The unified method, MPCK-Means [8]
performs metric learning in every clustering iteration and
penalizes the violations of the constraints. This technique
also uses seeding to infer the initial centroids from the given
constraint set to further improve the clustering performance
[7]. In [16], a systematic approach is developed to tune the
weights of dimensions to achieve a better clustering quality,
which is defined as a weighted combination of the proportion
of constraints satisfied in the output and an objective clus-
ter validity index. Other interesting related research include
the study of the utility of the constraint set [11, 12], and
the modification of the Complete-Link clustering algorithm
by exploring the spatial implications from the instance-level
constraints [22].

In this paper, we integrate the local distance metric learn-
ing with constrained learning: the locally weighting scheme
can well discover clusters residing in different subspaces, and
our chunklet assignment strategy aggressively utilizes the
input constraints to guide the clustering process. The im-
provement of the clustering accuracy has been observed in
our experimental study.

3. LOCALLY WEIGHTED CLUSTERING
Let <m be the m-dimensional data space containing a set

of N data points ~xi, whose jth component is xij . In the
K-Means clustering, a cluster is represented by its centroid
~ck ∈ <m, and a given point is assigned to the closest centroid
based on the Euclidean distance or some global Mahalanobis
distance. As discussed before, global distance metrics are
ineffective to capture the local structures.

Instead, our scheme allows different weighted distance
metrics for different clusters. Specifically, besides the cen-
troid ~ck, a cluster is now associated with an adaptive weight-
ing vector ~wk, which is determined based on the points in
this cluster. The weights ~wk are used to re-scale the distance
from a data point ~x to the centroid ~ck, i.e.,

L2, ~wk
(~x,~ck) =

√

√

√

√

m
∑

j=1

wkj |ckj − xj |2.

Each data point is placed in its nearest cluster according
to the adaptive distance metric. Formally, the membership
function φc, the mapping of a point ~x to one of the K clus-
ters, is

φc(~x) = arg min
1≤k≤K

L2, ~wk
(~x,~ck). (1)

Accordingly, all the points which belong to the kth cluster
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are denoted as,

Ck = {~x | φc(~x) = k}.
To achieve optimal clustering, the set of centroids and the

corresponding clusters’ weights together must minimize the
sum of squared weighted distances from all the data points
to their respective centroid, which is

N
∑

i=1

L2
2, ~wφc(~xi)

(~xi,~cφc(~xi)), (2)

subject to ∀k
∏m

j=1 wkj = 1.

Our formulation differs from Locally Adaptive Clustering
(LAC) [14]. In LAC, the constraint is the sum of weights
to be one, which can lead to a trivial solution: the dimen-
sion along which the data exhibit the smallest variation is
weighted one and the other dimensions receive zero weights.
Thus, a regulation term representing the negative entropy
of weights is added to the objective function with a coeffi-
cient. Consequently, the clustering objective is a weighted
sum of vector quantization error and the regulation term.
However, the critical coefficient greatly affects the quality
of clustering outputs in practice, and there does not exist
a simple and principal way to determine its value in LAC.
In our proposal, we use the constraint that the product of
the weights of any cluster must be equal to 1. This de-
sign is not trapped with the above mentioned trivial solu-
tion, and the regulation term is avoided. We do not need
any user-specified parameters to control the locally weight-
ing scheme. Note that the Euclidean distance is a special
weighted distance measurement with all the weights being
1 and therefore the constraint conditions are satisfied. Our
constrained minimization problem can be solved using the
Lagrange Multipliers. We state major conclusions below:

Theorem 1. For the problem defined in Eq. 2, the opti-
mal cluster centroids are, for 1 ≤ k ≤ K, 1 ≤ j ≤ m,

ckj =
1

|Ck|
∑

~x∈Ck

xj , (3)

and the optimal weights are,

wkj =
λk

∑

~x∈Ck
|xj − ckj |2

, (4)

in which λk =
(

∏m

j=1(
∑

~x∈Ck
|xj − ckj |2)

) 1
m

.

Proof. See Appendix A.

It is highly desired that Eqs. 3 and 4 are the closed-form
formulae so that the centroids and weights can be computed
fairly efficiently during the clustering iterations. It is also in-
teresting to see that in our scheme, the centroid of a cluster
is still the center of all the points in the cluster irrespective
of the different weights. As Eq. 4 shows, the local weight-
ing coefficients of a cluster are non-negative and completely
determined by all the points it encloses and are not directly
affected by other clusters. Specifically, the component wkj

is inversely proportional to the variance of the values in the
jth dimension of all data points in Ck. If the points in the
kth cluster differ greatly in dimension j, the weight wkj is
smaller. On the other hand, if the points exhibit a strong
correlation in the jth dimension, then a larger weight is as-
signed to this dimension. In general, the adaptive weights

can characterize the shapes of the clusters and are expected
to well reflect the heterogeneous natures of different clusters.
Our formulation is intuitive and has a stable performance
with no tuning.

It is possible that for some cluster k and some dimension
j, the value

∑

~x∈Ck
|xj − ckj |2 can be very small and even

zero, which can cause troubles in computing the weights of
this cluster. To circumvent this problem, we set a thresh-
old in practice and when the value

∑

~x∈Ck
|xj − ckj |2 falls

below this threshold, we use the threshold instead in the
subsequent computations of wkj (in the experiments of this
paper, the threshold is 10−6). On the other hand, if the val-
ues

∑

~x∈Ck
|xj − ckj |2 are very large for some dimensions,

it is likely that the direct computation of λk could result in
an overflow. Eq. 4 to compute weights can be rewritten in
logarithm to avoid this problem, as below:

log wkj =
1

m

m
∑

i=1

log(
∑

~x∈Ck

|xi − cki|2) − log(
∑

~x∈Ck

|xj − ckj |2).

The adaptiveness of locally weighted clustering can be fur-
ther extended by considering (the inverse of) the covariance
matrix of each individual cluster in computing the Maha-
lanobis distance, which can describe any arbitrarily oriented
ellipsoid centered at the centroid. However, as pointed out
in [31], it is not robust when a small number of data points
are used to compute the covariance matrix. During the clus-
tering process, some intermediate clusters may only have
several points and the estimated ill-conditioned covariance
matrix can potentially compromise the clustering accuracy.
Therefore, in this paper, we fit the shapes of the clusters to
be ellipsoids aligned with the axes for stable performance.

Algorithm 1 Locally Weighted Clustering (LWC)

Require: a dataset of N points ~xi ∈ <m, the number of
clusters K.

Ensure: K cluster centroids ~ck and weights ~wk.
1: Start with K initial centroids and set all the weights to

be 1, i.e., wkj = 1 for 1 ≤ k ≤ K, 1 ≤ j ≤ m.
2: E-Step: Compute the membership decision φc(~xi) for

all the N data points according to Eq. 1 and derive K

cluster sets Ck.
3: M-Step: For each cluster, recompute the centroid ~ck

with regard to all the points it has, according to Eq. 3
and then update the weights ~wk according to Eq. 4.

4: Repeat steps 2 and 3 until converge.

Similar to K-Means, we propose an iterative procedure to
reach a good partition for a given dataset, as shown in Algo-
rithm 1. In the initial phase, we can use either Forgy initial-
ization or subset furthest first for the centroid selection [17].
At the beginning, we assume that the shape of each cluster is
a sphere and therefore all the weights are set to 1, indicating
that the Euclidean distance is used. After the initialization,
the whole procedure alternates between cluster assignments
(E-step) and the updates of the centroids and the weights
for individual clusters (M-step). In the E-step, each point
is assigned to the closest cluster based on the local distance
metric, and therefore the objective function defined in Eq.
2 for the new assignments surely becomes smaller. In the
M-step, the centroids and the weights of the clusters are re-
estimated using all the points which now belong to them,
and this also certainly reduces the objective function, which
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has been proved in Theorem 1. There are a finite number of
partitions dividing N points into K sets, and the objective
function keeps decreasing from iteration to iteration. There-
fore Algorithm 1 guarantees to converge and the converged
~ck and ~wk give a local minimum of the objective function
(the detailed proof is available in Appendix B). In practice,
our algorithm LWC stops if either the data placements are
stable or the user-specified maximum number of iterations
is reached.

4. CLUSTERING UNDER CONSTRAINTS
Let φg denote the membership function of data points

in the dataset according to the ground truth. Thus, φg(~x)
represents the true cluster label for ~x. Define the binary
relation Rg for any pair of data points to be either 1 if they
both belong to the same cluster or 0 otherwise:

Rg(~xi, ~xj) =

{

1, if φg(~xi) = φg(~xj),

0, otherwise.
(5)

For a dataset of N points, there are (N−1)∗N

2
unique pairs

of relations in Rg between different points. As pointed out
by Wagstaff et al [29, 30], a small part of the relation Rg is
usually accessible in the clustering practice and they are
naturally represented as instance-level constraints. That
is, there are a certain number of pairs in the constraint
set C and we know Rg(~xi, ~xj) for all the pairs in C. If
Rg(~xi, ~xj) = 1, these two points must belong to the same
cluster and this is called a Must-Link constraint. Otherwise,
it is a Cannot-Link constraint. It is desired to have the clus-
tering outputs satisfying these pairwise instance-level con-
straints. It has been shown that this partial information is
fairly useful to improve the clustering accuracy and the semi-
supervised clustering under constraints is a promising re-
search direction. One example is the Constrained K-Means
[30], in which each data point is individually placed in its
‘closest feasible’ cluster in the assignment phase. This moti-
vates us to integrate our locally weighted clustering scheme
with the constraints-driven clustering process.

4.1 Chunklet Assignment Basics
Aharon et al. [6] defined a chunklet as ‘a subset of points

that are known to belong to the same although unknown
class’. Note that for a given set of pairwise constraints, it
is possible to combine them to form chunklets based on the
transitive closure of the must-link constraints. For instance,
if Rg(~x1, ~x2) = 1 and Rg(~x2, ~x3) = 1, then Rg(~x1, ~x3) = 1
can be inferred and a chunklet can be formed by includ-
ing these three points: ∆ = {~x1, ~x2, ~x3}, whose size is the
number of data points in the set, i.e., s(∆) = 3. The other
type of the constraints, cannot-link, defines the relationships
among different chunklets. Suppose, besides ∆, there is an-
other chunklet ∆′ = {~x4, ~x5}. Given that Rg(~x3, ~x4) = 0,
then it can be inferred that chunklets ∆ and ∆′ should not
be placed in the same cluster. Consequently, given a set of
instance-level constraints, we can derive a set of chunklets
and their relationships.

The conventional clustering procedures assign data points
to clusters in one-by-one fashion. Given a chunklet, we can
now consider assigning the points in the chunklet in bulk.
Moreover, if we know two chunklets should not be in the
same cluster, then their membership decisions are indeed
related and we can also consider placing them at the same

time. This is the basic idea of our chunklet assignment strat-
egy, and how we decide the memberships of the chunklets
are explored in detail:
For an isolated chunklet ∆, which does not have any cannot-
link constraints with any other chunklets, all points in ∆ are
assigned to the cluster which minimizes the sum of squared
distances between all the points in ∆ and the centroid ~ci:

∑

~x∈∆

L2
2, ~wi

(~x,~ci). (6)

When there are two neighboring chunklets ∆ and ∆′ and
there are cannot-link constraints between them, then they
have to belong to different clusters. We assign ∆ to clus-
ter i and ∆′ to cluster j, (i 6= j), in order to minimize the
objective:

∑

~x∈∆

L2
2, ~wi

(~x,~ci) +
∑

~x∈∆′

L2
2, ~wj

(~x,~cj). (7)

In the following, we examine the theoretical background of
the above strategies and in the next subsection, we discuss
how the theory can be applied in practice.

Consider a simple scenario: there are two clusters C1

and C2 in the dataset. For cluster Ci, the data values in
the jth dimension follow the normal distribution N(µij , 1),
(1 ≤ j ≤ m), which has the mean value µij and the unit
variance for simplicity, and values of different dimensions are
mutually independent. Ideally, the centroids in the ground
truth are ~c1 = (µ11, . . . , µ1m) and ~c2 = (µ21, . . . , µ2m). As
the variances are 1 in all the dimensions of both clusters,
the Euclidean distance, denoted as L2,~1, is adopted in the
following analysis.

Suppose there is a chunklet ∆, that belongs to cluster i,
i.e, ∆ ⊆ Ci (1 ≤ i ≤ 2). According to Eq. 6, ∆ is assigned
to cluster j, if for 1 ≤ j, p ≤ 2, j 6= p,

∑

~x∈∆ L2
2,~1

(~x,~cj) <
∑

~x∈∆ L2
2,~1

(~x,~cp).

The probability of this event is denoted as,

P∆(j | i) = P (∆ is assigned to Cj | ∆ ⊆ Ci),

which can be computed as below.

Theorem 2. For clusters C1, C2 and chunklet ∆,

P∆(1 | 1) = P∆(2 | 2) = Pa(s(∆)),

P∆(2 | 1) = P∆(1 | 2) = Pa(−s(∆)),

in which s(∆) is the number of data points in the chunklet
∆ and Pa(x) is defined as,

Pa(x) = Φ





x

2
√

|x|

√

√

√

√

m
∑

j=1

(µ1j − µ2j)2



 ,

and Φ(x) is the cumulative distribution function of the stan-
dard normal distribution N(0, 1), i.e.,

Φ(x) =
1√
2π

∫ x

−∞

exp(−u2

2
)du.

Proof. See Appendix C.

The function Φ(x) is the cumulative distribution function,
that is monotonically increasing with respect to x. Hence,
Pa(x) is also a monotonically increasing function. The prob-
ability to assign ∆ to its true cluster is

∑2
i=1 P (∆ ⊆ Ci)P∆(i | i) = Pa(s(∆)).
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Similarly, we have the mistake probability Pa(−s(∆)). The
chance of correct assignments goes up rapidly with the in-
crease of the size of the chunklet, while that of mistake as-
signments decreases. In other words, if there are more data
points in a chunklet, it is more likely that ∆ is assigned to
its true cluster using Eq. 6. As there are multiple points
in a chunklet and they are independent, the chance that
all of them are far away from their true centroid is much
smaller than the chance that any of them is far from the cen-

troid. Note that
√

∑m

j=1(µ1j − µ2j)2 is exactly the distance

of the true centroids, i.e., L2,~1(~c1,~c2). The value Pa(s(∆))
becomes larger as ~c1 and ~c2 have a greater distance. There-
fore, if the two centroids are far away from each other, it
is generally easier to distinguish these two clusters and the
probability of mistake assignments is much smaller. Theo-
rem 2 reflects this intuition well.

To examine the theoretical advantage of our assignment
strategy, we compare the Average Number of Correct As-
signments (ANCA) of some well-known clustering techniques.
Specifically, assume each method can find the true centroids
in the ground truth and we would like to count on average,
how many data points in the chunklet are assigned to their
respective true cluster. The conventional K-Means [17] does
not utilize any constraints: it determines the membership
of each point individually. The probability to assign a point
~x ∈ Ci correctly is P{~x}(i | i) = Pa(1), because a single point
itself is a chunklet sized 1. Since the assignments of data
points are independent, the occurrence of correct assign-
ments is a binomial process with n = s(∆) and p = Pa(1)
[20]. Therefore, the ANCA of K-Means is

2
∑

i=1

P (∆ ⊆ Ci)
(

s(∆)
∑

j=0

j
(s(∆)

j

)(

Pa(1)
)j(

1 − Pa(1)
)s(∆)−j)

= s(∆)Pa(1).

Another approach, Constrained K-Means [30], decides the
cluster assignment for the first point in ∆ and all the rest
points in ∆ are forced to follow this decision and assigned to
the same cluster due to the must-link constraints. Therefore,
the assignments of the whole chunklet are either completely
right or wrong, which solely depend on the decision of the
first point. The chance of the first decision being correct is
P{~x}(i | i). Hence, its ANCA is

∑2
i=1 P (∆ ⊆ Ci)

(

s(∆) ∗ Pa(1) + 0 ∗ (1 − Pa(1))
)

= s(∆)Pa(1).

Interestingly, in the described scenario, the above two schemes
have the same number of correct assignments on average.
Unlike these two methods, our chunklet assignment strat-
egy makes a joint decision for all points in ∆ at once with
the chance of totally correct assignments being Pa(s(∆)).
Consequently our ANCA is

∑2
i=1 P (∆ ⊆ Ci)

(

s(∆) ∗ Pa(s(∆)) + 0 ∗ (1 − Pa(s(∆)))
)

= s(∆)Pa(s(∆)).

Because Pa(s(∆)) is far larger than Pa(1), clearly our cluster
assignment is superior.

Next, we consider the assignments of two chunklets ∆ and
∆′ with cannot-link constraints in between, which should
not be placed in the same cluster. The ANCA of K-Means
is (s(∆) + s(∆′))Pa(1). For Constrained K-Means, the cor-
rectness of the assignments is determined by the first deci-
sion of the points in the chunklets and the ANCA is also

(s(∆) + s(∆′))Pa(1). Instead, we use Eq. 7 to decide their
memberships. The two chunklets ∆ ⊆ Ci and ∆ ⊆ Cj are
placed in two different clusters, Cp and Cq, in order to min-
imize the aggregated distances (1 ≤ i, j, p, q ≤ 2, i 6= j, p 6=
q). This occurs with a probability,

P∆,∆′(p, q | i, j) =

P (∆, ∆′ are respectively assigned to Cp, Cq | ∆ ⊆ Ci, ∆
′ ⊆ Cj),

which can be computed according to the below theorem.

Theorem 3. For clusters C1, C2 and chunklets ∆, ∆′,

P∆,∆′(1, 2 | 1, 2) = P∆,∆′(2, 1 | 2, 1) = Pa(s(∆) + s(∆′)),

P∆,∆′(2, 1 | 1, 2) = P∆,∆′(1, 2 | 2, 1) = Pa(−s(∆) − s(∆′)).

Proof. See Appendix D.

Accordingly, the ANCA of our rule in Eq. 7 is the biggest,
which is (s(∆) + s(∆′))Pa(s(∆) + s(∆′)). Intuitively, when
we consider the memberships of ∆ and ∆′ together, the
cannot-link constraints actually reduce the search space of
all possible assignments and it is much more likely that a
joint decision for the two chunklets is correct. In summary,
Theorems 2 and 3 indicate that it is better to group points
into chunklets and do chunklet assignments with Eqs. 6 and
7. When we consider the memberships of more points col-
lectively (either one chunklet or two neighboring chunklets),
it is more likely that we assign them to their true clusters.

4.2 Constrained Clustering
For a given set of pairwise constraints, our Constrained

Locally Weighted Clustering (CLWC) first builds the chun-
klets and then the chunklet graph. Initially, each point in
the constraint set is a chunklet of size 1. For every must-
link constraint, we merge the chunklets containing the two
points of the constraint. This procedure continues until all
must-link constraints have been processed. Next, we con-
struct the chunklet graph by representing each chunklet as
a vertex. For each cannot-link constraint, an edge is added
between the two vertices whose chunklets enclose any one
of the points in the constraint. Eventually, an edge in the
resulting graph indicates that the chunklets of the vertices
connected by the edge (neighbor chunklets in the graph)
should belong to different clusters. The generated graph,
denoted as Gc, is used to guide the cluster assignment step
and this has implicit impacts on the updates of the new
centroids and the weights during iterations.

In each E-step, the memberships of all data points are
re-examined. For the points not participating in any con-
straints, they are assigned to their closest clusters as usual.
The main difference is that the chunklet assignment strat-
egy is applied for the points of all the chunklets in Gc. At
the start of the E-step, all chunklets are unassigned (to any
cluster). CLWC picks either one or two chunklets at a time
and decides their memberships until all the chunklets are
assigned. As there are usually a number of chunklets in Gc,
two questions need to be answered: which chunklets should
be first chosen from Gc for consideration of the memberships
and which clusters they should be assigned to.

According to Theorems 2 and 3, the probability of cor-
rect assignments of the two neighboring nodes ∆ and ∆′ is
proportional to the number of data points in they two, i.e.,
s(∆)+ s(∆′). This suggests that we should pick the biggest
chunklets first. To make decisions for chunklet ∆, it is best
to combine its assignment with that of its largest unassigned
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neighbor ∆′ if available. Only if ∆ does not have any neigh-
bors or all its neighbors have already been assigned, is the
membership of this chunklet considered singly. Specifically,
let Nu(∆) denote the set of the immediate neighbor chun-
klets of ∆ in Gc which have not yet been assigned. Define
the score for each unassigned chunklet,

score(∆) =

{

s(∆) if Nu(∆) = ∅,

s(∆) + max({s(∆′) | ∆′ ∈ Nu(∆)}) otherwise.

The max function is used in the score computation so that
a chunklet and its largest unassigned neighbor (if available)
can be decided jointly, corresponding to a smallest probabil-
ity of mis-assignments. The score of ∆ is the maximum num-
ber of data points that can be considered for the member-
ships along with ∆. Hence, if chunklet ∆ of the biggest score
(draws are broken randomly) has undetermined neighbors, it
and its largest unassigned neighbor are selected. Otherwise
only ∆ is chosen for the determination of its membership
at this time. As chunklets are assigned to clusters in the
descending order of their sizes, the assignment decisions are
generally correct and more reliable.

Next, we consider the question of how to make the as-
signment decision. When a single chunklet ∆ is in consid-
eration, some of its neighbors may already be assigned to
some clusters and therefore these clusters are blocked from
accepting ∆ due to the possible violations of the cannot-link
constraints between ∆ and its neighbors. This effectively
limits the search space for the assignment of ∆. Among all
the remaining feasible clusters, we pick the one which has
the minimum sum of squared distance between the centroid
and all the points in the chunklet. If such a cluster cannot
be found, a conflict is encountered: no matter which cluster
the chunklet is assigned to, some constraints are surely go-
ing to be broken. As to find cluster assignments to enforce
all the constraints (specifically the cannot-links) is an NP-
Hard problem [10], CLWC deals with this situation by tol-
erating some violations and assigning ∆ to its closest cluster
without considering the cannot-link constraints between it-
self and its assigned neighbor chunklets. As observed in our
experimental study, violations are indeed a rare exception.

A similar process is designed to make a joint decision for
chunklet ∆ and its neighbor ∆′. First we find cluster can-
didates for ∆ and ∆′ respectively. Among all the feasible
choices (without putting both of them in the same clus-
ter and violating the constraints with their already assigned
neighbor chunklets), we select the one that minimizes the
objective in Eq. 7. If we fail to find a feasible assignment,
this indicates that any assignments of the two chunklets will
cause conflicts with some of their assigned neighbor chun-
klets. In this case, we ignore the decisions of all the assigned
chunklets, and put ∆ and ∆′ in the clusters which minimize
the objective defined in Eq. 7. Again, constraint violations
are surely incurred, however, they rarely happen in practice.

The time complexity of our chunklet assignment algorithm
is competitive to that of the K-Means. The cost of each
iteration of K-Means is O(|X|Km) [15] in which |X| is the
size of the dataset, K is the number of clusters and m is the
dimensionality. In an efficient implementation of CLWC,
at the start of each iteration, the distances between each
chunklet and each cluster are computed first, which are used
to decide the membership of each chunklet in the subsequent
process of the iteration. The worst case time complexity of
the assignment procedure is still O(|X|Km). In addition,

our algorithm takes fewer iterations to converge compared
with K-Means, as observed in the experiments.

5. EXPERIMENTAL RESULTS

5.1 Methods and Datasets
We evaluated the clustering performance of our proposals,

LWC and CLWC and compared them with other state-of-
the-art techniques. All the methods are listed below.

1. K-Means [17]: K-Means using the default Euclidean
distance metric.

2. Bisection K-Means [36]: repeatedly partition the dataset
into two parts using K-Means.

3. PCAC [13]: K-Means over the reduced space generated
by Principal Component Analysis (PCA).

4. LPC [37]: K-Means over the reduced space generated
by Locality Preserving Projection (LPP).

5. LAC [14]: Locally Adaptive Clustering.

6. LWC: The proposed Locally Weighted Clustering.

7. COP-KMeans [30]: Constrained K-Means.

8. MPCK-Means [8]: involves both metric learning and
constraints satisfaction.

9. CLWC: The proposed Constrained Locally Weighted
Clustering.

We implemented those methods except for LPP and MPCK-
Means, which we obtained from the authors’ web sites [1,
2]. Techniques 1 through 6 are unsupervised learning ones,
while the last 3 utilize instance-level constraints to guide
the cluster assignment process as well as learning the dis-
tance metric. Since the optimal number of clusters K for
each dataset is already known, we used them in our exper-
iments. In the case that additional tuning parameters were
needed, we used the default parameters and followed the
authors’ recommendations. When they were not available,
we manually tuned and reported only the best performance.
Extensive experiments were carried out over the datasets
in Table 1. Most datasets were downloaded from the UCI
repository [23], among which the Digits and Letter datasets
were sampled by respectively extracting characters 3, 8, 9
and A, B, as in [5, 8]. The Protein dataset was used in [32].

dataset N m K

Soybean Small 47 35 4
Protein 116 20 6
Iris Plant 150 4 3
Wine Recognition 178 13 3
Heart Stat Log 270 13 2
Ionosphere 351 34 2
Balance Scale 625 4 3
Wisconsin Breast Cancer 683 9 2
Digits (3,8,9) 1008 16 3
Letter (A,B) 1555 16 2

Table 1: Datasets used in the experiments
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5.2 Evaluation Metrics
We used two common metrics to evaluate the qualities of

clustering outputs of different methods. The first metric is
the Rand Index [26]. Given the membership φc(~x) for each
point ~x by a clustering algorithm, a pairwise relation Rc is
defined for each pair of points, similar to Eq. 5. Then the
Rand index is the percentage of pairs in the relations Rg

and Rc, which agree with each other, i.e,

Rand(φg, φc) =

∑N

i=1

∑N

j=(i+1) 1(Rg(~xi, ~xj) − Rc(~xi, ~xj))

(N−1)N
2

,

in which 1(x) is the indicator function, equal to 1 if x =
0, and 0 otherwise. The second metric is the Normalized
Mutual Information [5, 37], which measures the consistency
of the clustering output compared to the ground truth. It
reaches the maximum value of 1 only if φc perfectly matches
φg and the minimal zero if the assignments of φc and φg are
independent. Formally,

NMI(φg, φc) =

∑K

i=1

∑K

j=1 pg,c(i, j) log
pg,c(i,j)

pg(i)pc(j)

min(
∑K

i=1 pg(i) log 1
pg(i)

,
∑K

j=1 pc(j) log 1
pc(j)

)
,

where pg(i) is the percentage of points in Cluster i according

to the ground truth, i.e. pg(i) =
∑N

k=1 1(φg(~xk)−i)

N
. Similarly,

pc(j) =
∑N

k=1 1(φc(~xk)−j)

N
and pg,c(i, j) is the percentage of

points that belong to Cluster i in φg and also Cluster j in

φc, i.e. pg,c(i, j) =
∑N

k=1 1(φg(~xk)−i)1(φc(~xk)−j)

N
.

The above defined metrics were used to evaluate the accu-
racy of the clustering algorithms in addition to the number
of violated constraints for the semi-supervised ones. We will
report the number of iterations our proposals take to con-
verge compared to the efficient techniques.

5.3 Unsupervised Clustering Accuracy
Each of the six unsupervised clustering methods was run

100 times with different initializations over all the datasets.
For LPC and PCAC, we tested them with all the possi-
ble reduced dimensionalities and recorded their best perfor-
mances. Similarly we tried different h’s for LAC. The aver-
aged Rand index and NMI are summarized in Table 2. The
methods that performed the best on different datasets with
regard to a particular metric are highlighted (boldface).

In general, the two evaluation metrics are quite consistent.
Although no single method can outperform all the others
for all the datasets, the proposed LWC is effective in many
cases. According to the Rand index (or NMI), the LWC has
the best performances in 4 (5 for NMI) datasets. For the
other datasets, it is within 3.9% (respectively 8.8%) com-
pared to the best method except in the sampled hand digits
dataset. In addition to good overall performance, LWC does
not require any parameter tuning. Thus, our method is an
advanced unsupervised method for the real-world clustering
problems.

5.4 Semi-Supervised Clustering Accuracy
To generate constraints, we adopted the methodology in

[29, 30]: for each constraint, two data points were randomly
picked from the dataset and if both were in the same cluster
in the ground truth, a must-link constraint between them
was generated. Otherwise it was a cannot-link constraint.
In each dataset, totally 1000 sets of constraints of differ-

ent sizes were created (every 50 sets were of the same size),
typically ranging from 50 to 1000 constraints (25 to 500
for the Soybean dataset). The semi-supervised methods,
COP-KMeans, MPCK-Means and the proposed CLWC were
tested over all constraint sets, whose average performances
are reported in Table 3 and Figures 1(a) to 1(f). Since
COP-KMeans strictly enforces all the constraints, for many
datasets, it failed to produce any feasible clustering parti-
tions (with different initializations) when given more than
100 constraints. We therefore only report its performances
in experiments with a small number of constraints.

As shown, CLWC generally produces much better clusters
compared to the other two methods: the accuracy curves
of CLWC are almost always higher than those of MPCK-
Means for the datasets. As the number of the constraints
becomes larger, indicating more partial information is used
to guide the clustering process, the accuracy of both CLWC
and MPCK-Means improves consistently. Note that the per-
formance curves of MPCK-Means may drop when given a
small number of constraints, and the performances under
constraints may be even a little worse than those without
constraints for several datasets, for example, the perfor-
mance degradation in the wine dataset under around 300
constraints. This is consistent with observations in [8], which
is due to the fact that its metric learning may become biased
when there is not enough information to train the metric pa-
rameters. It is interesting to observe that CLWC does not
suffer this problem, having a much smoother performance
with additional constraints; there are rarely noticeable ‘dips’
in the performance of CLWC.

Although our constrained clustering algorithm does not
guarantee the satisfaction of all constraints, only a small
number of constraints were observed broken by our method
in the experiments. The average numbers of violated con-
straints for the datasets are shown in Figures 2(a) - 2(c):
they grow slowly as the number of pairwise constraints in-
creases and are much smaller compared to those of MPCK-
Means.

5.5 Clustering Efficiency
We summarize the average number of iterations the clus-

tering algorithms took to reach convergence in Table 4. The
4th and 7th columns are the numbers of the constraints in
use. Compared with K-Means, which is an efficient algo-
rithm [18], the LWC algorithm converges fairly quickly and
it took a comparable number of iterations to generate the
clusters. The CLWC algorithm generally took even fewer it-
erations to converge than K-Means and MPCK-Means, and
the more constraints were given, the faster CLWC completed
the data partition. Therefore, our proposals are also quite
efficient.

6. CONCLUSIONS
In this paper, we proposed to use local weighting vectors

in order to capture the heterogeneous structures of data clus-
ters in the feature space. Each set of weights defines the sub-
space spanned by the corresponding cluster. We integrated
the constrained learning into our locally weighted clustering
algorithm. A set of chunklets are built upon constraints,
whose points are assigned to clusters collectively. Theoreti-
cal analysis and experiments have confirmed the superiority
of our new proposals.

Currently, we are investigating the proposed technique for
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dataset K-Means Bisection PCAC LPC LAC LWC
Rand NMI Rand NMI Rand NMI Rand NMI Rand NMI Rand NMI

Soybean 0.847 0.788 0.852 0.767 0.851 0.798 0.856 0.833 0.853 0.809 0.857 0.810
Protein 0.774 0.392 0.783 0.405 0.787 0.400 0.765 0.335 0.778 0.408 0.762 0.372
Iris 0.853 0.648 0.858 0.695 0.898 0.800 0.924 0.832 0.861 0.743 0.899 0.823
Wine 0.709 0.436 0.727 0.396 0.710 0.436 0.710 0.440 0.861 0.696 0.884 0.741

Heart 0.516 0.019 0.516 0.019 0.516 0.019 0.524 0.031 0.504 0.048 0.617 0.181

Ionosphere 0.589 0.137 0.589 0.137 0.590 0.137 0.574 0.107 0.589 0.138 0.566 0.126
Balance 0.582 0.114 0.576 0.109 0.586 0.121 0.586 0.124 0.589 0.128 0.589 0.129

Breast 0.925 0.752 0.925 0.755 0.926 0.755 0.924 0.753 0.891 0.686 0.927 0.757

Digits(3,8,9) 0.842 0.777 0.908 0.801 0.861 0.786 0.851 0.800 0.657 0.372 0.789 0.701
Letter(A,B) 0.777 0.474 0.775 0.473 0.777 0.474 0.890 0.731 0.816 0.556 0.889 0.734

Table 2: Accuracy of unsupervised clustering algorithms.

dataset constraint COP-KMeans MPCK-Means CLWC constraint MPCK-Means CLWC
count Rand NMI Rand NMI Rand NMI count Rand NMI Rand NMI

Soybean 25 0.848 0.734 0.936 0.881 0.873 0.790 75 0.935 0.871 0.935 0.862
Protein 50 0.778 0.382 0.795 0.431 0.773 0.390 200 0.828 0.509 0.824 0.501
Iris 50 0.861 0.723 0.912 0.804 0.937 0.856 100 0.943 0.854 0.977 0.930

Wine 50 0.714 0.388 0.919 0.793 0.924 0.821 100 0.889 0.707 0.958 0.888

Heart 100 0.525 0.020 0.586 0.126 0.802 0.500 300 0.799 0.495 0.967 0.881

Ionosphere 100 0.556 0.085 0.592 0.148 0.594 0.216 300 0.691 0.294 0.937 0.791

Balance 100 0.604 0.160 0.593 0.134 0.598 0.147 300 0.687 0.311 0.699 0.339

Breast 100 0.904 0.702 0.908 0.713 0.934 0.781 300 0.893 0.673 0.967 0.874

Digits(3,8,9) 150 0.877 0.730 0.773 0.651 0.790 0.658 500 0.833 0.671 0.929 0.832

Letter(A, B) 200 0.848 0.606 0.854 0.626 0.900 0.740 500 0.850 0.606 0.931 0.802

Table 3: Accuracy of semi-supervised clustering algorithms.

different application domains. In particular, we have imple-
mented a content-based image retrieval system [9]. We are
also studying other approaches such as nonnegative matrix
factorization and random walk techniques for constrained
locally weighted clustering.
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Figure 1: Accuracy of semi-supervised clustering algorithms.
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APPENDIX

A. PROOF OF THEOREM 1
To solve the optimization problem, we use Lagrange Mul-

tipliers. Define:

F =

N
∑

i=1

L2
2(~xi,~cφc(~xi)) −

K
∑

k=1

λk(

m
∏

j=1

wkj − 1)

=
K

∑

k=1

∑

~x∈Ck

m
∑

j=1

wkj |xj − ckj |2 −
K

∑

k=1

λk(
m
∏

j=1

wkj − 1).

For all 1 ≤ k ≤ K, 1 ≤ j ≤ m, let

∂F

∂ckj

=
∑

~x∈Ck

2wkj(ckj − xj) = 0.

As wkj 6= 0, then we get,

ckj =
1

|Ck|
∑

~x∈Ck

xj .
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Similarly, let

∂F

∂wkj

=
∑

~x∈Ck

|xj − ckj |2 − λk

m
∏

j′=1,j′ 6=j

wkj′

=
∑

~x∈Ck

|xj − ckj |2 −
λk

wkj

= 0.

Then we have,

wkj =
λk

∑

~x∈Ck
|xj − ckj |2

.

As for 1 ≤ k ≤ K,
∏m

j=1 wkj = 1, we have

λk =
(

m
∏

j=1

(
∑

~x∈Ck

|xj − ckj |2)
) 1

m
.

The second order partial derivatives of F are computed as:






∂2F

∂c2
kj

∂2F
∂ckj∂wkj

∂2F
∂wkj∂ckj

∂2F

∂w2
kj






=

[

2
∑

~x∈Ck
wkj

∑

~x∈Ck
2(ckj − xj)

∑

~x∈Ck
2(ckj − xj)

λk

w2
kj

]

.

Its determinant is positive at the derived optimal weights
and centroids, and therefore, they represent a minimum.

B. PROOF OF CONVERGENCE OF LOCALLY
WEIGHTED CLUSTERING

Corollary 1. The Locally Weighted Clustering Algorithm
(Algorithm 1) converges to a local minimum of the objective
function defined in Eq. 2.

Proof. The objective function f is defined for the given
assignments φ and centroids ~c and weights ~w:

f(φ,~c, ~w) =

N
∑

i=1

L2
2, ~wφ(~xi)

(~xi,~cφ(~xi)).

Algorithm 1 starts from an initial assignment and runs from
iteration to iteration. Each iteration consists of two steps: to
determine cluster assignments (E-step, Line 2 in Algorithm
1) and to compute centroids and weights for individual clus-
ters (M-step, Line 3).

Formally, let ~ci, ~wi and φi
c respectively denote the cen-

troids, weights, assignments derived in the ith iteration. ~c0

and ~w0 are the initial configuration, while in the algorithm
φ0

c is not initialized and can be any assignment. In φi
c, each

point ~xi is assigned to its closest cluster according to weights
and centroids in the last iteration, ~ci−1 and ~wi−1. Therefore,
each E-step reduces the objective value, i.e.,

f(φi
c,~c

i−1
, ~w

i−1) ≤ f(φi−1
c ,~c

i−1
, ~w

i−1).

In each M-step, for the given φi
c, the optimal ~ci and ~wi are

computed using Eqs. 3 and 4 (as in Appendix A). Hence,
each M-step reduces the objective value, i.e.,

f(φi
c,~c

i
, ~w

i) ≤ f(φi
c,~c

i−1
, ~w

i−1).

Overall, we have f(φi
c,~c

i, ~wi) no greater than f(φi−1
c ,~ci−1, ~wi−1).

It is guaranteed that Algorithm 1 reduces the objective value
in iterations.

The clustering problem is to group N points into K dis-
joint sets and there are only a finite number of data parti-
tions. For a given φc, the minimal objective value is deter-
mined for the corresponding optimal centroids and weights.

Therefore, the objective value for a given assignment is lower-
bounded. The objective value in Algorithm 1 decreases
gradually until the value reaches a fixed point. This fixed
point is a local minimal of f(φ,~c, ~w).

C. PROOF ON ONE CHUNKLET
There are K clusters, C1, C2, . . . , CK . For cluster Ci, the

data values in the jth dimension follow the normal distribu-
tion N(µij , 1).

For a chunklet ∆ that belongs to cluster s in the ground
truth, (∆ ⊆ Cs), the conditional probability that the sum of
distances from points in ∆ to cluster i is smaller than that
to cluster p, (i 6= p), is denoted as,

Pd,1(i, p | s) = P
(

∑

~x∈∆

L2
2,~1(~x,~ci) <

∑

~x∈∆

L2
2,~1(~x,~cp) | ∆ ⊆ Cs

)

.

Theorem 4. For 1 ≤ i, p, s ≤ K, i 6= p we have

Pd,1(i, p | s)

= Φ
(−s(∆)

∑m

r=1(µpr − µir)µsr + 1
2
s(∆)

∑m

r=1(µ
2
pr − µ2

ir)
√

s(∆)
∑m

r=1(µpr − µir)2

)

.

Proof. We can rewrite the left hand side (LHS) as below,

LHS = P
(

∑

~x∈∆

m
∑

r=1

((xr − µir)2 − (xr − µpr)2) < 0 | ∆ ⊆ Cs

)

= P
(

∑

~x∈∆

m
∑

r=1

(µpr − µir)xr <
1

2
s(∆)

m
∑

r=1

(µ2
pr − µ2

ir) | ∆ ⊆ Cs

)

.

As xr follows N(µsr, 1), denoted as xr ∼ N(µsr, 1), then

(µpr − µir)xr ∼ N((µpr − µir)µsr, (µpr − µir)
2).

Define Y =
∑

~x∈∆

∑m

r=1(µpr − µir)xr, following a normal
distribution,

N(s(∆)
∑m

r=1(µpr − µir)µsr, s(∆)
∑m

r=1(µpr − µir)
2).

We can normalize Y into a random variable of the standard
normal distribution, YN ∼ N(0, 1), i.e.,

YN =
Y − s(∆)

∑m

r=1(µpr − µir)µsr
√

s(∆)
∑m

r=1(µpr − µir)2
.

Therefore, we have,

LHS = P
(

YN <
−s(∆)

∑

r(µpr − µir)µsr + 1
2
s(∆)

∑

r(µ2
pr − µ2

ir)
√

s(∆)
∑m

r=1(µpr − µir)2

)

.

As YN ∼ N(0, 1), the above equation can be further rewrit-
ten using the cumulative distribution function Φ of N(0, 1).

According to the definition of Pd,1(i, p | s), for 1 ≤ i, p, s ≤
K, we have

Pd,1(i, p | s) = 1 − Pd,1(p, i | s).

As the probability distribution function of N(0, 1) is sym-
metric with regard to the x = 0, there is a special property
of its cumulative function Φ(x), that is,

Φ(x) + Φ(−x) = 1.

Therefore, we have,

Pd,1(i, p | s) = Φ(A),

Pd,1(p, i | s) = Φ(−A),
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in which

A =
−s(∆)

∑m

r=1(µpr − µir)µsr + 1
2
s(∆)

∑m

r=1(µ
2
pr − µ2

ir)
√

s(∆)
∑m

r=1(µpr − µir)2
.

DISCUSSIONS:

According to Theorem 4, the event that the sum of dis-
tances of the points in ∆ ⊆ Cs to its true cluster Cs is
smaller than that to some cluster Cp, occurs with the prob-
ability,

Pd,1(s, p | s) = Φ
(

√

s(∆)

2

√

√

√

√

m
∑

r=1

(µpr − µsr)2
)

.

In chunklet assignment, in case of two clusters C1 and C2,
the chance to place ∆ correctly is Pd,1(1, 2 | 1) (or Pd,1(2, 1 |
2)). This is the conclusion in Theorem 2. In case of more
than two clusters, ∆ is assigned to cluster i if cluster i is
the one closest to the points in the chunklet, i.e., for all
1 ≤ p ≤ K, and p 6= i,

∑

~x∈∆ L2
2,~1

(~x,~ci) <
∑

~x∈∆ L2
2,~1

(~x,~cp).

Each of these events,
∑

~x∈∆ L2
2,~1

(~x,~ci) <
∑

~x∈∆ L2
2,~1

(~x,~cp),

is not necessarily independent. Consider there are 3 clusters
in 2-dimensional space, ~c1 = 〈1, 0〉, ~c2 = 〈2, 0〉, ~c3 = 〈3, 0〉,
it is true that, for any point ~x, if it is closer to c1 than c2,
then ~x is also closer to c1 than c3. Thus, for this example,

P
(

∑

~x∈∆

L2
2,~1

(~x,~c1) <
∑

~x∈∆

L2
2,~1

(~x,~c2)
⋂

∑

~x∈∆

L2
2,~1

(~x,~c1) <
∑

~x∈∆

L2
2,~1

(~x,~c3) | ∆ ⊆ C1

)

= Pd,1(1, 2 | 1) 6= Pd,1(1, 2 | 1)Pd,1(1, 3 | 1).

Although the probability to assign ∆ correctly is not ex-
pressed in a closed form for more than two clusters, gen-
erally this probability is related to Pd,1(s, p | s). The more
data points the chunklet ∆ has, the larger the positive value√

s(∆)

2

√
∑m

r=1(µpr − µsr)2 is. Hence, the corresponding prob-
ability Pd,1(s, p | s) is larger, and Pd,1(p, s | s) is smaller. It
is more likely that the points in ∆ are close to the cluster
they belong to, as a group. Consequently, the probability to
decide the membership of ∆ correctly becomes larger with
the increase of the size of the chunklet, s(∆).

D. PROOF ON TWO CHUNKLETS
For chunklets ∆ ⊆ Cs and ∆′ ⊆ Ct, (s 6= t, i 6= p∩ j 6= q),

denote

Pd,2(i, j, p, q | s, t)

= P
(

∑

~x∈∆ L2
2,~1

(~x,~ci) +
∑

~x∈∆′ L2
2,~1

(~x,~cj) <

∑

~x∈∆ L2
2,~1

(~x,~cp) +
∑

~x∈∆′ L2
2,~1

(~x,~cq) | ∆ ⊆ Cs, ∆
′ ⊆ Ct

)

.

Theorem 5. For 1 ≤ i, j, p, q, s, t ≤ K, s 6= t, i 6= p∩ j 6=
q, we have

Pd,2(i, j, p, q | s, t) = Φ
( A

B

)

,

in which

A = −s(∆)
∑m

r=1(µpr − µir)µsr − s(∆′)
∑m

r=1(µqr − µjr)µtr

+ 1
2
s(∆)

∑m

r=1(µ
2
pr − µ2

ir) + 1
2
s(∆′)

∑m

r=1(µ
2
qr − µ2

jr),

B =
√

s(∆)
∑m

r=1(µpr − µir)2 + s(∆′)
∑m

r=1(µqr − µjr)2.

Proof. The left hand side (LHS) can be rewritten as,

LHS = P
(

∑

~x∈∆

m
∑

r=1

(µpr − µir)xr +
∑

~x∈∆′

m
∑

r=1

(µqr − µjr)xr <

1

2
(
∑

~x∈∆

m
∑

r=1

(µ2
pr − µ2

ir) +
∑

~x∈∆′

m
∑

r=1

(µ2
qr − µ2

jr)) | ∆ ⊆ Cs, ∆′ ⊆ Ct

)

.

Define Y =
∑

~x∈∆

∑

r(µpr −µir)xr +
∑

~x∈∆′

∑

r(µqr −µjr)xr,
that follows a normal distribution with the mean

s(∆)
∑m

r=1(µpr − µir)µsr + s(∆′)
∑m

r=1(µqr − µjr)µtr,

and the variance

s(∆)
∑m

r=1(µpr − µir)
2 + s(∆′)

∑m

r=1(µqr − µjr)
2.

Y can be normalized, YN ∼ N(0, 1), and we can derive the
result of this theorem in the similar process in Theorem
4.

According to the definition, for 1 ≤ i, j, p, q, s, t ≤ K, we
also have,

Pd,2(i, j, p, q | s, t) = 1 − Pd,2(p, q, i, j | s, t).

DISCUSSIONS:

According to Theorem 5, we have,

Pd,2(s, t, p, q | s, t)

= Φ
(1

2

√

√

√

√s(∆)

m
∑

r=1

(µpr − µsr)2 + s(∆′)

m
∑

r=1

(µqr − µtr)2
)

.

Without prior knowledge, if the distances among cluster cen-
troids are the same, (i.e., for i, j, L2,~1(~ci,~cj) is some con-
stant), then

Pd,2(s, t, p, q | s, t) = Φ
(

√

s(∆) + s(∆′)

2

√

√

√

√

m
∑

r=1

(~csr − ~ctr)2
)

.

For two clusters C1 and C2, the probability to determine
the memberships of ∆ and ∆′ with no mistakes is related
to Pd,2(1, 2, 2, 1 | 1, 2) and Pd,2(2, 1, 1, 2 | 2, 1). This is the
conclusion in Theorem 3. Similar to the analysis of one
chunklet in the previous section, in case of more than two
clusters, the probability to assign ∆ and ∆′ correctly is not
necessarily equal to

K
∏

p=1,q=1,p 6=s∩q 6=t

Pd,2(s, t, p, q | s, t).

In general, if the sizes of the two chunklets s(∆) + s(∆′)
are bigger, the value (s(∆)+s(∆′))

∑

r(µsr −µtr)
2 is larger,

so is s(∆)
∑

r(µpr − µsr)
2 + s(∆′)

∑

r(µqr − µtr)
2. There-

fore, the probability is larger that ∆ and ∆′ are closer
to their true clusters rather than any other clusters, and
Pd,2(p, q, s, t | s, t) is smaller. Hence, the probability to de-
cide the membership of the two chunklets correctly is gen-
erally larger with more data points in ∆ and ∆′.
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