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Abstract 
 
In the future, intelligent rooms, with embedded 
multimodal sensory systems and semantic event 
databases, will support effective and efficient 
transactions of human activities and interactions.  We 
are pursuing rigorous experimental investigations 
towards the development of such intelligent 
environments. In this paper we describe the overall 
system specification and general framework guiding our 
development. We also present details of the modules 
associated with the control and interpretation of video 
information acquired by a network of cameras and a 
novel semantic event database for characterization and 
recognition of activities. Evaluations of the system in a 
custom-built intelligent room are also presented. 
 
Introduction 
 
Intelligent environments provide numerous challenges in 
the machine perception area. It is strongly influencing 
recent research in the computer vision field [1]. 
Significant advances have been made in face recognition 
[2, 3], people tracking [4] and gesture recognition [5]. In 
audio analysis, much progress has been made in speaker 
and speech recognition [6] and source localization [7, 8]. 
There is a growing interest in multimodal systems, 
which integrate different modalities, such as audio and 
video [9]. One type of systems analyze gestures and 
spoken words for HCI applications to enable more 
natural “Put That There” type of interaction [10, 11]. 
Also, lip reading has been shown to improve speech 
recognition [12, 13].  An interesting system uses visual 
tracking information to drive the steering orientation of 
phased array microphones to emphasize audio input 
from the user that freely moves [14].  
 
Our group is pursuing investigations for systematic 
development of Intelligent Environments where 
networks of cameras and microphone arrays serve as the 
sources of multimodal sensory information [8]. Figure 1 
shows a conceptualization of an intelligent room with 
networks of cameras and microphone arrays, which are 
unobtrusively imbedded in the room. The research 
challenge is for the system to autonomously and robustly 

capture and maintain awareness of the objects and events 
in the space in a dynamic manner. 
 

 
Figure 1. An Intelligent Room, with built-in infrastructure for 
efficient and effective transactions of human activities and 
interactions with participants from the same or remote physical 
spaces 
 

 
Figure 2. The AVIARY: Audio-Video Interactive Appliances, 
Rooms and sYstems. A testbed for experimental development 
and evaluation has four rectilinear cameras, four 
omnidirectional cameras and twelve microphones embedded in 
a room 
 
The system design, development, and evaluation are 
accomplished in a multipurpose testbed called AVIARY 
for Audio-Video Interactive Appliances, Rooms and 
sYstems (Figure 2). These systems are required to 
capture, process, transmit and display audio-visual 
information in an integrated manner. Currently, a room 
is equipped with a network of four omnidirectional 
cameras, four pan/tilt/zoom rectilinear cameras and 



  

twelve microphones. Robustness to environment is 
essential since it is not practical to dictate to the user a 
specific rigid environment. In addition, it is not unusual 
to expect the environment of the user to change, for 
example light getting turned on, blinds and curtains 
pulled up or the room furniture getting reconfigured. It is 
important that the systems still be able to carry out their 
task.  To meet these requirements, systems need to be 
equipped with the following main capabilities:  
 
§ Adaptive: Systems must have the ability to adapt. 

This provides the systems the ability to deal with 
changes that take place in the environment. 

§ Multimodal: Systems must be equipped with 
proper information processing capabilities. This not 
only includes superior unimodal processing 
capability, but also well integrated multi-modal 
sensory information processing capabilities.  This 
will result in more robust systems with broader 
range of capabilities 

§ Active and Self-Calibrating: Systems must have 
the ability direct is attention to “interesting” events 
and also to self calibrate.  

§ Interactive: Systems should be able to utilize 
semantic event databases to guide human-
environment interactions. Semantic event databases 
store abstracted past states (events) of the intelligent 
environment and active sensory networks. These can 
be flexibly queried to guide human/automatic 
control of active sensory network  and adaptation  of 
processing and analysis algorithms. 

 
Also, if mobility of the user is allowed, then handheld or 
head-mounted microphones are not appealing. Multiple 
microphones offer an attractive alternative. However, 
mobility comes at a price, and poses the following 
challenges: 
 
§ The received signal is distorted by the room acoustic 

properties, i.e. reverberations. This not only has 
ramifications on the quality of the audio signal, but 
also on any post-processing that maybe 
contemplated, e.g. speech recognition. Recovering 
the speech signal requires solving a difficult 
deconvolution problem. More importantly, the room 
acoustical properties are dependent on the user 
environment, can vary widely, and hard to account 
for a priori. Self-calibration is essential for the 
system to function in such diverse environments. 

§ The received signal is more susceptible to ambient 
noise and calls for clever spatial filtering techniques 
to enhance signal to noise ratio. In particular, the 
noise sources are not stationary (spatially and 
temporally) requiring systems to be adaptable. 

§ Vision system has to operate efficiently and robustly 
to conditions and events of the dynamic world. 
Novel approaches for real-time 3D modeling, real-
time visualization and interaction, as well as real-
time photorealistic rendering are required.  The 
tracking of the speaker also has to be robust and 
fast. 

 
Interactive systems developed in the AVIARY typically 
function either of the two modes: (1) initialization or 
(2) active mode. The system initialization refers to the 
situation where the system is learning its environment 
and carrying out the task of self-calibration in 
preparation for its run-time functions. The nature and 
abilities of the system during the system initialization 
dictates its robustness to environmental variables. 
During the active mode operation, the system 
implements useful functions such as acquiring and 
interpreting audio-visual signals thereby enabling 
effective interactions and providing a convenient user 
interface. 
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Figure 3. Active mode operational flowchart for human-
environment interactions in the AVIARY. 
 
Multi-level audio-video integration  
 
The overall operational flow governing human-
environment interactions in the AVIARY is summarized 
in Figure 3. As illustrated, the system is configured to 
fully utilize information provided by both audio and 
video sensory modalities. Integration of the audio-video 
information is accomplished at three levels:  
 
§ Signal Anlysis Level: At this level the system 

considers results of  video segmentation, tracking 



  

and audio source localization for robust localization 
and classification of objects and people 

 
§ Context Analysis Level: At this level the system 

performs face, voice, speech, gesture and pose 
recognition in an integrated manner. For example, 
face recognition and voice recognition algorithms 
would operate in concert for more reliable 
recognition. Other examples are integration of 
speech recognition and lip reading and “Put That 
There” type of multimodal interaction.  

 
§ Directed Attention Level: At the third level, 

analysis of one modality could direct or focus the 
attention of the part of the system that analyzes the 
other modality. One example would be in a 
teleconferencing setting with multiple people 
present. When one person starts to talk, their voice 
(or approximate location) would be recognized and 
attention of one or more PTZ cameras could be 
directed to that person’s face. The video from one 
such camera would be transmitted alone, or 
combined with views from other cameras that have 
a view of the other participants. As the precise 
location of that person is determined by the video 
tracker, the phased array microphones could be 
steered toward them to enable accurate speech 
recognition. The system would also focus its 
attention on the “interesting” person by employing 
more sophisticated or expensive algorithms that are 
required for analysis of that person’s actions, such 
as lip reading, facial expression or gesture 
recognition. 

 
Omnidirectional camera network and audio 
processing modules 
 
The omnidirectional vision sensor (ODVS) network 
embedded in the AVIARY has proven to be most useful 
for a number of tasks required in the system initialization 
and active mode operations. We have developed a 
multiple-, wide-baseline stereo system for accurate 
geometric modeling of the room [15]. We have also 
developed a visual modeling system, where accurate 3-D 
range information and color information are 
simultaneously extracted [16]. The ODVS network also 
allows us to track multiple people [17] and to 
dynamically generate the views associated with the 
movement of the persons in the room [18, 19]. The audio 
information is acquired using an array of twelve 
microphones and robust techniques for room acoustic 
modeling and speaker localization are being developed 
[8]. 
 

Rectilinear camera network and semantic event 
database 
 
In the remainder of this paper, we will focus on the 
rectilinear camera network processing. We present our 
research related to a number of important and unique 
features of the “active” mode operation of the system. 
Specifically, we will be describe the following three 
important modules of the system. 
 
§ A robust and efficient human tracking module 

which utilizes a four-camera network. 
§ An active camera control for capturing frontal view 

of a person moving in the room. The module 
performs camera selection for best view and also 
automatic panning, tilting, and zooming for taking a 
close up image. This module provides inputs for the 
face detection and person recognizer modules.  

§ A semantic event database system which allows 
activity analysis (real-time as well as historical) 
using the results of the tracking module and a 
powerful language for characterizing complex 
activities as the spatio-temporal compositions of 
semantic activities. 

 
Rectilinear camera network 
 
We now concentrate on describing the analysis of video 
information, which allows realization of the above 
multilevel, multimodal sensory information integration.  
 
Video Segmentation Module. The segmentation is 
based on background subtraction. First and second order 
statistics for background pixels are continuously 
updated. Due to the use of a forgetting factor, 
background model is adaptable to slow changes. 
Foreground pixels are segmented using the Neyman-
Pearson test and grouped into blobs. Blob centroids for 
all cameras are computed and serve as input to the 
tracking algorithm. See [20] for details of the 
segmentation algorithm. 

 
The Multi-Camera 3-D Tracking Module. The role of 
the tracker is to track multiple objects in 3D using 
segmentation results from different cameras with highly 
overlapping fields of view. The cameras are calibrated 
using Tsai’s algorithm. For details of the algorithm, see 
[21]. The tracker is capable of tracking multiple objects 
simultaneously. It maintains a list of Kalman filters, one 
for each object in the scene. The real-time nature of the 
system requires the tracker to produce updated and 
predicted positions of each object for the current frame. 
Also, the availability of up-to-date prediction allows us 
to feed back the information to the segmentation 



  

algorithm, which can increase its sensitivity in the areas 
where objects are expected to be present.  
 
We evaluated the accuracy of the tracking algorithm on 
real data. Three different paths were measured and 
marked on the floor of a room (Figure 4). First set of 
sequences was recorded with three different persons 
walking each of the paths. For the second set, two people 
would walk at the same time on two different paths. 
Figure 5 shows ideal and measured paths for one 
experiment with two people. The tracks very accurately 
followed the ideal paths with maximum error in all 
experiments being around 200 mm and average error 
around 30 mm. That is a very good accuracy, especially 
if it’s taken into account that the error in these 
experiments is influenced by calibration and 
segmentation errors and the errors in measuring the path, 
drawing it on the floor and walking on it. 

 

 
Figure 4. The world coordinate system and the measured paths 
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Figure 5. xy plots of tracks for two people in the scene 

 
Active Camera Control Module. Four pan/tilt/zoom 
cameras (Canon VC-C3), controlled through an RS-232 
link, are used in this system. Since the cameras are 
calibrated, it is trivial to compute pan and tilt parameters 
that bring an object at a known location to the center of 
view. Calibration of the zoom was done using the 
method described in [22], which enables us to find the 
zoom value that makes the size of the face in the image 
sufficient for recognition. 
 
The current use of the PTZ capabilities of cameras is for 
taking snapshots of objects and of people’s faces for face 

recognition and archiving. We also plan to use cameras 
for focusing of attention of the video-processing part of 
the system to “interesting” objects and locations. 
 
As a new track appears in the room, it is classified as 
object or person based on its shape and size. If person is 
detected, the location of the head is estimated to be at the 
top fifth of the height. Best view camera is chosen to be 
the one for which the negative inner product of the 
viewing direction and average person’s velocity in the 
last few frames is the largest. In other words, the camera 
that the person was walking toward in the recent frames 
is chosen to be the one that the person is most likely 
facing. If the track is classified as object, the snapshot of 
the whole object is taken and stored. 
 

 
(a) 

 
(b) 

Figure 6. (a) example frame with the projections of 3D object 
locations onto the image planes (b) user has the view of the 
room floorplan with projections of tracks onto the floor plane. 
When a point belonging to a track is selected, the snapshot of 
the object/face is shown with the identification information. 



  

Integrated Performance: Person Tracking, Close-up 
Imaging, and Recognition. Example of the system 
operation is given in Figure 6. The system interface 
shows the video from the four cameras with projections 
of the 3D tracks to the image planes shown as colored 
crosshairs. Also, a floorplan of the room is shown with 
projections of tracks on the floor plane. If user clicks on 
one of the tracks in this view, the snapshot of the 
face/object is shown with the recognition result. 
 
Semantic Event/Activity Databases 
 
In an intelligent room environment, there is the inherent 
notion of agents performing activities. Being able to 
retrieve flexibly definable past activities for analysis 
purposes is an important goal of such intelligent 
environments. Such analysis produces clusters of usual 
behavior that in turn can be used to detect unusual 
behavior in real time in such environments. For example, 
in a room usually people may walk around certain fixed 
paths to reach a computer, work on it, and then leave the 
region of the computer. An activity involving someone 
climbing a table, reaching the computer, loitering 
around the computer for some time, and then eventually 
jumping off the table may be an instance of an unusual 
activity. AVIARY architecture provides for a database 
framework for storing, flexibly defining, and retrieving 
activity information at high levels of semantic 
granularities. 
 
At raw representational level, multiple sensors produce 
huge amount of sensory information. Such information 
can be analyzed to detect various activities, but the 
processing of this huge amount of data has prohibitive 
complexity. As a result, it is important to store and 
process only meaningful semantic information. One of 
the goals of such systems is to provide abstractions for 
dealing with meaningful semantic information. The 
multi-dimensional feature sets of objects is one such 
abstraction that is commonly used in the fields of multi-
sensory, visual, and multimedia information systems. 
Objects of the system may be the observed mobile 
entities or spatial regions. Features are the basic domain-
dependent semantic information associated with 
observed mobile objects or spatial regions. Finding other 
categories of high level semantic abstractions is an open 
and challenging field of research in processing of 
semantic information. The AVIARY database 
framework uses semantic abstractions of events, 
activities, and behaviors of associated environmental 
entities. An activity-of-interest is a complex spatio-
temporal fusion of multi-sensory information over a 
large spatio-temporal extent. In our model we break 
down the complex process of defining a complex 
activity-of-interest into three simpler processes of 

defining events, defining activities through specification 
of spatio-temporal composition rules, and defining 
behaviors that are patterns of activities. 
 
An event usually represents the state-transition of 
observed mobile objects or spatial regions. An event is a 
detectable atomic semantic unit, and the environment at 
any point in time is represented by a collection of 
occurred events. In the model presented here, we 
constrain an event to have bounded temporal extent. 
Such events represent complex spatio-temporal fusion of 
multi-sensory information in the intelligent environment 
scenario. The bounded extent defines the duration of 
state-transition that approaches zero, and includes the 
temporal uncertainty that is associated with either the 
detection or the definition of an event. An activity is a 
spatio-temporal composition of events. In this work, we 
focussed only on the temporal aspects of activity 
compositions. The database stores semantic events with 
their attributes (which include spatial parameters, agents, 
features etc.). Additionally and unlike commonly 
available database models, it also stores a specific type 
of temporal ordering information amongst events in the 
database. The query language provides facilities for the 
specification of activities through embedding activity 
composition rules in its language framework. The 
separation of semantic events (stored as the database 
instance) from semantic activities (embedded in queries 
to the database) achieves flexibility that is usually needed 
in semantic information processing in intelligent 
environments. Typically, only a few events need to be 
defined for detection using signal processing algorithms. 
Exponentially many activities based on user 
requirements can be composed on the fly using the query 
language. In the following we briefly discuss the data 
model, database system design, and provide an example 
of  the use of the database in AVIARY. 
 
Semiorder Data Model. Design of semantic 
event/activity databases depends on many factors. These 
factors include whether events represent state or state-
transition of objects, whether spatial, temporal, or spatio-
temporal aspect is emphasized, how spatial and temporal 
uncertainties in event occurrences are represented, 
whether the model of composition of activities from 
events is statistical or combinatorial, etc. For our 
modeling purposes, we defined events to represent state-
transitions of observed objects of the system.  
 
We focused on the temporal composition of activities 
from events, and an important consideration was to take 
into account the temporal uncertainties in event 
occurrences. Assuming that such uncertainties for a 
given set of events is bounded by a constant, we 
obtained a model of composition of semantic activities 



  

from events. This model can suitably represent the 
concurrent occurrences of events in the presence of 
temporal uncertainties. The concurrency could be 
between events associated with multiple objects, or it 
could also manifest itself between many events 
associated with a single agent. Such concurrency in the 
presence of temporal uncertainties is not modeled by 
ubiquitous sequential temporal composition rules or by 
its simple extensions. 
 
The combinatorial structure obtained above is a 
semiorder (a proper subclass of partial orders) based on 
the binary relation of <precede,∆> such that event x 
<precede, ∆> event y if and only if the occurrence time 
of y is greater than the occurrence time of x plus ∆, 
where ∆ is the fixed temporal uncertainty interval. 
Semiorders based temporal compositions represent a 
natural evolution of sequential composition rules. We 
designed a semiorder based data model and a 
corresponding query language that also embeds a 
semiorder pattern definition language. Many algorithmic 
and architectural issues associated with the design and 
implementation of this database are discussed in [23, 
24]. 
 
System architecture for semantic event/activity 
processing. As mentioned above, semantic activities are 
complex spatio-temporal compositions of semantic 
events. The event/activity database stores events and 
their spatio-temporal inter-relations. A transducer 
detects these events using sensory information, spatial 
information stored in a surrogate spatial database, and 
feature data of detected objects. The event/activity 
database query language provides for high level 
semantic activity abstraction through its set of 
operations. These queries are executed against a database 
instance to detect activities. Also, there is provision for 
active queries that has query abstractions similar to those 
provided by the activity query language, but it executes 
in real-time and can notify different entities of the 
AVIARY architecture as soon as a high level activity is 
detected. Many components of such event/activity 
databases together with their interactions with the sensor 
processing elements and the event detection transducer 
are depicted in Figure 7.  
 
The overall system architecture comprises of a visual 
signal processing subsystem described earlier in the 
paper, a transducer subsystem for detection of events, 
and the semiorder database subsystem for activity 
recognition. The database prototype is generic and can 
be used in other domains, for example in retrieval of 
appropriate visual information in visual information 
management. The semiorder database prototype is 

implemented in Java and works across different 
platforms. The schema definition, as well as events 
belonging to many semiorder schemas, is stored in a 
native object-oriented database. The schema is defined 
using a schema definition language, and is parsed to 
automatically generate needed schema and event classes. 
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Figure 7. Detection and storage of semantic events and 
retrieval of semantic activities 
 
The query environment consists of a query parser, a 
validator, an optimizer, an execution engine, and a query 
result visualization engine. The validator extracts the 
schema and validates the query against the schema 
definition. The current optimizer only decides the set of  
data to be extracted from the native database. It arranges 
select conditions in query expressions so that an optimal 
set of event data is extracted from the native database. 
The execution engine applies appropriate semiorder 
query language operators to this set of extracted data. 
Returned results always consist of sets of semiorders, 
and are navigated through and visualized using 
semiorder representations. We have a separate video 
database in our domain of application. The semiorder 
database query environment provides for retrieval of 
video sequences that contain retrieved activities.  
 
Semantic Activity Recognition Results. A prototype of 
the semantic event/activity database was designed, 
developed, and used for detection of many complex 
activities in an intelligent room environment. A set of 
atomic events like startLeftTurn, endLeftTurn, 
enterRegion, exitRegion, Jumping, Merge (of objects), 
Split (of objects), Occur, Vanish, etc. were defined and 
corresponding algorithms were inserted in the event 
detection transducer. Many of these atomic events are 
defined only with respect to the spatial structure of the 
intelligent room. In our case, the spatial structure 
comprised of layers of spatial regions. Each such layer 
has disjoint spatial regions of interest. For example, we 



  

divided the room into regions near doors, bookshelf, 
region of the computer systems etc. 
 
Figure 8 depicts one of the results of a semantic query 
for detection of persons entering the region of the 
computer system after climbing the table. This is a 
simple example of a semantic query where different 
events form a totally ordered sequence. Many complex 
queries involving non-transitive parallelism between 
different events can be specified. The semantic 
event/activity database query mechanism is used to 
eventually analyze the intelligent environment to detect 
certain behaviors in real-time and/or to control the 
configuration of distributed clusters of sensors.  
 

 
 

Figure 8. Demonstration of successful recognition of activities 
of a child using the semantic event database. A child climbing 
the table, entering the region of the computer, and spending 
substantial length of time in that region before jumping off  the 
table are correctly recognized. 
 
Concluding Remarks 
 
Environments with rich and powerful suite of sensors  
allow more efficient means for transacting various 
activities among participants who may not be sharing the 
same physical space. We presented an overview of a 
systems oriented framework for design and specification 
of intelligent rooms. Two important functional blocks of 
the overall system are active camera network and 
semantic event database We presented the role, 
development and experiments associated with these 
blocks. 
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